Adding Branched-Chain Amino Acids and Vitamin D to Whey Protein Is More Effective than Protein Alone in Preserving Fat Free Mass and Muscle Strength in the First Month after Sleeve Gastrectomy
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patients’ Selection
2.2. Post-SG Diet and Supplementation
2.3. Anthropometric, Body Composition and MS Assessment of the Study Population
2.4. Statistical Analysis
3. Results
3.1. Preoperative Characteristics of the Study Group
3.2. Impact of P+BCAAs+Vit.D vs. Protein Alone on TBW, BMI, FM, FFM, and MS
3.3. Impact of P+BCAAs+Vit.D vs. Protein Alone on Patient’s Clinical Parameter
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hsu, J.L.; Farrell, T.M. Updates in Bariatric Surgery. Am. Surg. 2024, 90, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Iannelli, A.; Treacy, P.; Sebastianelli, L.; Schiavo, L.; Martini, F. Perioperative complications of sleeve gastrectomy: Review of the literature. J. Minimal Access Surg. 2019, 15, 1–7. [Google Scholar]
- Schiavo, L.; Scalera, G.; Pilone, V.; De Sena, G.; Iannelli, A.; Barbarisi, A. Fat mass, fat-free mass, and resting metabolic rate in weight-stable sleeve gastrectomy patients compared with weight-stable nonoperated patients. Surg. Obes. Relat. Dis. Off. J. Am. Soc. Bariatr. Surg. 2017, 13, 1692–1699. [Google Scholar] [CrossRef] [PubMed]
- Schiavo, L.; Scalera, G.; Pilone, V.; De Sena, G.; Quagliariello, V.; Iannelli, A.; Barbarisi, A. A Comparative Study Examining the Impact of a Protein-Enriched Vs Normal Protein Postoperative Diet on Body Composition and Resting Metabolic Rate in Obese Patients after Sleeve Gastrectomy. Obes. Surg. 2017, 27, 881–888. [Google Scholar] [CrossRef] [PubMed]
- Schiavo, L.; Scalera, G.; Pilone, V.; De Sena, G.; Iannelli, A.; Barbarisi, A. Preservation of Fat-Free Mass After Bariatric Surgery: Our Point of View. Obes. Surg. 2017, 27, 1071–1073. [Google Scholar] [CrossRef] [PubMed]
- Maïmoun, L.; Lefebvre, P.; Jaussent, A.; Fouillade, C.; Mariano-Goulart, D.; Nocca, D. Body composition changes in the first month after sleeve gastrectomy based on gender and anatomic site. Surg. Obes. Relat. Dis. Off. J. Am. Soc. Bariatr. Surg. 2017, 13, 780–787. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.N.; Kim, S.O.; Jung, C.H.; Lee, W.J.; Kim, M.J.; Cho, Y.K. Preserved Muscle Strength Despite Muscle Mass Loss After Bariatric Metabolic Surgery: A Systematic Review and Meta-analysis. Obes. Surg. 2023, 33, 3422–3430. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, R.R. The underappreciated role of muscle in health and disease. Am. J. Clin. Nutr. 2006, 84, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Ebbeling, C.B.; Swain, J.F.; Feldman, H.A.; Wong, W.W.; Hachey, D.L.; Garcia-Lago, E.; Ludwig, D.S. Effects of dietary composition on energy expenditure during weight-loss maintenance. JAMA 2012, 307, 2627–2634. [Google Scholar] [CrossRef]
- Ravussin, E.; Lillioja, S.; Knowler, W.C.; Christin, L.; Freymond, D.; Abbott, W.G.; Boyce, V.; Howard, B.V.; Bogardus, C. Reduced rate of energy expenditure as a risk factor for body-weight gain. N. Engl. J. Med. 1988, 318, 467–472. [Google Scholar] [CrossRef]
- Nuijten MA, H.; Eijsvogels TM, H.; Monpellier, V.M.; Janssen IM, C.; Hazebroek, E.J.; Hopman, M.T.E. The magnitude and progress of lean body mass, fat-free mass, and skeletal muscle mass loss following bariatric surgery: A systematic review and meta-analysis. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2022, 23, e13370. [Google Scholar] [CrossRef] [PubMed]
