Eight Weeks of Intermittent Exercise in Hypoxia, with or without a Low-Carbohydrate Diet, Improves Bone Mass and Functional and Physiological Capacity in Older Adults with Type 2 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Study Design
2.3. Participants
2.4. Dietary Plan
2.5. Exercise Protocol
2.6. Measurements
2.7. Glycemic Control Analyses
2.8. Body Composition
2.9. Cardiopulmonary Exercise Test
2.10. Functional Tests
2.11. Statistical Analyses
3. Results
3.1. Baseline Characteristics
3.2. Dietary Intervention
3.3. Physiological Measurements during Exercise Sessions
3.4. Subjective Effort Perception
3.5. Glucose Metabolism
3.6. Anthropometry and Body Composition
3.7. Functional Capacity
3.8. Cardiorespiratory Fitness
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Magliano, D.J.; Boyko, E.J. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021. Available online: https://www.ncbi.nlm.nih.gov/pubmed/35914061 (accessed on 2 May 2024).
- Holman, N.; Young, B.; Gadsby, R. Current prevalence of Type 1 and Type 2 diabetes in adults and children in the UK. Diabet. Med. 2015, 32, 1119–1120. [Google Scholar] [CrossRef]
- Verhaeghe, J.; Suiker, A.M.; Nyomba, B.L.; Visser, W.J.; Einhorn, T.A.; Dequeker, J.; Bouillon, R. Bone mineral homeostasis in spontaneously diabetic BB rats. II. Impaired bone turnover and decreased osteocalcin synthesis. Endocrinology 1989, 124, 573–582. [Google Scholar] [CrossRef]
- Baena-Diez, J.M.; Penafiel, J.; Subirana, I.; Ramos, R.; Elosua, R.; Marin-Ibanez, A.; Guembe, M.J.; Rigo, F.; Tormo-Diaz, M.J.; Moreno-Iribas, C.; et al. Risk of Cause-Specific Death in Individuals With Diabetes: A Competing Risks Analysis. Diabetes Care 2016, 39, 1987–1995. [Google Scholar] [CrossRef] [PubMed]
- Kelsey, M.D.; Nelson, A.J.; Green, J.B.; Granger, C.B.; Peterson, E.D.; McGuire, D.K.; Pagidipati, N.J. Guidelines for Cardiovascular Risk Reduction in Patients With Type 2 Diabetes: JACC Guideline Comparison. J. Am. Coll. Cardiol. 2022, 79, 1849–1857. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Liu, T.; Zhao, J.; Wang, S.; Dang, X.; Wang, W. Causal associations of hand grip strength with bone mineral density and fracture risk: A mendelian randomization study. Front. Endocrinol. 2022, 13, 1020750. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, A.V.; Hillier, T.A.; Sellmeyer, D.E.; Resnick, H.E.; Gregg, E.; Ensrud, K.E.; Schreiner, P.J.; Margolis, K.L.; Cauley, J.A.; Nevitt, M.C.; et al. Older women with diabetes have a higher risk of falls: A prospective study. Diabetes Care 2002, 25, 1749–1754. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Inaba, M.; Yamada, S.; Ozaki, E.; Maruo, S.; Okuno, S.; Imanishi, Y.; Kuriyama, N.; Watanabe, Y.; Emoto, M.; et al. Association of Decreased Handgrip Strength with Reduced Cortical Thickness in Japanese Female Patients with Type 2 Diabetes Mellitus. Sci. Rep. 2018, 8, 10767. [Google Scholar] [CrossRef] [PubMed]
- Gregg, E.W.; Beckles, G.L.; Williamson, D.F.; Leveille, S.G.; Langlois, J.A.; Engelgau, M.M.; Narayan, K.M. Diabetes and physical disability among older U.S. adults. Diabetes Care 2000, 23, 1272–1277. [Google Scholar] [CrossRef] [PubMed]
- Finianos, B.; Sabbagh, P.; Zunquin, G.; El Hage, R. Muscular power and maximum oxygen consumption predict bone density in a group of middle-aged men. J. Musculoskelet. Neuronal Interact. 2020, 20, 53–61. [Google Scholar] [PubMed]
- Wu, C.; Rankin, E.B.; Castellini, L.; Alcudia, J.F.; LaGory, E.L.; Andersen, R.; Rhodes, S.D.; Wilson, T.L.; Mohammad, K.S.; Castillo, A.B.; et al. Oxygen-sensing PHDs regulate bone homeostasis through the modulation of osteoprotegerin. Genes. Dev. 2015, 29, 817–831. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, S.L.; Abrahamsen, B.; Napoli, N.; Akesson, K.; Chandran, M.; Eastell, R.; El-Hajj Fuleihan, G.; Josse, R.; Kendler, D.L.; Kraenzlin, M.; et al. Diagnosis and management of bone fragility in diabetes: An emerging challenge. Osteoporos. Int. 2018, 29, 2585–2596. [Google Scholar] [CrossRef] [PubMed]
