Broccoli Consumption and Risk of Cancer: An Updated Systematic Review and Meta-Analysis of Observational Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Information Sources and Search Strategies
2.2. Eligibility Criteria
2.3. Study Selection Process and Data Extraction
2.4. Risk of Bias Assessment
2.5. Summary of Outcomes
2.6. Statistical Analysis
3. Results
3.1. Article Selection Process
3.2. Characteristics of the Included Studies
3.3. Critical Appraisal
3.4. Outcomes of Case–Control Studies
3.5. Outcomes of Cohort Studies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dagenais, G.R.; Leong, D.P.; Rangarajan, S.; Lanas, F.; Lopez-Jaramillo, P.; Gupta, R.; Diaz, R.; Avezum, A.; Oliveira, G.B.F.; Wielgosz, A.; et al. Variations in common diseases, hospital admissions, and deaths in middle-aged adults in 21 countries from five continents (PURE): A prospective cohort study. Lancet 2020, 395, 785–794. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Laversanne, M.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Tomorrow (Version 1.1); International Agency for Research on Cancer: Lyon, France, 2024. [Google Scholar]
- Cronin, K.A.; Scott, S.; Firth, A.U.; Sung, H.; Henley, S.J.; Sherman, R.L.; Siegel, R.L.; Anderson, R.N.; Kohler, B.A.; Benard, V.B.; et al. Annual report to the nation on the status of cancer, part 1: National cancer statistics. Cancer 2022, 128, 4251–4284. [Google Scholar] [CrossRef]
- Weeden, C.E.; Hill, W.; Lim, E.L.; Gronroos, E.; Swanton, C. Impact of risk factors on early cancer evolution. Cell 2023, 186, 1541–1563. [Google Scholar] [CrossRef] [PubMed]
- Steck, S.E.; Murphy, E.A. Dietary patterns and cancer risk. Nat. Rev. Cancer 2020, 20, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.-J.; Yang, Y.; Wang, J.; Han, L.-H.; Xiang, Y.-B. Cruciferous vegetable consumption and gastric cancer risk: A meta-analysis of epidemiological studies. Cancer Sci. 2013, 104, 1067–1073. [Google Scholar] [CrossRef]
- Zhang, Z.; Bergan, R.; Shannon, J.; Slatore, C.G.; Bobe, G.; Takata, Y. The Role of Cruciferous Vegetables and Isothiocyanates for Lung Cancer Prevention: Current Status, Challenges, and Future Research Directions. Mol. Nutr. Food Res. 2018, 62, e1700936. [Google Scholar] [CrossRef]
- Wu, Q.J.; Xie, L.; Zheng, W.; Vogtmann, E.; Li, H.L.; Yang, G.; Ji, B.T.; Gao, Y.T.; Shu, X.O.; Xiang, Y.B. Cruciferous vegetables consumption and the risk of female lung cancer: A prospective study and a meta-analysis. Ann. Oncol. 2013, 24, 1918–1924. [Google Scholar] [CrossRef]
- Johnson, I.T. Cruciferous Vegetables and Risk of Cancers of the Gastrointestinal Tract. Mol. Nutr. Food Res. 2018, 62, 1701000. [Google Scholar] [CrossRef]
- Li, L.-Y.; Luo, Y.; Lu, M.-D.; Xu, X.-W.; Lin, H.-D.; Zheng, Z.-Q. Cruciferous vegetable consumption and the risk of pancreatic cancer: A meta-analysis. World J. Surg. Oncol. 2015, 13, 44. [Google Scholar] [CrossRef]
- Tse, G.; Eslick, G.D. Cruciferous Vegetables and Risk of Colorectal Neoplasms: A Systematic Review and Meta-Analysis. Nutr. Cancer Int. J. 2014, 66, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.J.; Yang, Y.; Vogtmann, E.; Wang, J.; Han, L.H.; Li, H.L.; Xiang, Y.B. Cruciferous vegetables intake and the risk of colorectal cancer: A meta-analysis of observational studies. Ann. Oncol. 2013, 24, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Mao, Q.; Lin, Y.; Zhou, F.; Xie, L. The association of cruciferous vegetables intake and risk of bladder cancer: A meta-analysis. World J. Urol. 2013, 31, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Mao, Q.; Wang, X.; Zhou, F.; Luo, J.; Wang, C. Cruciferous vegetables consumption and risk of renal cell carcinoma: A meta-analysis. Nutr. Cancer 2013, 65, 668–676. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, L. Cruciferous vegetables intake is associated with lower risk of renal cell carcinoma: Evidence from a meta-analysis of observational studies. PLoS ONE 2013, 8, e75732. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Li, X.; Yu, T. Cruciferous vegetables consumption and the risk of ovarian cancer: A meta-analysis of observational studies. Diagn. Pathol. 2014, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Hu, Y.; Hu, Y.; Zheng, S. Intake of cruciferous vegetables is associated with reduced risk of ovarian cancer: A meta-analysis. Asia Pac. J. Clin. Nutr. 2015, 24, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Lv, K. Cruciferous vegetables intake is inversely associated with risk of breast cancer: A meta-analysis. Breast 2013, 22, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Mao, Q.; Cao, M.; Xie, L. Cruciferous vegetables intake and risk of prostate cancer: A meta-analysis. Int. J. Urol. 2012, 19, 134–141. [Google Scholar] [CrossRef]
- Nagraj, G.S.; Chouksey, A.; Jaiswal, S.; Jaiswal, A.K. Broccoli. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Academic Press: London, UK, 2020; pp. 5–17. [Google Scholar] [CrossRef]
- Gasper, A.V.; Al-Janobi, A.; Smith, J.A. Glutathione S-transferase M1 polymorphism and metabolism of sulforaphane from standard and high-glucosinolate broccoli. Am. J. Clin. Nutr. 2005, 82, 1283, Correction Am. J. Clin. Nutr. 2006, 83, 724. [Google Scholar] [CrossRef]