- Haghighat, N.; Ashtary-Larky, D.; Bagheri, R.; Aghakhani, L.; Asbaghi, O.; Amini, M.; Moeinvaziri, N.; Hosseini, B.; Wong, A.; Shamekhi, Z.; et al. Preservation of fat-free mass in the first year after bariatric surgery: A systematic review and meta-analysis of 122 studies and 10,758 participants. Surg. Obes. Relat. Dis. Off. J. Am. Soc. Bariatr. Surg. 2022, 18, 964–982. [Google Scholar] [CrossRef] [PubMed]
- Mechanick, J.I.; Youdim, A.; Jones, D.B.; Garvey, W.T.; Hurley, D.L.; McMahon, M.M.; Heinberg, L.J.; Kushner, R.; Adams, T.D.; Shikora, S.; et al. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient--2013 update: Cosponsored by American Association of Clinical Endocrinologists, The Obesity Society, and American Society for Metabolic & Bariatric Surgery. Obesity 2013, 21 (Suppl. 1), S1–S27. [Google Scholar] [PubMed]
- Bavaresco, M.; Paganini, S.; Lima, T.P.; Salgado, W., Jr.; Ceneviva, R.; Dos Santos, J.E.; Nonino-Borges, C.B. Nutritional course of patients submitted to bariatric surgery. Obes. Surg. 2010, 20, 716–721. [Google Scholar] [CrossRef] [PubMed]
- Giusti, V.; Theytaz, F.; Di Vetta, V.; Clarisse, M.; Suter, M.; Tappy, L. Energy and macronutrient intake after gastric bypass for morbid obesity: A 3-y observational study focused on protein consumption. Am. J. Clin. Nutr. 2016, 103, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, C.F.; Morandi Junqueira-Franco, M.V.; dos Santos, J.E.; Marchini, J.S.; Salgado, W., Jr.; Nonino, C.B. Protein and amino acid status before and after bariatric surgery: A 12-month follow-up study. Surg. Obes. Relat. Dis. Off. J. Am. Soc. Bariatr. Surg. 2013, 9, 1008–1012. [Google Scholar] [CrossRef] [PubMed]
- Rondanelli, M.; Faliva, M.A.; Gasparri, C.; Peroni, G.; Spadaccini, D.; Maugeri, R.; Nichetti, M.; Infantino, V.; Perna, S. Current opinion on dietary advice in order to preserve fat-free mass during a low-calorie diet. Nutrition 2020, 72, 110667. [Google Scholar] [CrossRef]
- Glynn, E.L.; Fry, C.S.; Drummond, M.J.; Timmerman, K.L.; Dhanani, S.; Volpi, E.; Rasmussen, B.B. Excess leucine intake enhances muscle anabolic signaling but not net protein anabolism in young men and women. J. Nutr. 2010, 140, 1970–1976. [Google Scholar] [CrossRef] [PubMed]
- Columbus, D.A.; Fiorotto, M.L.; Davis, T.A. Leucine is a major regulator of muscle protein synthesis in neonates. Amino Acids 2015, 47, 259–270. [Google Scholar] [CrossRef]
- Ceglia, L.; Harris, S.S. Vitamin D and its role in skeletal muscle. Calcif. Tissue Int. 2013, 92, 151–162. [Google Scholar] [CrossRef]
- Trevisan, C.; Veronese, N.; Maggi, S.; Baggio, G.; Toffanello, E.D.; Zambon, S.; Sartori, L.; Musacchio, E.; Perissinotto, E.; Crepaldi, G.; et al. Factors Influencing Transitions Between Frailty States in Elderly Adults: The Progetto Veneto Anziani Longitudinal Study. J. Am. Geriatr. Soc. 2017, 65, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Beaudart, C.; Buckinx, F.; Rabenda, V.; Gillain, S.; Cavalier, E.; Slomian, J.; Petermans, J.; Reginster, J.Y.; Bruyère, O. The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power: A systematic review and meta-analysis of randomized controlled trials. J. Clin. Endocrinol. Metab. 2014, 99, 4336–4345. [Google Scholar] [CrossRef] [PubMed]
- De Luca, M.; Zappa, M.A.; Zese, M.; Bardi, U.; Carbonelli, M.G.; Carrano, F.M.; Casella, G.; Chianelli, M.; Chiappetta, S.; Iossa, A.; et al. Development of the Italian Clinical Practice Guidelines on Bariatric and Metabolic Surgery: Design and Methodological Aspects. Nutrients 2022, 15, 189. [Google Scholar] [CrossRef] [PubMed]
- National Academy of Sciences, Institute of Medicine, Food and Nutrition Board. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (2002/2005). The National Academies Press. Available online: http://fnic.nal.usda.gov (accessed on 17 September 2009).