- Vestergaard, P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—A meta-analysis. Osteoporos. Int. 2007, 18, 427–444. [Google Scholar] [CrossRef] [PubMed]
- Janghorbani, M.; Van Dam, R.M.; Willett, W.C.; Hu, F.B. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am. J. Epidemiol. 2007, 166, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Hofbauer, L.C.; Busse, B.; Eastell, R.; Ferrari, S.; Frost, M.; Muller, R.; Burden, A.M.; Rivadeneira, F.; Napoli, N.; Rauner, M. Bone fragility in diabetes: Novel concepts and clinical implications. Lancet Diabetes Endocrinol. 2022, 10, 207–220. [Google Scholar] [CrossRef] [PubMed]
- Saito, M.; Fujii, K.; Soshi, S.; Tanaka, T. Reductions in degree of mineralization and enzymatic collagen cross-links and increases in glycation-induced pentosidine in the femoral neck cortex in cases of femoral neck fracture. Osteoporos. Int. 2006, 17, 986–995. [Google Scholar] [CrossRef] [PubMed]
- Kostolanska, J.; Jakus, V.; Barak, L. HbA1c and serum levels of advanced glycation and oxidation protein products in poorly and well controlled children and adolescents with type 1 diabetes mellitus. J. Pediatr. Endocrinol. Metab. 2009, 22, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Uusitupa, M.; Khan, T.A.; Viguiliouk, E.; Kahleova, H.; Rivellese, A.A.; Hermansen, K.; Pfeiffer, A.; Thanopoulou, A.; Salas-Salvado, J.; Schwab, U.; et al. Prevention of Type 2 Diabetes by Lifestyle Changes: A Systematic Review and Meta-Analysis. Nutrients 2019, 11, 2611. [Google Scholar] [CrossRef] [PubMed]
- Lean, M.E.; Leslie, W.S.; Barnes, A.C.; Brosnahan, N.; Thom, G.; McCombie, L.; Peters, C.; Zhyzhneuskaya, S.; Al-Mrabeh, A.; Hollingsworth, K.G.; et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): An open-label, cluster-randomised trial. Lancet 2018, 391, 541–551. [Google Scholar] [CrossRef]
- Apekey, T.A.; Maynard, M.J.; Kittana, M.; Kunutsor, S.K. Comparison of the Effectiveness of Low Carbohydrate Versus Low Fat Diets, in Type 2 Diabetes: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2022, 14, 4391. [Google Scholar] [CrossRef]
- Jing, T.; Zhang, S.; Bai, M.; Chen, Z.; Gao, S.; Li, S.; Zhang, J. Effect of Dietary Approaches on Glycemic Control in Patients with Type 2 Diabetes: A Systematic Review with Network Meta-Analysis of Randomized Trials. Nutrients 2023, 15, 3156. [Google Scholar] [CrossRef]
- Naude, C.E.; Brand, A.; Schoonees, A.; Nguyen, K.A.; Chaplin, M.; Volmink, J. Low-carbohydrate versus balanced-carbohydrate diets for reducing weight and cardiovascular risk. Cochrane Database Syst. Rev. 2022, 1, CD013334. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Hung, E.S.; Cullum, A.; Allen, R.E.; Aggett, P.J.; Dyson, P.; Forouhi, N.G.; Greenwood, D.C.; Pryke, R.; Taylor, R.; et al. Lower carbohydrate diets for adults with type 2 diabetes. Br. J. Nutr. 2022, 127, 1352–1357. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, J.Z.; Day, A.; Brinkworth, G.D.; Sato, J.; Yamada, S.; Jonsson, T.; Beardsley, J.; Johnson, J.A.; Thabane, L.; Johnston, B.C. Efficacy and safety of low and very low carbohydrate diets for type 2 diabetes remission: Systematic review and meta-analysis of published and unpublished randomized trial data. BMJ 2021, 372, m4743. [Google Scholar] [CrossRef] [PubMed]
- Laaksonen, D.E.; Lindstrom, J.; Lakka, T.A.; Eriksson, J.G.; Niskanen, L.; Wikstrom, K.; Aunola, S.; Keinanen-Kiukaanniemi, S.; Laakso, M.; Valle, T.T.; et al. Physical activity in the prevention of type 2 diabetes: The Finnish diabetes prevention study. Diabetes 2005, 54, 158–165. [Google Scholar] [CrossRef]