- Hayes, J.D.; Dinkova-Kostova, A.T. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci. 2014, 39, 199–218. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Palliyaguru, D.L.; Kensler, T.W. Frugal chemoprevention: Targeting Nrf2 with foods rich in sulforaphane. Semin. Oncol. 2016, 43, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Tahata, S.; Singh, S.V.; Lin, Y.; Hahm, E.-R.; Beumer, J.H.; Christner, S.M.; Rao, U.N.; Sander, C.; Tarhini, A.A.; Tawbi, H.; et al. Evaluation of Biodistribution of Sulforaphane after Administration of Oral Broccoli Sprout Extract in Melanoma Patients with Multiple Atypical Nevi. Cancer Prev. Res. 2018, 11, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Alumkal, J.J.; Slottke, R.; Schwartzman, J.; Cherala, G.; Munar, M.; Graff, J.N.; Beer, T.M.; Ryan, C.W.; Koop, D.R.; Gibbs, A.; et al. A phase II study of sulforaphane-rich broccoli sprout extracts in men with recurrent prostate cancer. Investig. New Drugs 2015, 33, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Atwell, L.L.; Hsu, A.; Wong, C.P.; Stevens, J.F.; Bella, D.; Yu, T.-W.; Pereira, C.B.; Loehr, C.V.; Christensen, J.M.; Dashwood, R.H.; et al. Absorption and chemopreventive targets of sulforaphane in humans following consumption of broccoli sprouts or a myrosinase-treated broccoli sprout extract. Mol. Nutr. Food Res. 2015, 59, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Cramer, J.M.; Teran-Garcia, M.; Jeffery, E.H. Enhancing sulforaphane absorption and excretion in healthy men through the combined consumption of fresh broccoli sprouts and a glucoraphanin-rich powder. Br. J. Nutr. 2012, 107, 1333–1338. [Google Scholar] [CrossRef] [PubMed]
- Clarke, J.D.; Hsu, A.; Riedl, K.; Bella, D.; Schwartz, S.J.; Stevens, J.F.; Ho, E. Bioavailability and inter-conversion of sulforaphane and erucin in human subjects consuming broccoli sprouts or broccoli supplement in a cross-over study design. Pharmacol. Res. 2011, 64, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Oliviero, T.; Lamers, S.; Capuano, E.; Dekker, M.; Verkerk, R. Bioavailability of Isothiocyanates from Broccoli Sprouts in Protein, Lipid, and Fiber Gels. Mol. Nutr. Food Res. 2018, 62, 1700837. [Google Scholar] [CrossRef]
- Egner, P.A.; Chen, J.G.; Wang, J.B.; Wu, Y.; Sun, Y.; Lu, J.H.; Zhu, J.; Zhang, Y.H.; Chen, Y.S.; Friesen, M.D.; et al. Bioavailability of Sulforaphane from Two Broccoli Sprout Beverages: Results of a Short-term, Cross-over Clinical Trial in Qidong, China. Cancer Prev. Res. 2011, 4, 384–395. [Google Scholar] [CrossRef]
- Oliviero, T.; Verkerk, R.; Vermeulen, M.; Dekker, M. In vivo formation and bioavailability of isothiocyanates from glucosinolates in broccoli as affected by processing conditions. Mol. Nutr. Food Res. 2014, 58, 1447–1456. [Google Scholar] [CrossRef]
- Sivapalan, T.; Melchini, A.; Saha, S.; Needs, P.W.; Traka, M.H.; Tapp, H.; Mithen, R.F. Bioavailability of glucoraphanin and sulforaphane from high-glucoraphanin broccoli. Mol. Nutr. Food Res. 2018, 62, e1700911. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, M.; Kloepping-Ketelaars, I.W.A.A.; van den Berg, R.; Vaes, W.H.J. Bioavailability and Kinetics of Sulforaphane in Humans after Consumption of Cooked versus Raw Broccoli. J. Agric. Food Chem. 2008, 56, 10505–10509. [Google Scholar] [CrossRef] [PubMed]
- Charron, C.S.; Vinyard, B.T.; Jeffery, E.H.; Ross, S.A.; Seifried, H.E.; Novotny, J.A. BMI Is Associated with Increased Plasma and Urine Appearance of Glucosinolate Metabolites After Consumption of Cooked Broccoli. Front. Nutr. 2020, 7, 575092. [Google Scholar] [CrossRef] [PubMed]
- Charron, C.S.; Vinyard, B.T.; Ross, S.A.; Seifried, H.E.; Jeffery, E.H.; Novotny, J.A. Absorption and metabolism of isothiocyanates formed from broccoli glucosinolates: Effects of BMI and daily consumption in a randomised clinical trial. Br. J. Nutr. 2018, 120, 1370–1379. [Google Scholar] [CrossRef] [PubMed]
- Kirsh, V.A.; Peters, U.; Mayne, S.T.; Subar, A.F.; Chatterjee, N.; Johnson, C.C.; Hayes, R.B. Prospective study of fruit and vegetable intake and risk of prostate cancer. J. Natl. Cancer Inst. 2007, 99, 1200–1209. [Google Scholar] [CrossRef] [PubMed]
- Michaud, D.S.; Spiegelman, D.; Clinton, S.K.; Rimm, E.B.; Willett, W.C.; Giovannucci, E.L. Fruit and vegetable intake and incidence of bladder cancer in a male prospective cohort. Jnci J. Natl. Cancer Inst. 1999, 91, 605–613. [Google Scholar] [CrossRef]
- Fontham, E.T.H.; Pickle, L.W.; Haenszel, W.; Correa, P.; Lin, Y.; Falk, R.T. Dietary vitamin-a and vitamin-c and lung-cancer risk in louisiana. Cancer 1988, 62, 2267–2273. [Google Scholar] [CrossRef] [PubMed]
- Morrison, M.E.W.; Joseph, J.M.; McCann, S.E.; Tang, L.; Almohanna, H.M.; Moysich, K.B. Cruciferous Vegetable Consumption and Stomach Cancer: A Case-Control Study. Nutr. Cancer Int. J. 2020, 72, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Azeem, K.; Horakova, D.; Tomaskova, H.; Prochazka, V.; Shonova, O.; Martinek, A.; Kysely, Z.; Janout, V.; Kollarova, H. Evaluation of Dietary Habits in the Study of Pancreatic Cancer. Klin. Onkol. Cas. Ceske A Slov. Onkol. Spol. 2016, 29, 196–203. [Google Scholar] [CrossRef]
- Shen, Y.; Wu, Y.; Lu, Q.; Ren, M. Vegetarian diet and reduced uterine fibroids risk: A case-control study in Nanjing, China. J. Obstet. Gynaecol. Res. 2016, 42, 87–94. [Google Scholar] [CrossRef]
