The Association between the Dietary Antioxidant Index and Weight Status in Primary School Students: An Epidemiological Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Power Analysis
2.4. Assessment of Weight Status
2.5. Lifestyle Factors’ Assessments
2.6. The Dietary Antioxidant Index
2.7. Statistical Analysis
2.8. Bioethics
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization: WHO. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight#cms (accessed on 14 January 2024).
- Simmonds, M.; Llewellyn, A.; Owen, C.G.; Woolacott, N. Predicting adult obesity from childhood obesity: A systematic review and meta-analysis. Obes. Rev. 2015, 17, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Hassapidou, M. Prevalence of childhood obesity in Greece: Results from WHO Childhood Obesity Surveillance Initiative 2010–2020. Public Health Toxicol. 2022, 2 (Suppl. 1), A45. [Google Scholar] [CrossRef]
- Codoñer-Franch, P.; Valls-Bellés, V.; Arilla-Codoñer, Á.; Alonso-Iglesias, E. Oxidant mechanisms in childhood obesity: The link between inflammation and oxidative stress. Transl. Res. 2011, 158, 369–384. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Sánchez, A.; Madrigal-Santillán, E.; Bautista, M.; Esquivel-Soto, J.; Morales-González, Á.; Esquivel-Chirino, C.; Durante-Montiel, I.; Sánchez-Rivera, G.; Valadéz-Vega, C.; Morales-González, J.A. Inflammation, oxidative stress, and obesity. Int. J. Mol. Sci. 2011, 12, 3117–3132. [Google Scholar] [CrossRef]
- Vincent, H.K.; Innes, K.E.; Vincent, K.R. Oxidative stress and potential interventions to reduce oxidative stress in overweight and obesity. Diabetes Obes. Metab. Diabetes Obes. Metab. 2007, 9, 813–839. [Google Scholar] [CrossRef] [PubMed]
- Bondia-Pons, I.; Ryan, L.; Martínéz, J.A. Oxidative stress and inflammation interactions in human obesity. J. Physiol. Biochem. 2012, 68, 701–711. [Google Scholar] [CrossRef] [PubMed]
- Marseglia, L.; Manti, S.; Nicotera, A.G.; Parisi, E.; Di Rosa, G.; Gitto, E.; Arrigo, T. Oxidative stress in obesity: A critical component in human diseases. Int. J. Mol. Sci. 2014, 16, 378–400. [Google Scholar] [CrossRef]
- Manna, P.; Jain, S.K. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: Causes and therapeutic strategies. Metab. Syndr. Relat. Disord. 2015, 13, 423–444. [Google Scholar] [CrossRef]
- Tobore, T.O. Towards a comprehensive theory of obesity and a healthy diet: The causal role of oxidative stress in food addiction and obesity. Behav. Brain Res. 2020, 384, 112560. [Google Scholar] [CrossRef]
- Pérez-Torres, I.; Castrejón-Téllez, V.; Soto, M.E.; Rubio-Ruiz, M.E.; Manzano-Pech, L.; Guarner-Lans, V. Oxidative stress, plant natural antioxidants, and obesity. Int. J. Mol. Sci. 2021, 22, 1786. [Google Scholar] [CrossRef]
- Hosseini, B.; Saedisomeolia, A.; Allman-Farinelli, M. Association Between Antioxidant Intake/Status and Obesity: A Systematic Review of Observational Studies. Biol. Trace Elem. Res. 2016, 175, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Cole, T.; Bellizzi, M.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ. Br. Med. J. 2000, 320, 1240. [Google Scholar] [CrossRef] [PubMed]
- Antonogeogros, G.; Grigoropoulou, D.; Papadimitriou, A.; Priftis, K.Ν.; Anthracopoulos, M.B.; Nicolaidou, P.; Panagiotakos, D.B. Validation of a food frequency questionnaire designed for children 10-12 years: The Panacea-FFQ. Pediatr. Res. 2011, 70, 778. [Google Scholar] [CrossRef]
- Argiropoulou, E.C.; Michalopoulou, M.; Aggeloussis, N.; Avgerinos, A. Validity and reliability of physical activity measures in greek high school age children. J. Sports Sci. Med. 2004, 3, 147. [Google Scholar] [PubMed]
- FoodData Central. Available online: https://fdc.nal.usda.gov/fdc-app.html#/ (accessed on 15 January 2024).