- Viggers, R.; Al-Mashhadi, Z.; Fuglsang-Nielsen, R.; Gregersen, S.; Starup-Linde, J. The Impact of Exercise on Bone Health in Type 2 Diabetes Mellitus-a Systematic Review. Curr. Osteoporos. Rep. 2020, 18, 357–370. [Google Scholar] [CrossRef] [PubMed]
- Jamshidpour, B.; Bahrpeyma, F.; Khatami, M.R. The effect of aerobic and resistance exercise training on the health related quality of life, physical function, and muscle strength among hemodialysis patients with Type 2 diabetes. J. Bodyw. Mov. Ther. 2020, 24, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Hannah, S.S.; McFadden, S.; McNeilly, A.; McClean, C. “Take My Bone Away?” Hypoxia and bone: A narrative review. J. Cell Physiol. 2021, 236, 721–740. [Google Scholar] [CrossRef] [PubMed]
- Navarrete-Opazo, A.; Mitchell, G.S. Therapeutic potential of intermittent hypoxia: A matter of dose. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307, R1181–R1197. [Google Scholar] [CrossRef] [PubMed]
- Kindlovits, R.; Pereira, A.; Sousa, A.C.; Viana, J.L.; Teixeira, V.H. Effects of Acute and Chronic Exercise in Hypoxia on Cardiovascular and Glycemic Parameters in Patients with Type 2 Diabetes: A Systematic Review. High. Alt. Med. Biol. 2022, 23, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Schega, L.; Peter, B.; Torpel, A.; Mutschler, H.; Isermann, B.; Hamacher, D. Effects of intermittent hypoxia on cognitive performance and quality of life in elderly adults: A pilot study. Gerontology 2013, 59, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Timon, R.; Gonzalez-Custodio, A.; Gusi, N.; Olcina, G. Effects of intermittent hypoxia and whole-body vibration training on health-related outcomes in older adults. Aging Clin. Exp. Res. 2024, 36, 6. [Google Scholar] [CrossRef] [PubMed]
- Camacho-Cardenosa, M.; Camacho-Cardenosa, A.; Burtscher, M.; Brazo-Sayavera, J.; Tomas-Carus, P.; Olcina, G.; Timon, R. Effects of Whole-Body Vibration Training Combined With Cyclic Hypoxia on Bone Mineral Density in Elderly People. Front. Physiol. 2019, 10, 1122. [Google Scholar] [CrossRef] [PubMed]
- Goodyear, M.D.; Krleza-Jeric, K.; Lemmens, T. The Declaration of Helsinki. BMJ 2007, 335, 624–625. [Google Scholar] [CrossRef] [PubMed]
- Cioffi, I.; Marra, M.; Pasanisi, F.; Scalfi, L. Prediction of resting energy expenditure in healthy older adults: A systematic review. Clin. Nutr. 2021, 40, 3094–3103. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.H.; Macfarlane, D.J.; Lam, T.H.; Stewart, S.M. Validity of the International Physical Activity Questionnaire Short Form (IPAQ-SF): A systematic review. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 115. [Google Scholar] [CrossRef] [PubMed]
- Moghissi, E.S.; Korytkowski, M.T.; DiNardo, M.; Einhorn, D.; Hellman, R.; Hirsch, I.B.; Inzucchi, S.E.; Ismail-Beigi, F.; Kirkman, M.S.; Umpierrez, G.E.; et al. American Association of Clinical Endocrinologists and American Diabetes Association consensus statement on inpatient glycemic control. Diabetes Care 2009, 32, 1119–1131. [Google Scholar] [CrossRef] [PubMed]
- Silverii, G.A.; Botarelli, L.; Dicembrini, I.; Girolamo, V.; Santagiuliana, F.; Monami, M.; Mannucci, E. Low-carbohydrate diets and type 2 diabetes treatment: A meta-analysis of randomized controlled trials. Acta Diabetol. 2020, 57, 1375–1382. [Google Scholar] [CrossRef] [PubMed]
- Idrose, A.M.; Juliana, N.; Azmani, S.; Yazit, N.A.A.; Muslim, M.S.A.; Ismail, M.; Amir, S.N. Singing Improves Oxygen Saturation in Simulated High-Altitude Environment. J. Voice 2022, 36, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Norton, K. Standards for anthropometry assessment Chapter 4. In Kinanthropometry and Exercise Physiologym, 4th ed.; Routledge: London, UK, 2018; pp. 68–137. [Google Scholar]
- Vilcant, V.; Zeltser, R. Treadmill Stress Testing. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/pubmed/29763078 (accessed on 20 May 2024).