- Colditz, G.A.; Branch, L.G.; Lipnick, R.J.; Willett, W.C.; Rosner, B.; Posner, B.M.; Hennekens, C.H. Increased green and yellow vegetable intake and lowered cancer deaths in an elderly population. Am. J. Clin. Nutr. 1985, 41, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Steinmetz, K.A.; Potter, J.D.; Folsom, A.R. Vegetables, fruit, and lung-cancer in the iowa-womens-health-study. Cancer Res. 1993, 53, 536–543. [Google Scholar] [PubMed]
- Correa, P.; Fontham, E.; Pickle, L.W.; Chen, V.; Lin, Y.; Haenszel, W. Dietary determinants of gastric-cancer in south louisiana inhabitants. Jnci J. Natl. Cancer Inst. 1985, 75, 645–654. [Google Scholar] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. J. Clin. Epidemiol. 2021, 134, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.M.; Sanders, S.; Carter, M.; Honeyman, D.; Cleo, G.; Auld, Y.; Booth, D.; Condron, P.; Dalais, C.; Bateup, S.; et al. Improving the translation of search strategies using the Polyglot Search Translator: A randomized controlled trial. J. Med. Libr. Assoc. 2020, 108, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Haddaway, N.R.; Grainger, M.J.; Gray, C.T. Citationchaser: A tool for transparent and efficient forward and backward citation chasing in systematic searching. Res. Synth. Methods 2022, 13, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Rathbone, J.; Hoffmann, T.; Glasziou, P. Faster title and abstract screening? Evaluating Abstrackr, a semi-automated online screening program for systematic reviewers. Syst. Rev. 2015, 4, 80. [Google Scholar] [CrossRef] [PubMed]
- Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef] [PubMed]
- Booth, A.M.; Wright, K.E.; Outhwaite, H. Centre for Reviews and Dissemination databases: Value, content, and developments. Int. J. Technol. Assess. Health Care 2010, 26, 470–472. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. Br. Med. J. 1997, 315, 629–634. [Google Scholar] [CrossRef]
- Begg, C.B.; Mazumdar, M. Operating characteristics of a bank correlation test for publication bias. Biometrics 1994, 50, 1088–1101. [Google Scholar] [CrossRef]
- Wang, L.; Lee, I.M.; Zhang, S.M.; Blumberg, J.B.; Buring, J.E.; Sesso, H.D. Dietary intake of selected flavonols, flavones, and flavonoid-rich foods and risk of cancer in middle-aged and older women. Am. J. Clin. Nutr. 2009, 89, 905–912. [Google Scholar] [CrossRef]
- Adebamowo, C.A.; Cho, E.; Sampson, L.; Katan, M.B.; Spiegelman, D.; Willett, W.C.; Holmes, M.D. Dietary flavonols and flavonol-rich foods intake and the risk of breast cancer. Int. J. Cancer 2005, 114, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Ambrosini, G.L.; de Klerk, N.H.; Fritschi, L.; Mackerras, D.; Musk, B. Fruit, vegetable, vitamin A intakes, and prostate cancer risk. Prostate Cancer Prostatic Dis. 2008, 11, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Zirpoli, G.R.; Guru, K.; Moysich, K.B.; Zhang, Y.; Ambrosone, C.B.; McCann, S.E. Intake of Cruciferous Vegetables Modifies Bladder Cancer Survival. Cancer Epidemiol. Biomark. Prev. 2010, 19, 1806–1811. [Google Scholar] [CrossRef] [PubMed]
- Gates, M.A.; Tworoger, S.S.; Hecht, J.L.; De Vivo, I.; Rosner, B.; Hankinson, S.E. A prospective study of dietary flavonoid intake and incidence of epithelial ovarian cancer. Int. J. Cancer 2007, 121, 2225–2232. [Google Scholar] [CrossRef]
- Braganza, M.Z.; Potischman, N.; Park, Y.; Thompson, F.E.; Hollenbeck, A.R.; Kitahara, C.M. Adolescent and mid-life diet and subsequent risk of thyroid cancer in the NIH-AARP diet and health study. Int. J. Cancer 2015, 137, 2413–2423. [Google Scholar] [CrossRef]
- Thompson, C.A.; Habermann, T.M.; Wang, A.H.; Vierkant, R.A.; Folsom, A.R.; Ross, J.A.; Cerhan, J.R. Antioxidant intake from fruits, vegetables and other sources and risk of non-Hodgkin’s lymphoma: The Iowa Women’s Health Study. Int. J. Cancer 2010, 126, 992–1003. [Google Scholar] [CrossRef]
- Chang, E.T.; Lee, V.S.; Canchola, A.J.; Clarke, C.A.; Purdie, D.M.; Reynolds, P.; Anton-Culver, H.; Bernstein, L.; Deapen, D.; Peel, D.; et al. Diet and risk of ovarian cancer in the California teachers study cohort. Am. J. Epidemiol. 2007, 165, 802–813. [Google Scholar] [CrossRef]
- Steinmetz, K.A.; Kushi, L.H.; Bostick, R.M.; Folsom, A.R.; Potter, J.D. Vegetables, fruit, and colon-cancer in the iowa womens health study. Am. J. Epidemiol. 1994, 139, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Flood, A.; Velie, E.M.; Chaterjee, N.; Subar, A.F.; Thompson, F.E.; Lacey, J.V., Jr.; Schatzkin, A. Fruit and vegetable intakes and the risk of colorectal cancer in the Breast Cancer Detection Demonstration Project follow-up cohort. Am. J. Clin. Nutr. 2002, 75, 936–943. [Google Scholar] [CrossRef] [PubMed]
- Nomura, A.M.; Wilkens, L.R.; Murphy, S.P.; Hankin, J.H.; Henderson, B.E.; Pike, M.C.; Kolonel, L.N. Association of vegetable, fruit, and grain intakes with colorectal cancer: The Multiethnic Cohort Study. Am. J. Clin. Nutr. 2008, 88, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Giovannucci, E.; Rimm, E.B.; Liu, Y.; Stampfer, M.J.; Willett, W.C. A prospective study of cruciferous vegetables and prostate cancer. Cancer Epidemiol. Biomark. Prev. 2003, 12, 1403–1409. [Google Scholar]