- Τrichopoulou, A.; Georga, K. Composition Tables for Greek Foods and Recipes, 2nd ed.; Parisianou publications SA Ltd.: Athens, GR, USA, 2004. [Google Scholar]
- Wright, M.E.; Mayne, S.T.; Stolzenberg-Solomon, R.Z.; Li, Z.; Pietinen, P.; Taylor, P.R.; Virtamo, J.; Albanês, D. Development of a comprehensive dietary antioxidant index and application to lung cancer risk in a cohort of male smokers. Am. J. Epidemiol. 2004, 160, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Aminnejad, B.; Roumi, Z.; Ardekanizadeh, N.H.; Vahid, F.; Gholamalizadeh, M.; Kalantari, N.; Ataei, A.; Doaei, S. Association of dietary antioxidant index with body mass index in adolescents. Obes. Sci. Pract. 2022, 9, 15–22. [Google Scholar] [CrossRef]
- Vahid, F.; Rahmani, D.; Davoodi, S.H. Validation of Dietary Antioxidant Index (DAI) and investigating the relationship between DAI and the odds of gastric cancer. Nutr. Metab. 2020, 17, 102. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, S.; Lotfi, K.; Mirzaei, S.; Asadi, A.; Akhlaghi, M.; Saneei, P. Dietary total antioxidant capacity in relation to metabolic health status in overweight and obese adolescents. Nutr. J. 2022, 21, 54. [Google Scholar] [CrossRef] [PubMed]
- Azizi-Soleiman, F.; Khoshhali, M.; Heidari-Beni, M.; Qorbani, M.; Kelishadi, R. Association between Dietary Antioxidant Quality Score and Anthropometric Measurements in Children and Adolescents: The Weight Disorders Survey of the CASPIAN-IV Study. J. Trop. Pediatr. 2020, 67, fmaa065. [Google Scholar] [CrossRef]
- Puchau, B.; Ochoa, M.C.; Zulet, M.Á.; Marti, A.; Martínéz, J.A.; Members, G. Dietary total antioxidant capacity and obesity in children and adolescents. Int. J. Food Sci. Nutr. 2010, 61, 713–721. [Google Scholar] [CrossRef]
- Wang, W.; Wang, X.; Cao, S.; Duan, Y.; Xu, C.; Gan, D.; He, W. Dietary Antioxidant Indices in Relation to All-Cause and Cause-Specific Mortality among Adults with Diabetes: A Prospective Cohort study. Front. Nutr. 2022, 9, 849727. [Google Scholar] [CrossRef] [PubMed]
- Vahid, F.; Rahmani, D.; Davoodi, S.H. The correlation between serum inflammatory, antioxidant, glucose handling biomarkers, and Dietary Antioxidant Index (DAI) and the role of DAI in obesity/overweight causation: Population-based case–control study. Int. J. Obes. 2021, 45, 2591–2599. [Google Scholar] [CrossRef] [PubMed]
- Kolarzyk, E.; Skop-Lewandowska, A.; Jaworska, J.; Ostachowska-Gąsior, A.; Krzeszowska-Rosiek, T. Dietary intake of antioxidants and fats in the context of coronary heart disease prevention among elderly people. AAEM Ann. Agric. Environ. Med. Ann. Agric. Environ. Med. 2018, 25, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Kolarzyk, E.; Pietrzycka, A.; Zając, J.; Morawiecka-Baranek, J. Relationship between dietary antioxidant index (DAI) and antioxidants level in plasma of Kraków inhabitants. Adv. Clin. Exp. Med. 2017, 26, 393–399. [Google Scholar] [CrossRef]
- Hertiš Petek, T.; Petek, T.; Močnik, M.; Marčun Varda, N. Systemic Inflammation, Oxidative Stress and Cardiovascular Health in Children and Adolescents: A Systematic Review. Antioxidants 2022, 11, 894. [Google Scholar] [CrossRef]
Characteristics | Overall (n = 1580) | Normal Weight (n = 1142) | Overweight/Obesity (n = 438) | p |
---|---|---|---|---|
Age (years) | 11.21 ± 0.782 | 11.23 ± 0.782 | 11.14 ± 0.777 | 0.044 * |
Gender | <0.001 * | |||
Girls | 861 (54.5%) | 658 (57.6%) | 203 (46.3%) | |
Boys | 719 (45.5%) | 484 (42.4%) | 235 (53.7%) | |
Mean Energy Intake (kcal/day) | 1378 ± 719 | 1388 ± 726 | 1353 ± 702 | 0.391 |