- Solway, S.; Brooks, D.; Lacasse, Y.; Thomas, S. A qualitative systematic overview of the measurement properties of functional walk tests used in the cardiorespiratory domain. Chest 2001, 119, 256–270. [Google Scholar] [CrossRef] [PubMed]
- van Zuuren, E.J.; Fedorowicz, Z.; Kuijpers, T.; Pijl, H. Effects of low-carbohydrate- compared with low-fat-diet interventions on metabolic control in people with type 2 diabetes: A systematic review including GRADE assessments. Am. J. Clin. Nutr. 2018, 108, 300–331. [Google Scholar] [CrossRef] [PubMed]
- Gil-Cosano, J.J.; Gracia-Marco, L.; Courteix, D.; Lesourd, B.; Chapier, R.; Obert, P.; Walther, G.; Vinet, A.; Thivel, D.; Munoz-Torres, M.; et al. Cardiorespiratory Fitness and Bone Turnover Markers in Adults with Metabolic Syndrome: The Mediator Role of Inflammation. Int. J. Sport. Nutr. Exerc. Metab. 2023, 33, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Gkastaris, K.; Goulis, D.G.; Potoupnis, M.; Anastasilakis, A.D.; Kapetanos, G. Obesity, osteoporosis and bone metabolism. J. Musculoskelet. Neuronal Interact. 2020, 20, 372–381. [Google Scholar] [PubMed]
- Wu, N.; Li, X.; Mu, S.; Fu, Q.; Ba, G. Handgrip strength is positively associated with bone mineral density in middle and aged adults: Results from NHANES 2013–2014. Arch. Osteoporos. 2021, 16, 121. [Google Scholar] [CrossRef] [PubMed]
- Nordklint, A.K.; Almdal, T.P.; Vestergaard, P.; Lundby-Christensen, L.; Jorgensen, N.R.; Boesgaard, T.W.; Breum, L.; Gade-Rasmussen, B.; Sneppen, S.B.; Gluud, C.; et al. Effect of Metformin vs. Placebo in Combination with Insulin Analogues on Bone Markers P1NP and CTX in Patients with Type 2 Diabetes Mellitus. Calcif. Tissue Int. 2020, 107, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Napoli, N.; Chandran, M.; Pierroz, D.D.; Abrahamsen, B.; Schwartz, A.V.; Ferrari, S.L.; Bone, I.O.F.; Diabetes Working, G. Mechanisms of diabetes mellitus-induced bone fragility. Nat. Rev. Endocrinol. 2017, 13, 208–219. [Google Scholar] [CrossRef]
- Davis, M.E.; Blake, C.; Perrotta, C.; Cunningham, C.; O’Donoghue, G. Impact of training modes on fitness and body composition in women with obesity: A systematic review and meta-analysis. Obesity 2022, 30, 300–319. [Google Scholar] [CrossRef] [PubMed]
- Ladage, D.; Braunroth, C.; Lenzen, E.; Berghofer, S.; Graf, C.; Bloch, W.; Brixius, K. Influence of intermittent hypoxia interval training on exercise-dependent erythrocyte NOS activation and blood pressure in diabetic patients. Can. J. Physiol. Pharmacol. 2012, 90, 1591–1598. [Google Scholar] [CrossRef]
- Allsopp, G.L.; Hoffmann, S.M.; Feros, S.A.; Pasco, J.A.; Russell, A.P.; Wright, C.R. The Effect of Normobaric Hypoxia on Resistance Training Adaptations in Older Adults. J. Strength. Cond. Res. 2022, 36, 2306–2312. [Google Scholar] [CrossRef] [PubMed]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Lee, H.A.; Cho, E.H. Low handgrip strength is associated with low bone mineral density and fragility fractures in postmenopausal healthy Korean women. J. Korean Med. Sci. 2012, 27, 744–747. [Google Scholar] [CrossRef] [PubMed]
- Tachiki, T.; Kouda, K.; Dongmei, N.; Tamaki, J.; Iki, M.; Kitagawa, J.; Takahira, N.; Sato, Y.; Kajita, E.; Fujita, Y.; et al. Muscle strength is associated with bone health independently of muscle mass in postmenopausal women: The Japanese population-based osteoporosis study. J. Bone Miner. Metab. 2019, 37, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Z.; Zhuang, H.F.; Cai, S.Q.; Lin, C.K.; Wang, P.W.; Yan, L.S.; Lin, J.K.; Yu, H.M. Low Grip Strength is a Strong Risk Factor of Osteoporosis in Postmenopausal Women. Orthop. Surg. 2018, 10, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.P.; Bali, A.; Singh, N.; Jaggi, A.S. Advanced glycation end products and diabetic complications. Korean J. Physiol. Pharmacol. 2014, 18, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Lu, H.; Pan, S.; Lin, Y.; Zhou, K.; Wang, L. 6MWT Performance and its Correlations with VO(2) and Handgrip Strength in Home-Dwelling Mid-Aged and Older Chinese. Int. J. Environ. Res. Public Health 2017, 14, 473. [Google Scholar] [CrossRef] [PubMed]
- Farrell, C.; Turgeon, D.R. Normal Versus Chronic Adaptations to Aerobic Exercise. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/pubmed/34283432 (accessed on 2 May 2024).