- Zhao, L.; Jin, L.; Petrick, J.L.; Zeng, H.; Wang, F.; Tang, L.; Smith-Warner, S.A.; Eliassen, A.H.; Zhang, F.F.; Campbell, P.T.; et al. Specific botanical groups of fruit and vegetable consumption and liver cancer and chronic liver disease mortality: A prospective cohort study. Am. J. Clin. Nutr. 2023, 117, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Zirpoli, G.R.; McCann, S.E.; Moysich, K.B.; Ambrosone, C.B.; Tang, L. Trends in Cruciferous Vegetable Consumption and Associations with Breast Cancer Risk: A Case-Control Study. Curr. Dev. Nutr. 2017, 1, e000448. [Google Scholar] [CrossRef] [PubMed]
- Ambrosone, C.B.; McCann, S.E.; Freudenheim, J.L.; Marshall, J.R.; Zhang, Y.; Shields, P.G. Breast cancer risk in premenopausal women is inversely associated with consumption of broccoli, a source of isothiocyanates, but is not modified by GST genotype. J. Nutr. 2004, 134, 1134–1138. [Google Scholar] [CrossRef]
- Tarrazo-Antelo, A.M.; Ruano-Ravina, A.; Abal Arca, J.; Miguel Barros-Dios, J. Fruit and Vegetable Consumption and Lung Cancer Risk: A Case-Control Study in Galicia, Spain. Nutr. Cancer Int. J. 2014, 66, 1030–1037. [Google Scholar] [CrossRef] [PubMed]
- Steinmetz, K.A.; Potter, J.D. Food-group consumption and colon cancer in the adelaide case-control study. I. vegetables and fruit. Int. J. Cancer 1993, 53, 711–719. [Google Scholar] [CrossRef]
- García-Lavandeira, J.A.; Ruano-Ravina, A.; Torres-Durán, M.; Parente-Lamelas, I.; Provencio, M.; Varela-Lema, L.; Fernández-Villar, A.; Piñeiro, M.; Barros-Dios, J.M.; Pérez-Ríos, M. Fruits and Vegetables and Lung Cancer Risk in Never Smokers. A Multicentric and Pooled Case-Control Study. Nutr. Cancer 2022, 74, 613–621. [Google Scholar] [CrossRef]
- Hansson, L.E.; Nyren, O.; Bergstrom, R.; Wolk, A.; Lindgren, A.; Baron, J.; Adami, H.O. Diet and risk of gastric-cancer—A population-based case-control study in sweden. Int. J. Cancer 1993, 55, 181–189. [Google Scholar] [CrossRef]
- Hara, M.; Hanaoka, T.; Kobayashi, M.; Otani, T.; Adachi, H.Y.; Montani, A.; Natsukawa, S.; Shaura, K.; Koizumi, Y.; Kasuga, Y.; et al. Cruciferous vegetables, mushrooms, and gastrointestinal cancer risks in a multicenter, hospital-based case-control study in Japan. Nutr. Cancer Int. J. 2003, 46, 138–147. [Google Scholar] [CrossRef]
- Witte, J.S.; Longnecker, M.P.; Bird, C.L.; Lee, E.R.; Frankl, H.D.; Haile, R.W. Relation of vegetable, fruit, and grain consumption to colorectal adenomatous polyps. Am. J. Epidemiol. 1996, 144, 1015–1025. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.J.; Probst-Hensch, N.M.; Louie, A.; Kau, I.H.; Witte, J.S.; Ingles, S.A.; Frankl, H.D.; Lee, E.R.; Haile, R.W. Glutathione transferase null genotype, broccoli, and lower prevalence of colorectal adenomas. Cancer Epidemiol. Biomark. Prev. 1998, 7, 647–652. [Google Scholar]
- Evans, R.C.; Fear, S.; Ashby, D.; Hackett, A.; Williams, E.; Van Der Vliet, M.; Dunstan, F.D.; Rhodes, J.M. Diet and colorectal cancer: An investigation of the lectin/galactose hypothesis. Gastroenterology 2002, 122, 1784–1792. [Google Scholar] [CrossRef]
- Mahfouz, E.M.; Sadek, R.R.; Abdel-Latief, W.M.; Mosallem, F.A.-H.; Hassan, E.E. The role of dietary and lifestyle factors in the development of colorectal cancer: Case control study in minia, egypt. Cent. Eur. J. Public Health 2014, 22, 215–222. [Google Scholar] [CrossRef]
- Le Marchand, L.; Hankin, J.H.; Wilkens, L.R.; Kolonel, L.N.; Englyst, H.N.; Lyu, L.C. Dietary fiber and colorectal cancer risk. Epidemiology 1997, 8, 658–665. [Google Scholar] [CrossRef]
- Joseph, M.A.; Moysich, K.B.; Freudenheim, J.L.; Shields, P.G.; Bowman, E.D.; Zhang, Y.; Marshall, J.R.; Ambrosone, C.B. Cruciferous vegetables, genetic polymorphisms in glutathione S-transferases M1 and T1, and prostate cancer risk. Nutr. Cancer 2004, 50, 206–213. [Google Scholar] [CrossRef]
- Castelao, J.E.; Yuan, J.M.; Gago-Dominguez, M.; Skipper, P.L.; Tannenbaum, S.R.; Chan, K.K.; Watson, M.A.; Bell, D.A.; Coetzee, G.A.; Ross, R.K.; et al. Carotenoids/vitamin C and smoking-related bladder cancer. Int. J. Cancer 2004, 110, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Kamat, A.; Gu, J.; Chen, M.; Dinney, C.P.; Forman, M.R.; Wu, X. Dietary intake of vegetables and fruits and the modification effects of GSTM1 and NAT2 genotypes on bladder cancer risk. Cancer Epidemiol. Biomark. Prev. 2009, 18, 2090–2097. [Google Scholar] [CrossRef]
- Tang, L.; Zirpoli, G.R.; Guru, K.; Moysich, K.B.; Zhang, Y.; Ambrosone, C.B.; McCann, S.E. Consumption of raw cruciferous vegetables is inversely associated with bladder cancer risk. Cancer Epidemiol. Biomark. Prev. 2008, 17, 938–944. [Google Scholar] [CrossRef]
- Barbone, F.; Austin, H.; Partridge, E.E. Diet and endometrial cancer—A case-control study. Am. J. Epidemiol. 1993, 137, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Mettlin, C. Milk drinking, other beverage habits, and lung-cancer risk. Int. J. Cancer 1989, 43, 608–612. [Google Scholar] [CrossRef] [PubMed]
- Goodman, M.T.; Kolonel, L.N.; Wilkens, L.R.; Yoshizawa, C.N.; Lemarchand, L.; Hankin, J.H. Dietary factors in lung-cancer prognosis. Eur. J. Cancer 1992, 28A, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Graham, S.; Dayal, H.; Swanson, M.; Mittelman, A.; Wilkinson, G. Diet in epidemiology of cancer of colon and rectum. Jnci J. Natl. Cancer Inst. 1978, 61, 709–714. [Google Scholar] [PubMed]