Physical Activity | <0.001 * | |||
Yes | 1243 (78.7%) | 923 (80.8%) | 320 (73.1%) | |
No | 337 (21.3%) | 219 (19.2%) | 118 (26.9%) | |
Carbohydrate Intake (g/day) | 179.6 ± 95.4 | 181.6 ± 95.4 | 174.4 ± 95.3 | 0.182 |
Protein Intake (g/day) | 59.8 ± 36.6 | 60.1 ± 37.0 | 59.0 ± 35.4 | 0.614 |
Fat Intake (g/day) | 46.7 ± 28.1 | 46.8 ± 28.5 | 46.8 ± 27.3 | 0.895 |
Vitamin A Intake (μg/day) | 1028 ± 890 | 1053 ± 885 | 963 ± 900 | 0.072 |
Vitamin C Intake (mg/day) | 227 ± 161 | 231 ± 160 | 215 ± 163 | 0.069 |
Vitamin E Intake (mg/day) | 6.5 ± 5.1 | 6.6 ± 5.1 | 6.4 ± 5.2 | 0.480 |
Selenium Intake (μg/day) | 67 ± 50 | 68 ± 51 | 65 ± 49 | 0.399 |
Zinc Intake (mg/day) | 6.8 ± 3.8 | 6.9 ± 3.9 | 6.7 ± 3.9 | 0.406 |
Magnesium Intake (mg/day) | 284 ± 168 | 287 ± 170 | 276 ± 164 | 0.202 |
Characteristics | DAI < −1.17 (n = 790) | DAI ≥ −1.17 (n = 790) | p |
---|---|---|---|
Age (years) | 11.25 ± 0.788 | 11.16 ± 0.772 | 0.017 * |
Gender | 0.173 | ||
Girls | 444 (56.2%) | 417 (52.8%) | |
Boys | 346 (43.8%) | 373 (47.2%) | |
Mean BMI (kg/m2) | 19.46 ± 3.47 | 18.96 ± 3.38 | 0.004 * |
Mean Energy Intake (kcal/day) | 962 ± 337 | 1794 ± 758 | <0.001 * |
Physical Activity | 0.023 * | ||
Yes | 603 (76.3%) | 640 (81.0%) | |
No | 187 (23.7%) | 150 (19.0%) | |
Carbohydrate Intake (g/day) | 123.3 ± 45.2 | 235.9 ± 99.1 | <0.001 * |
Protein Intake (g/day) | 40.0 ± 13.0 | 79.6 ± 41.4 | <0.001 * |
Fat Intake (g/day) | 34.4 ± 16.8 | 59.1 ± 31.6 | <0.001 * |
Vitamin A Intake (μg/day) | 522 ± 328 | 1534 ± 981 | <0.001 * |
Vitamin C Intake (mg/day) | 128 ± 69 | 326 ± 165 | <0.001 * |
Vitamin E Intake (mg/day) | 3.5 ± 1.4 | 9.6 ± 5.6 | <0.001 * |
Selenium Intake (μg/day) | 44 ± 18 | 90 ± 61 | <0.001 * |
Zinc Intake (mg/day) | 4.5 ± 1.4 | 9.2 ± 4.1 | <0.001 * |
Magnesium Intake (mg/day) | 174 ± 53 | 394 ± 172 | <0.001 * |
DAI | ||
---|---|---|
B Coefficient | p | |
Model 1 | −0.501 | 0.004 * |
Model 2 | −0.607 | 0.004 * |
Model 3 | −0.494 | 0.032 * |
DAI | ||
---|---|---|
Odds Ratio | 95% Confidence Interval | |
Model 1 | 0.719 | (0.576; 0.897) * |
Model 2 | 0.662 | (0.502; 0.873) * |
Model 3 | 0.666 | (0.489; 0.907) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokkou, S.; Notara, V.; Kanellopoulou, A.; Antonogeorgos, G.; Rojas-Gil, A.P.; Kornilaki, E.; Lagiou, A.; Panagiotakos, D. The Association between the Dietary Antioxidant Index and Weight Status in Primary School Students: An Epidemiological Study. Nutrients 2024, 16, 1667. https://doi.org/10.3390/nu16111667
Kokkou S, Notara V, Kanellopoulou A, Antonogeorgos G, Rojas-Gil AP, Kornilaki E, Lagiou A, Panagiotakos D. The Association between the Dietary Antioxidant Index and Weight Status in Primary School Students: An Epidemiological Study. Nutrients. 2024; 16(11):1667. https://doi.org/10.3390/nu16111667
Chicago/Turabian StyleKokkou, Stamatia, Venetia Notara, Aikaterini Kanellopoulou, George Antonogeorgos, Andrea Paola Rojas-Gil, Ekaterina Kornilaki, Areti Lagiou, and Demosthenes Panagiotakos. 2024. "The Association between the Dietary Antioxidant Index and Weight Status in Primary School Students: An Epidemiological Study" Nutrients 16, no. 11: 1667. https://doi.org/10.3390/nu16111667
APA StyleKokkou, S., Notara, V., Kanellopoulou, A., Antonogeorgos, G., Rojas-Gil, A. P., Kornilaki, E., Lagiou, A., & Panagiotakos, D. (2024). The Association between the Dietary Antioxidant Index and Weight Status in Primary School Students: An Epidemiological Study. Nutrients, 16(11), 1667. https://doi.org/10.3390/nu16111667