- Brinkmann, C.; Brixius, K. Hyperlactatemia in type 2 diabetes: Can physical training help? J. Diabetes Complicat. 2015, 29, 965–969. [Google Scholar] [CrossRef] [PubMed]
- Weber, D.R.; Long, F.; Zemel, B.S.; Kindler, J.M. Glycemic Control and Bone in Diabetes. Curr. Osteoporos. Rep. 2022, 20, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Crawford, S.O.; Hoogeveen, R.C.; Brancati, F.L.; Astor, B.C.; Ballantyne, C.M.; Schmidt, M.I.; Young, J.H. Association of blood lactate with type 2 diabetes: The Atherosclerosis Risk in Communities Carotid MRI Study. Int. J. Epidemiol. 2010, 39, 1647–1655. [Google Scholar] [CrossRef] [PubMed]
- Huebschmann, A.G.; Regensteiner, J.G.; Vlassara, H.; Reusch, J.E. Diabetes and advanced glycoxidation end products. Diabetes Care 2006, 29, 1420–1432. [Google Scholar] [CrossRef]
- Hernandez, C.J.; Tang, S.Y.; Baumbach, B.M.; Hwu, P.B.; Sakkee, A.N.; van der Ham, F.; DeGroot, J.; Bank, R.A.; Keaveny, T.M. Trabecular microfracture and the influence of pyridinium and non-enzymatic glycation-mediated collagen cross-links. Bone 2005, 37, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, R.; Maxwell, N.; Castle, P.; Elliott, B.; Brickley, G.; Watt, P. Intermittent exercise with and without hypoxia improves insulin sensitivity in individuals with type 2 diabetes. J. Clin. Endocrinol. Metab. 2012, 97, E546–E555. [Google Scholar] [CrossRef] [PubMed]
- Schreuder, T.H.; Nyakayiru, J.; Houben, J.; Thijssen, D.H.; Hopman, M.T. Impact of hypoxic versus normoxic training on physical fitness and vasculature in diabetes. High Alt. Med. Biol. 2014, 15, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wu, P.; Yu, F.; Luo, G.; Qing, L.; Tang, J. HIF-1alpha Regulates Bone Homeostasis and Angiogenesis, Participating in the Occurrence of Bone Metabolic Diseases. Cells 2022, 11, 3552. [Google Scholar] [CrossRef] [PubMed]
- Camacho-Cardenosa, A.; Camacho-Cardenosa, M.; Martinez-Guardado, I.; Leal, A.; Andrada, J.M.V.; Timon, R. Resistance circuit training combined with hypoxia stimulates bone system of older adults: A randomized trial. Exp. Gerontol. 2022, 169, 111983. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Guardado, I.; Ramos-Campo, D.J.; Olcina, G.J.; Rubio-Arias, J.A.; Chung, L.H.; Marin-Cascales, E.; Alcaraz, P.E.; Timon, R. Effects of high-intensity resistance circuit-based training in hypoxia on body composition and strength performance. Eur. J. Sport. Sci. 2019, 19, 941–951. [Google Scholar] [CrossRef] [PubMed]
- Lester, M.E.; Urso, M.L.; Evans, R.K.; Pierce, J.R.; Spiering, B.A.; Maresh, C.M.; Hatfield, D.L.; Kraemer, W.J.; Nindl, B.C. Influence of exercise mode and osteogenic index on bone biomarker responses during short-term physical training. Bone 2009, 45, 768–776. [Google Scholar] [CrossRef] [PubMed]