- Graham, S.; Mettlin, C.; Marshall, J.; Priore, R.; Rzepka, T.; Shedd, D. Dietary factors in the epidemiology of cancer of the larynx. Am. J. Epidemiol. 1981, 113, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Graham, S.; Schotz, W.; Martino, P. Alimentary factors in epidemiology of gastric cancer. Cancer 1972, 30, 927. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.B.; Howe, G.R.; Jain, M.; Craib, K.J.P.; Harrison, L. Food items and food groups as risk-factors in a case-control study of diet and colo-rectal cancer. Int. J. Cancer 1983, 32, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Freudenheim, J.L.; Graham, S.; Marshall, J.R.; Haughey, B.P.; Wilkinson, G. A case-control study of diet and rectal-cancer in western New-York. Am. J. Epidemiol. 1990, 131, 612–624. [Google Scholar] [CrossRef] [PubMed]
- Slattery, M.L.; Kampman, E.; Samowitz, W.; Caan, B.J.; Potter, J.D. Interplay between dietary inducers of GST and the GSTM-1 genotype in colon cancer. Int. J. Cancer 2000, 87, 728–733. [Google Scholar] [CrossRef]
- Lin, H.J.; Zhou, H.Y.; Dai, A.H.; Huang, H.F.; Lin, J.H.; Frankl, H.D.; Lee, E.R.; Haile, R.W. Glutathione transferase GSTT1, broccoli, and prevalence of colorectal adenomas. Pharmacogenetics 2002, 12, 175–179. [Google Scholar] [CrossRef]
- Ron, E.; Kleinerman, R.A.; Boice, J.D.; Livolsi, V.A.; Flannery, J.T.; Fraumeni, J.F. A population-based case control study of thyroid-cancer. Jnci J. Natl. Cancer Inst. 1987, 79, 1–12. [Google Scholar] [PubMed]
- Yu, P.; Yu, L.; Lu, Y. Dietary consumption of cruciferous vegetables and bladder cancer risk: A systematic review and meta-analysis. Front. Nutr. 2022, 9, 944451. [Google Scholar] [CrossRef] [PubMed]
- Verhoeven, D.T.H.; Goldbohm, R.A.; van Poppel, G.; Verhagen, H.; van den Brandt, P.A. Epidemiological studies on brassica vegetables and cancer risk. Cancer Epidemiol. Biomark. Prev. 1996, 5, 733–748. [Google Scholar]
- Coutinho, L.L.; Junior, T.C.T.; Rangel, M.C. Sulforaphane: An emergent anti-cancer stem cell agent. Front. Oncol. 2023, 13, 1089115. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, M.; Fazli, M.; Saeednia, S.; Gholami Kharanagh, M.; Ahmadiankia, N. Sulforaphane Modulates Cell Migration and Expression of β-Catenin and Epithelial Mesenchymal Transition Markers in Breast Cancer Cells. Iran. J. Public Health 2020, 49, 77–85. [Google Scholar] [PubMed]
- Bose, C.; Awasthi, S.; Sharma, R.; Beneš, H.; Hauer-Jensen, M.; Boerma, M.; Singh, S.P. Sulforaphane potentiates anticancer effects of doxorubicin and attenuates its cardiotoxicity in a breast cancer model. PLoS ONE 2018, 13, e0193918. [Google Scholar] [CrossRef]
- Rudolf, E.; Cervinka, M. Sulforaphane induces cytotoxicity and lysosome- and mitochondria-dependent cell death in colon cancer cells with deleted p53. Toxicol. Vitr. Int. J. Publ. Assoc. BIBRA 2011, 25, 1302–1309. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.C.; Shih, T.Y.; Kuo, C.L.; Ma, Y.S.; Yang, J.L.; Wu, P.P.; Huang, Y.P.; Lai, K.C.; Chung, J.G. Sulforaphane Induces Cell Death Through G2/M Phase Arrest and Triggers Apoptosis in HCT 116 Human Colon Cancer Cells. Am. J. Chin. Med. 2016, 44, 1289–1310. [Google Scholar] [CrossRef]
- Nandini, D.B.; Rao, R.S.; Deepak, B.S.; Reddy, P.B. Sulforaphane in broccoli: The green chemoprevention!! Role in cancer prevention and therapy. J. Oral Maxillofac. Pathol. 2020, 24, 405. [Google Scholar] [CrossRef]
- Peng, X.; Zhou, Y.; Tian, H.; Yang, G.; Li, C.; Geng, Y.; Wu, S.; Wu, W. Sulforaphane inhibits invasion by phosphorylating ERK1/2 to regulate E-cadherin and CD44v6 in human prostate cancer DU145 cells. Oncol. Rep. 2015, 34, 1565–1572. [Google Scholar] [CrossRef]
- Vyas, A.R.; Moura, M.B.; Hahm, E.R.; Singh, K.B.; Singh, S.V. Sulforaphane Inhibits c-Myc-Mediated Prostate Cancer Stem-Like Traits. J. Cell. Biochem. 2016, 117, 2482–2495. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wu, X.; Zhuang, W.; Wu, C.; Rao, Z.; Du, L.; Zhou, Y. Cruciferous vegetable and isothiocyanate intake and multiple health outcomes. Food Chem. 2022, 375, 131816. [Google Scholar] [CrossRef] [PubMed]
Author; Year | Design | Sample (n) | Population/Country/Age | Exposure | Comparison | Outcomes | Effect Size | Follow-Up | Adjustments |
---|---|---|---|---|---|---|---|---|---|
Cancer mortality or general cancer incidence | |||||||||
Colditz et al., 1985 [43] | Cohort study | 1271 | Men and women/USA 66 years | Broccoli | High intake vs. low intake | Cancer mortality (any type); n = 42 cases | RR: 0.8; 95% CI from 0.4 to 1.6 | 5 years | Age |
Wang L et al., 2009 [55] | Cohort study | 38,408 | Women/USA ≥ 45 years | Broccoli | High intake vs. low intake | Cancer incidence (any type); n = 3234 cases | RR: 1.05; 95% CI from 0.88 to 1.25 | 11.5 years | Multivariate |
Breast cancer | |||||||||
Adebamowo CA et al., 2005 [56] | Cohort study | 90,630 | Women/USA 25–46 years | Broccoli | High intake vs. low intake | Breast cancer | RR (adjusted by age): 1.11; 95% CI: 0.67 to 1.85; RR (multivariable adjustment): 0.99; 95% CI from 0.59 to 1.65 | 5 years | Multivariate |
Lin T et al., 2017 [68] | Cases and controls | 1491 cases and 1482 controls | Women/USA 21–97 years | Broccoli | High intake vs. low intake | Breast cancer | OR: 0.68; 95% CI from 0.56 to 0.82 Raw → OR: 0.78; 95% CI from 0.66 to 0.91 Cooked → OR: 0.83; 95% CI from 0.70 to 0.99 | 1982–1998 | Multivariate |
Ambrosone CB et al., 2004 [69] | Cases and controls | 740 cases and 810 controls | Caucasian women/USA < 50 years, >50 years | Broccoli | High intake vs. low intake | Breast cancer | Premenopausal → OR: 0.6; 95% CI from 0.4 to 1.0 Postmenopausal → OR: 1.0; 95% CI from 0.7 to 1.4 | 1986–1991 | Multivariate |
Lung and respiratory tract cancer | |||||||||
Fontham ET et al., 1988 [39] | Cases and controls | 1253 cases; 1274 controls | Men and women/USA | Broccoli | High intake vs. low intake | Lung cancer | OR: 0.64; 95% CI from 0.54 to 0.78 | 1979–1982 | Multivariate |
Steinmetz KA et al., 1993 [44] | Cases and controls | 138 cases and 2814 controls (random); base cohort (n = 41.837 women) | Women/USA 55–69 years | Broccoli | High intake vs. low intake | Lung cancer; n = 179 cases | OR: 0.72; 95% CI from 0.40 to 1.29 | 4 years | Multivariate |
Tarrazo-Antelo AM et al., 2014 [70] | Cases and controls | 371 cases and 496 controls | Men and women/Spain Median > 63 years | Broccoli | High intake vs. low intake | Lung cancer | OR: 0.54; 95% CI from 0.35 to 0.84 | 2004–2008 | Multivariate |
García-Lavandeira JA et al. (2022) [72] | Cases and controls | 438 cases and 781 controls | Men and women. Never smokers patients/Spain > 66 years | Broccoli | High intake vs. low intake | Lung cancer; adenocarcinoma, n = 289. | OR: 0.55 (0.35–0.83) | 2002–2019 | Multivariate |
Mettlin C. et al., 1989 [85] | Cases and controls | 569 cases (355 men/214 women) and 569 controls | Men and women/USA | Broccoli | High intake vs. low intake | Lung cancer | RR: 0.31; 95% CI 0.16 to 0.57 | 1989 | Multivariate/multiple regression |
Goodman MT et al., 1992 [86] | Cases and controls | 675 cases (463 men and 212 women) and 675 controls | Men and women/USA | Broccoli | High intake vs. low intake | Lung cancer | Women → RR: 2.2; p < 0.01) Men → RR: 1.0; p = 0.37). Survival of small cell lung cancer in men RR: 2.6; p = 0.02 | 1979–1985 | Multivariate |
Graham S et al., 1981 [88] | Cases and controls | 374 with laryngeal cancer and 381 controls | Men and women/USA | Broccoli | High intake vs. low intake | Lung cancer | NS | 1981 | - |
Digestive tract cancer | |||||||||
Gastric | |||||||||
Morrison MEW et al., 2020 [40] | Cases and controls | 292 cases and 1168 controls | Men and women/USA | Broccoli | High intake vs. low intake | Gastric cancer | OR: 0.61; 95% CI: 0.43 to 0.86 | 1992–1998 | Multivariate |
Correa P et al., 1985 [45] | Cases and controls | 391 cases and 391 controls | Men and women/USA | Broccoli | High intake vs. low intake | Gastric cancer | OR: 1.0; 95% CI from 0.7 to 1.7 | 1985 | Multivariate |
Hansson LE et al., 1993 [73] | Cases and controls | 338 cases and 669 controls | Men and women/Sweden | Broccoli | High intake vs. low intake | Gastric cancer | OR: 0.63; 95% CI from 0.41 to 0.96 | Adolescence and 20 years prior to the study | Multivariate |
Hara M et al., 2003 [74] | Cases and controls | 149 cases and 287 controls | Men and women/Japan 20–70 years | Broccoli | High intake vs. low intake | Gastric cancer | OR: 0.60; 95% CI: 0.34 to 1.08 | 1998–2002 | Multivariate |
Graham S et al., 1972 [89] | Cases and controls | 228 cases and 228 controls | Men and women/USA | Broccoli | High intake vs. low intake | Gastric cancer | Inverse association, NS | 2004–2008 | |
Colorectal | |||||||||
Steinmetz KA et al., 1994 [63] | Cohort study | 41,837 | Women/USA 55–69 years | Broccoli | High intake vs. low intake | Colon cancer; n = 212 cases | RR: 1.0; 95% CI from 0.7 to 1.7 | 5 years | - |
Flood A et al., 2002 [64] | Cohort study | 45,490 | Women/USA Mean > 60 years | Broccoli | High intake vs. low intake | Colon cancer; n = 485 cases | RR: 0.78; 95% CI from 0.58 to 1.06 | 7 years | Multivariate/multiple regression |
Nomura AM et al., 2008 [65] | Cohort study | 85,903 men and 105,108 women | Men and women/USA 45–75 years | Broccoli | High intake vs. low intake | Colorectal cancer | Women → RR: 0.92; 95% CI from 0.75 to 1.15, p = 652 Men → RR: 0.94; 95% CI from 0.76 to 1.15, p = 652 | Average follow-up of 7.3 years | Multivariate/multiple regression |
Steinmetz and Potter JD et al., 1993 [71] | Cases and controls | 220 cases and 438 controls | Men and women/Australia | Broccoli | High intake vs. low intake | Colon cancer | OR: 0.91; 95% CI from 0.48 to 1.72 | 1979–1980 | Multivariate |
Hara M et al., 2003 [74] | Cases and controls | 115 cases and 230 controls | Men and women/Japan 20–70 years | Broccoli | High intake vs. low intake | Colorectal cancer | OR: 0.18; 95% CI from 0.06 to 0.58 | 1998–2002 | Multivariate |
Witte JS et al., 1996 [75] | Cases and controls | 488 cases and 488 controls | Men and women/USA 50–74 years | Broccoli | High intake vs. low intake | Adenomatous polyps | OR: 0.64; 95% CI from 0.44 to 0.92 | 1991–1993 | Multivariate |
Lin HJ et al., 1998 [76] | Cases and controls | 459 cases and 507 controls | Men and women/USA 50–74 years | Broccoli | High intake vs. low intake | Colorectal adenomas | OR: 0.47; 95% CI of 0.30–0.73; | 1991–1993 | Multivariate |
Evans RC et al., 2002 [77] | Cases and controls | 512 cases and 512 controls | Men and women/UK | Broccoli | High intake vs. low intake | Colorectal cancer | Left side colon and rectal cancer (OR: 0.61; 95% CI 0.39 to 0.96); colorectal cancer in general (OR: 0.67; 95% CI 0.45 to 1.00); right colon cancer (OR: 1.00; 95% CI 0.39 to 2.57) | 6 years | Univariate |