- Semenza, G.L. Hypoxia-inducible factors in physiology and medicine. Cell 2012, 148, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Rittweger, J.; Debevec, T.; Frings-Meuthen, P.; Lau, P.; Mittag, U.; Ganse, B.; Ferstl, P.G.; Simpson, E.J.; Macdonald, I.A.; Eiken, O.; et al. On the combined effects of normobaric hypoxia and bed rest upon bone and mineral metabolism: Results from the PlanHab study. Bone 2016, 91, 130–138. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, K.A.; Pollock, R.D.; Stroud, M.; Lambert, R.J.; Kumar, A.; Atkinson, R.A.; Green, D.A.; Anton-Solanas, A.; Edwards, L.M.; Harridge, S.D.R. Human physiological and metabolic responses to an attempted winter crossing of Antarctica: The effects of prolonged hypobaric hypoxia. Physiol. Rep. 2018, 6, e13613. [Google Scholar] [CrossRef] [PubMed]
- Camacho-Cardenosa, M.; Quesada-Gomez, J.M.; Camacho-Cardenosa, A.; Leal, A.; Dorado, G.; Torrecillas-Baena, B.; Casado-Diaz, A. Effects of normobaric cyclic hypoxia exposure on mesenchymal stem-cell differentiation-pilot study on bone parameters in elderly. World J. Stem Cells 2020, 12, 1667–1690. [Google Scholar] [CrossRef] [PubMed]
- Thabane, L.; Ma, J.; Chu, R.; Cheng, J.; Ismaila, A.; Rios, L.P.; Robson, R.; Thabane, M.; Giangregorio, L.; Goldsmith, C.H. A tutorial on pilot studies: The what, why and how. BMC Med. Res. Methodol. 2010, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Radin, M.S. Pitfalls in hemoglobin A1c measurement: When results may be misleading. J. Gen. Intern. Med. 2014, 29, 388–394. [Google Scholar] [CrossRef] [PubMed]
Variable (n = 42) | Value |
---|---|
Gender (male–female) | 17:25 |
Age (years) | 72.2 (4.0) |
Body mass index (kg/m2) | 29.0 (3.8) |
Body fat (%) | 39.0 (6.5) |
Waist circumference (cm) | 96.7 (8.4) |
Hip circumference (cm) | 103.8 (14.1) |
Waist–hip ratio (cm) | 0.9 (0.1) |
Hemoglobin A1c (%) | 7.1 (1.7) |
Fasting glucose (mg/dL) | 114.3 (24.3) |
HOMA-IR | 2.4 (1.6) |
Nutrients | CTRL Group | EH Group | EH + LCD Group | p-Value |
---|---|---|---|---|
Energy (kcal) | 1603.7 (107.1) | 1666.8 (246.9) | 1619.2 (155.4) | 0.69 |
Carbohydrates (%) | 56.7 (3.2) | 56.6 (2.7) | 39.5 (0.6) # | <0.001 |
Protein (%) | 19.4 (2.3) | 20.8 (1.0) | 20.1 (0.7) | 0.15 |
Total lipids (%) | 23.7 (2.6) | 22.5 (2.8) | 40.4 (0.4) # | <0.001 |
Monounsaturated fat (g) | 13.3 (5.1) | 12.9 (5.8) | 31.5 (9.1) # | <0.001 |
Polyunsaturated fat (g) | 7.4 (1.5) | 8.0 (1.6) | 13.9 (4.8) # | <0.001 |
Saturated fat (g) | 9.8 (3.4) | 7.6 (1.5) | 13.2 (2.) # | <0.001 |
Fiber (g) | 20.7 (3.9) | 24.6 (11.9) | 22.3 (4.3) | 0.49 |
Variable | CTRL Group | EH Group | EH + LCD Group | p-Value |
---|---|---|---|---|
Oxygen saturation (%) | 94.8 (2.8) | 87.1 (4.6) # | 87.2 (4.4) # | <0.001 |
Average heart hate (bpm) | 115.5 (7.7) | 120.7 (9.5) | 118.5 (11.8) | 0.63 |
Borg Rating of Perceived Exertion (points) | 12.6 (0.5) | 14.8 (1.6) # | 15.0 (1.3) # | <0.001 |