Mahfouz EM et al., 2014 [78] | Cases and controls | 150 cases and 300 controls | Men and women/Egypt | Broccoli | High intake vs. low intake | Colorectal cancer | OR: 0.11; 95% CI from 0.01 to 0.48: p = 0.03 | 2010–2011 | |
Le Marchand et al., 1997 [79] | Cases and controls | Men (698 case–control pairs) Women (494 case–control pairs) | Men and women (different ethnic groups)/USA < 84 years | Broccoli | High intake vs. low intake | Colorectal cancer | Men → OR: 0.7; 95% CI from 0.4 to 1.0; p = 0.05 Women → OR: 0.7; 95% CI from 0.4 to 1.1; p = 0.18 | 1987–1991 | |
Graham S et al., 1978 [87] | Cases and controls | 256 colon cancer cases and 783 controls; 330 rectal cancer cases and 628 controls | Men/USA | Broccoli | High intake vs. low intake | Colon and rectal cancer | Inverse association between the consumption of broccoli and the risk of colon cancer, but not rectal cancer, NS | 1978 | - |
Miller et al., 1983 [90] | Cases and controls | 194 rectal cancer cases and 542 controls (2nd control series, 535) | Men and women 1st control series without pathologies 2nd series of surgical patients/Canada | Broccoli | High intake vs. low intake | Colon and rectal cancer | Colon cancer OR (men): 1.0; p-value: 0.48 OR (women): 1.0; p-value 0.43 n = 348 cases Rectal cancer OR (men): 1.0; p-value: 0.34 OR (women): 1.2; p-value: 0.29 n = 194 cases. | 1983 | - |
Freudenheim JL et al., 1990 [91] | Cases and controls | 422 cases (277 men and 145 women) and 422 controls | Men and women/USA | Broccoli | High intake vs. low intake | Rectal cancer | Inversely associated with the risk of rectal cancer in men, but not in women, NS | 1978–1986. | - |
Slattery ML et al., 2000 [92] | Cases and controls | 1579 cases and 1898 controls | Men and women/USA 30–79 years | Broccoli | High intake vs. low intake | Colon cancer | GSTM-1 genotype. OR:1.23; 95% CI from 0.86 to 1.76 for the GSTM1-null genotype OR:0.92; 95% CI from 0.63 to 1.33 for the GSTM1-present genotype OR: 0.30; 95% CI from 0.13 to 0.70; only for the GSTM1-null genotype and age less than 55 years | 1991–1994 | Multivariate in GSTM1-null genotype |
Lin HJ et al., 2002 [93] | Cases and controls | 459 cases and 507 controls | Men and women 50–74 years | Broccoli | High intake vs. low intake | Colorectal adenomas | OR 0.41; 95% CI: 0.24 to 0.70 for the GSTM1-null and GSTT1-null genotypes | 1991–1993 | - |
Pancreas | |||||||||
Azeem K et al., 2016 [41] | Cases and controls | 310 cases and 220 controls | Men and women/Czech Republic | Broccoli | High intake vs. low intake | Pancreatic cancer | OR: 0.37; 95% CI from 0.25 to 0.53 | 2006–2009 | - |
Liver | |||||||||
Zhao L et al., 2023 [67] | Cohort study | 485,403 | Men and women/USA 50–71 years | Broccoli | High intake vs. low intake | Liver cancer | HR: 0.66; 95% CI from 0.54 to 0.81; p trend < 0.001. | 1995–1996 | Multivariate |
Urinary tract cancer | |||||||||
Prostate | |||||||||
Kirsh VA et al., 2007 [37] | Cohort study | 29,361 | Men/USA Mean > 62 years | Broccoli | High intake vs. low intake | Prostate cancer | All prostate cancer → RR: 0.91; 95% CI from 0.77 to 1.06 Aggressive prostate cancer → RR: 0.76; 95% CI from 0.59 to 0.99 Extraprostatic cancer → RR: 0.55; 95% CI from 0.34 to 0.89 | 4.2 years | Multivariate |
Ambrosini GL et al., 2008 [57] | Cohort study | 1985 | Men in a prevention program supplemented with beta-carotene and retinol/Australia. Median 62.6 years | Broccoli | High intake vs. low intake | Prostate cancer. n = 97 | RR: 0.56; 95% CI from 0.31 to 1.0 | 1990–2004 | - |
Giovannucci E et al., 2003 [66] | Cohort study | 47,365 | Men/USA < 65 years and ≥65 years | Broccoli | High intake vs. low intake | Total prostate cancer (excluding stage T1a tumors); n = 962 | RR: 0.87; 95% CI from 0.73 to 1.05 | 1986–2000 | Multivariate |
Joseph MA et al., 2004 [80] | Cases and controls | 428 cases and 537 controls | Caucasian Men/USA 45–85 years | Broccoli | High intake vs. low intake | Incident prostate cancer | OR: 0.72; 95% CI from 0.49 to 1.06 | 1986–1991 | Multivariate |
Bladder | |||||||||
Michaud DS et al., 1999 [38] | Cohort study | 47,909 | Men/USA 40–75 years | Broccoli | High intake vs. low intake | Bladder cancer n = 252 cases. | RR: 0.61; 95% CI from 0.42 to 0.87 | 10 years | Multivariate |
Tang L et al., 2010 [58] | Cohort study | 239 | Men/USA < 60 years, 60–70 years, and >70 years | Broccoli | High intake vs. low intake | Survival of patients with bladder cancer Cancer deaths n = 101 cases | General death (HR: 0.57; 95% CI 0.39 to 0.83); Disease-specific death (HR: 0.43; 95% CI 0.25 to 0.74) | 8 years | Multivariate |
Castelao JE et al., 2004 [81] | Cases and controls | 1592 cases and controls | Men and women (non-Asians)/USA 25–64 years | Broccoli | High intake vs. low intake | Bladder cancer | OR: 0.81; 95% CI from 0.59 to 1.09 | 1987–1996 | Multivariate |
Lin J et al., 2009 [82] | Cases and controls | 884 cases and 878 controls | Men and women/USA mean age 64 years cases, 65 years controls | Broccoli | High intake vs. low intake | Bladder cancer, patients who had not received previous chemotherapy or radiotherapy | OR: 0.71; 95% CI from 0.53 to 0.96 | 1999-Currently ongoing | |