Variables | CTRL Group | EH Group | EH + LCD Group | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | Δ | Pre | Post | Δ | Pre | Post | Δ | Moments | Groups | |
HbA1c (%) | 6.9 (0.8) | 6.7 (0.7) | 0.4 (0.4) | 7.1 (0.7) | 6.7 (0.6) | 0.7 (0.5) | 6.8 (0.5) | 6.4 (0.6) | 1.2 (1.3) | <0.001 * | 0.090 |
Glucose (mg/dL) | 118.7 (27.8) | 110.8 (22.3) | 2.8 (8.9) | 117.9 (22.3) | 111.7 (18.8) | 2.3 (6.2) | 108.2 (19.7) | 103.1 (20.5) | 2.4 (4.3) | 0.019 * | 0.977 |
HOMA-IR | 2.2 (1.4) | 2.2 (1.0) | 0.1 (0.6) | 3.4 (2.0) | 2.7 (1.7) | 0.1 (0.2) | 1.5 (0.5) | 1.7 (0.8) | 0.1 (0.3) | 0.923 | 0.310 |
Variables | CTRL Group | EH Group | EH + LCD Group | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | Δ | Pre | Post | Δ | Pre | Post | Δ | Moments | Groups | |
Weight (kg) | 74.9 (8.1) | 73.7 (7.0) | 0.4 (0.6) | 72.6 (12.4) | 72.0 (12.5) | 0.2 (0.3) | 73.5 (9.6) | 72.0 (9.6) | 0.4 (0.4) | <0.001 * | 0.153 |
Body mass index (kg/m2) | 29.4 (4.1) | 28.8 (3.6) | 0.5 (0.6) | 28.3 (4.0) | 28.0 (3.9) | 0.2 (0.2) | 29.3 (3.4) | 28.5 (3.3) | 0.8 (0.8) | <0.001 * | 0.087 |
Waist circumference (cm) | 96.6 (5.6) | 95.0 (5.7) | 2.6 (2.5) | 97.0 (10.6) | 95.0 (10.6) | 2.0 (2.0) | 95.6 (8.6) | 93.6 (8.4) | 2.0 (2.7) | <0.001 * | 0.752 |
Hip circumference (cm) | 102.7 (7.4) | 102.0 (7.2) | 1.5 (2.9) | 102.9 (10.1) | 101.9 (9.1) | 1.1 (5.6) | 103.5 (6.5) | 102.6 (6.1) | 1.6 (3.0) | 0.029 * | 0.951 |
Waist–hip ratio | 0.9 (0.1) | 0.9 (0.1) | 0.1 (0.1) | 0.9 (0.8) | 0.9 (0.1) | 0.1 (0.1) | 0.9 (0.1) | 0.9 (0.1) | 0.1 (0.1) | 0.028 * | 0.986 |
Body fat (%) | 38.4 (6.9) | 37.5 (6.7) | 0.8 (1.1) | 38.8 (7.3) | 38.0 (7.7) | 0.8 (1.4) | 39.8 (5.6) | 38.5 (6.2) | 1.3 (1.2) | <0.001 * | 0.589 |
Body fat (kg) | 27.6 (7.7) | 26.2 (7.0) | 0.5 (0.4) | 28.2 (8.3) | 27.8 (8.1) | 0.1 (0.4) | 29.1 (6.2) | 27.8 (6.5) | 0.5 (0.4) | <0.001 * | 0.079 |
Lean mass (kg) | 43.3 (4.2) | 43.3 (4.0) | 0.1 (0.9) | 41.9 (7.8) | 42.3 (8.3) | 0.3 (1.4) | 41.1 (6.2) | 41.1 (6.3) | 0.1 (0.6) | 0.388 | 0.624 |
Bone mineral content (kg) | 1.8 (0.3) | 1.8 (0.3) | 0.1 (0.1) | 1.9 (0.3) | 2.1 (0.4) | 0.1 (0.1) | 2.0 (0.3) | 2.1 (0.3) | 0.1 (0.1) | <0.001 * | <0.001 # |
Variables | CTRL Group | EH Group | EH + LCD Group | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | Δ | Pre | Post | Δ | Pre | Post | Δ | Moments | Groups | |
Functional capacity | |||||||||||
Maximum distance covered (m) | 414.6 (62.0) | 441.1 (70.0) | 26.5 (49.1) | 430.9 (98.8) | 505.0 (87.7) | 74.0 (46.0) | 456.1 (70.9) | 504.9 (101.0) | 48.7 (58.9) | <0.001 * | 0.030 # |
Handgrip of dominant hand (kg) | 23.5 (8.8) | 24.7 (7.7) | 1.2 (2.5) | 23.5 (8.8) | 26.9 (7.9) | 3.4 (3.2) | 23.0 (7.2) | 25.5 (8.0) | 2.4 (3.4) | <0.001 * | 0.234 |
Physiological capacity | |||||||||||
Peak oxygen uptake (mL O2/min/kg) | 21.4 (3.9) | 24.5 (4.5) | 3.8 (3.4) | 21.8 (3.6) | 29.2 (3.9) | 10.0 (4.9) | 19.6 (6.5) | 27.7 (9.7) | 7.4 (5.0) | <0.001 * | 0.019 # |
Basal heart rate (bpm) | 77.6 (11.0) | 73.7 (12.6) | 6.1 (6.9) | 75.2 (12.2) | 70.8 (11.2) | 3.8 (3.1) | 73.5 (10.8) | 72.8 (6.9) | 0.4 (8.9) | 0.020 * | 0.134 |
Maximum heart rate (bpm) | 127.8 (11.7) | 121.8 (13.9) | 8.0 (12.8) | 149.1 (18.3) | 132.5 (24.0) | 13.5 (14.2) | 129.2 (22.2) | 132.0 (23.2) | 2.6 (10.4) | 0.008 * | 0.023 # |
Time to exhaustion (s) | 344.6 (114.6) | 489.0 (139.7) | 155.0 (141.5) | 536.2 (83.6) | 629.5 (144.7) | 124.5 (112.5) | 460.4 (113.8) | 684.1 (179.3) | 217.5 (139.1) | <0.001 * | 0.197 |
Peak workload (Watt) | 178.4 (31.6) | 248.1 (72.4) | 76.5 (70.4) | 232.8 (47.9) | 283.7 (47.4) | 54.1 (34.3) | 230.2 (50.9) | 249.4 (88.8) | 32.7 (68.5) | <0.001 * | 0.131 |
Peak workload (km/h) | 4.6 (0.7) | 5.8 (0.9) | 1.3 (1.1) | 5.7 (1.0) | 6.6 (1.3) | 0.9 (0.6) | 5.6 (0.8) | 6.5 (1.3) | 1.1 (1.1) | <0.001 * | 0.706 |
Basal lactate (mmol/L) | 6.6 (1.9) | 5.2 (1.8) | 1.3 (1.3) | 6.2 (2.5) | 4.4 (2.6) | 2.3 (1.5) | 6.4 (2.2) | 5.2 (3.2) | 1.1 (2.3) | <0.001 * | 0.183 |
Peak lactate (mmol/L) | 9.3 (5.0) | 6.1 (2.3) | 3.2 (4.9) | 8.6 (5.8) | 6.8 (3.5) | 2.2 (2.9) | 7.9 (3.7) | 6.5 (4.4) | 1.4 (3.0) | 0.001 * | 0.690 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kindlovits, R.; Sousa, A.C.; Viana, J.L.; Milheiro, J.; Oliveira, B.M.P.M.; Marques, F.; Santos, A.; Teixeira, V.H. Eight Weeks of Intermittent Exercise in Hypoxia, with or without a Low-Carbohydrate Diet, Improves Bone Mass and Functional and Physiological Capacity in Older Adults with Type 2 Diabetes. Nutrients 2024, 16, 1624. https://doi.org/10.3390/nu16111624
Kindlovits R, Sousa AC, Viana JL, Milheiro J, Oliveira BMPM, Marques F, Santos A, Teixeira VH. Eight Weeks of Intermittent Exercise in Hypoxia, with or without a Low-Carbohydrate Diet, Improves Bone Mass and Functional and Physiological Capacity in Older Adults with Type 2 Diabetes. Nutrients. 2024; 16(11):1624. https://doi.org/10.3390/nu16111624
Chicago/Turabian StyleKindlovits, Raquel, Ana Catarina Sousa, João Luís Viana, Jaime Milheiro, Bruno M. P. M. Oliveira, Franklim Marques, Alejandro Santos, and Vitor Hugo Teixeira. 2024. "Eight Weeks of Intermittent Exercise in Hypoxia, with or without a Low-Carbohydrate Diet, Improves Bone Mass and Functional and Physiological Capacity in Older Adults with Type 2 Diabetes" Nutrients 16, no. 11: 1624. https://doi.org/10.3390/nu16111624
APA StyleKindlovits, R., Sousa, A. C., Viana, J. L., Milheiro, J., Oliveira, B. M. P. M., Marques, F., Santos, A., & Teixeira, V. H. (2024). Eight Weeks of Intermittent Exercise in Hypoxia, with or without a Low-Carbohydrate Diet, Improves Bone Mass and Functional and Physiological Capacity in Older Adults with Type 2 Diabetes. Nutrients, 16(11), 1624. https://doi.org/10.3390/nu16111624