Tang L et al., 2008 [83] | Cases and controls | 275 cases and 825 controls | Men and women (Predominantly Caucasian)/USA 25–86 years cases; 21–92 years controls | Broccoli | High intake vs. low intake | Bladder cancer | Broccoli raw → OR: 0.57; 95% CI from 0.40 to 0.81 Broccoli cooked → OR: 0.88; 95% CI from 0.65 to 1.20 | 1982–1998 | Multivariate |
Reproductive system cancer | |||||||||
Shen Y et al., 2016 [42] | Cases and controls | 600 cases and 236 controls | Women/China 30–50 years | Broccoli | High intake vs. low intake | Uterine fibroids | OR: 0.55; 95% CI from 0.32 to 0.96 | 2010–2014 | Multivariate |
Gates MA et al., 2007 [59] | Cohort study | 66,940 | Women/USA Mean 50–51 years | Broccoli | High intake vs. low intake | Ovarian cancer | RR: 0.67; 95% CI from 0.45 to 1.01 | 1984–2002 | Multivariate |
Chang E et al., 2007 [62] | Cohort study | 97,275 | Women/USA Median age at baseline 50 years | Broccoli | High intake vs. low intake | Ovarian cancer | RR: 0.91; 95% CI from 0.61 to 1.36 | 1995–2003 | Multivariate |
Barbone F et al., 1993 [84] | Cases and controls | 103 cases and 236 controls | Women/USA | Broccoli | High intake vs. low intake | Endometrial cancer | OR: 0.5; 95% CI from 0.3 to 1.0 | 1985–1988 | Multivariate |
Thyroid cancer | |||||||||
Braganza MZ et al., 2015 [60] | Cohort study | 292,477 | Men and women/USA Mean: 63.4 years | Broccoli | High intake vs. low intake | Thyroid cancer | HR: 2.13; 95% CI from 1.13 to 3.99; p trend < 0.01. | 1996–2006 | Multivariate |
Ron E et al., 1987 [94] | Cases and controls | 159 cases and 285 controls | Men and women/USA | Broccoli | High intake vs. low intake | Thyroid cancer | OR: 0.8; p trend: 0.20 | 1987 | - |
Lymphoid cancer | |||||||||
Thompson CA et al., 2010 [61] | Cohort study | 35,159 | Women/USA 55–69 years | Broccoli | High intake vs. low intake | Non-Hodgkin lymphoma (NHL), diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL) n = 415 NHL; 184 DLBCL and 90 FL cases | NHL (RR: 0.72; p-value: 0.018). mainly for FL and weaker or not apparent for DLBCL. | 1986–2005 | Multivariate |
Case–Control Studies | ||||||||
---|---|---|---|---|---|---|---|---|
Author; Year | A.1 | A.2 | A.3 | A.4 | B.1 | C.1 | C.2 | C.3 |
Fontham ET et al., 1988 [39] | ||||||||
Morrison MEW et al., 2019 [40] | ||||||||
Azeem K et al., 2016 [41] | ||||||||
Shen Y et al., 2016 [42] | ||||||||
Steinmetz KA et al., 1993 [44] | ||||||||
Correa P et al., 1985 [45] | ||||||||
Lin T et al., 2017 [68] | ||||||||
Ambrosone CB., 2004 [69] | ||||||||
Tarrazo-Antelo AM et al., 2014 [70] | ||||||||
Steinmetz KA et al., 1993 [71] | ||||||||
Garcıa-Lavandeira JA et al., 2022 [72] | ||||||||
Hansson LE et al., 1993 [73] | ||||||||
Hara M et al., 2003 [74] | ||||||||
Witte JS et al., 1996 [75] | ||||||||
Lin HJ et al., 1998 [76] | ||||||||
Evans RC et al., 2002 [77] | ||||||||
Mahfouz EM et al., 2014 [78] | ||||||||
Le Marchand L et al., 1997 [79] | ||||||||
Joseph MA., 2004 [80] | ||||||||
Castelao JE., 2004 [81] | ||||||||
Lin J et al., 2009 [82] | ||||||||
Tang L., 2008 [83] | ||||||||
Barbone F et al., 1993 [84] | ||||||||
Mettlin C et al., 1989 [85] | ||||||||
Goodman MT et al., 1992 [86] | ||||||||
Graham S et al., 1978 [87] | ||||||||
Graham S et al., 1981 [88] | ||||||||
Graham S et al., 1972 [89] | ||||||||
Miller AB et al., 1983 [90] | ||||||||
Freudenheim JL et al., 1990 [91] | ||||||||
Slattery ML et al., 2000 [92] | ||||||||
Lin HJ et al., 2002 [93] | ||||||||
Ron E et al., 1987 [94] |
Cohort Studies | ||||||||
---|---|---|---|---|---|---|---|---|
Author; Year | A.1 | A.2 | A.3 | A.4 | B.1 | C.1 | C.2 | C.3 |
Kirsh VA et al., 2007 [37] | ||||||||
Michaud DS et al., 1999 [38] | ||||||||
Colditz GA et al., 1985 [43] | ||||||||
Wang L et al., 2009 [55] | ||||||||
Adebamowo CA et al., 2005 [56] | ||||||||
Ambrosini GL et al., 2008 [57] | ||||||||
Tang L et al., 2010 [58] | ||||||||
Gates MA et al., 2007 [59] | ||||||||
Braganza MZ et al., 2015 [60] | ||||||||
Thompson CA et al., 2010 [61] | ||||||||
Chang ET et al., 2007 [62] | ||||||||
Steinmetz KA et al., 1994 [63] | ||||||||
Flood A et al., 2002 [64] | ||||||||
Nomura AM et al., 2008 [65] | ||||||||
Giovannucci E et al., 2003 [66] | ||||||||
Zhao L et al., 2023 [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baladia, E.; Moñino, M.; Pleguezuelos, E.; Russolillo, G.; Garnacho-Castaño, M.V. Broccoli Consumption and Risk of Cancer: An Updated Systematic Review and Meta-Analysis of Observational Studies. Nutrients 2024, 16, 1583. https://doi.org/10.3390/nu16111583
Baladia E, Moñino M, Pleguezuelos E, Russolillo G, Garnacho-Castaño MV. Broccoli Consumption and Risk of Cancer: An Updated Systematic Review and Meta-Analysis of Observational Studies. Nutrients. 2024; 16(11):1583. https://doi.org/10.3390/nu16111583
Chicago/Turabian StyleBaladia, Eduard, Manuel Moñino, Eulogio Pleguezuelos, Giuseppe Russolillo, and Manuel Vicente Garnacho-Castaño. 2024. "Broccoli Consumption and Risk of Cancer: An Updated Systematic Review and Meta-Analysis of Observational Studies" Nutrients 16, no. 11: 1583. https://doi.org/10.3390/nu16111583
APA StyleBaladia, E., Moñino, M., Pleguezuelos, E., Russolillo, G., & Garnacho-Castaño, M. V. (2024). Broccoli Consumption and Risk of Cancer: An Updated Systematic Review and Meta-Analysis of Observational Studies. Nutrients, 16(11), 1583. https://doi.org/10.3390/nu16111583