- Brorsson, A.L.; Nordin, K.; Ekbom, K. Adherence to Vitamin Supplementation Recommendations in Youth Who Have Undergone Bariatric Surgery as Teenagers: A Mixed Methods Study. Obes. Surg. 2020, 30, 4911–4918. [Google Scholar] [CrossRef]
- Schiavo, L.; Scalera, G.; Sergio, R.; De Sena, G.; Pilone, V.; Barbarisi, A. Clinical impact of Mediterranean-enriched-protein diet on liver size, visceral fat, fat mass, and fat-free mass in patients undergoing sleeve gastrectomy. Surg. Obes. Relat. Dis. Off. J. Am. Soc. Bariatr. Surg. 2015, 11, 1164–1170. [Google Scholar] [CrossRef] [PubMed]
- Alba, D.L.; Wu, L.; Cawthon, P.M.; Mulligan, K.; Lang, T.; Patel, S.; King, N.J.; Carter, J.T.; Rogers, S.J.; Posselt, A.M.; et al. Changes in Lean Mass, Absolute and Relative Muscle Strength, and Physical Performance After Gastric Bypass Surgery. J. Clin. Endocrinol. Metab. 2019, 104, 711–720. [Google Scholar] [CrossRef]
- Chaston, T.B.; Dixon, J.B.; O’Brien, P.E. Changes in fat-free mass during significant weight loss: A systematic review. Int. J. Obes. 2007, 31, 743–750. [Google Scholar] [CrossRef]
- Larsen, A.E.; Bibby, B.M.; Hansen, M. Effect of a Whey Protein Supplement on Preservation of Fat Free Mass in Overweight and Obese Individuals on an Energy Restricted Very Low Caloric Diet. Nutrients 2018, 10, 1918. [Google Scholar] [CrossRef]
- Mettler, S.; Mitchell, N.; Tipton, K.D. Increased protein intake reduces lean body mass loss during weight loss in athletes. Med. Sci. Sports Exerc. 2010, 42, 326–337. [Google Scholar] [CrossRef]
- Pasiakos, S.M.; Cao, J.J.; Margolis, L.M.; Sauter, E.R.; Whigham, L.D.; McClung, J.P.; Rood, J.C.; Carbone, J.W.; Combs, G.F., Jr.; Young, A.J. Effects of high-protein diets on fat-free mass and muscle protein synthesis following weight loss: A randomized controlled trial. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2013, 27, 3837–3847. [Google Scholar] [CrossRef]
- Santanasto, A.J.; Glynn, N.W.; Newman, M.A.; Taylor, C.A.; Brooks, M.M.; Goodpaster, B.H.; Newman, A.B. Impact of weight loss on physical function with changes in strength, muscle mass, and muscle fat infiltration in overweight to moderately obese older adults: A randomized clinical trial. J. Obes. 2011, 2011, 516576. [Google Scholar] [CrossRef] [PubMed]
- Carey, D.G.; Pliego, G.J.; Raymond, R.L. Body composition and metabolic changes following bariatric surgery: Effects on fat mass, lean mass and basal metabolic rate: Six months to one-year follow-up. Obes. Surg. 2006, 16, 1602–1608. [Google Scholar] [CrossRef] [PubMed]
- Santarpia, L.; Contaldo, F.; Pasanisi, F. Body composition changes after weight-loss interventions for overweight and obesity. Clin. Nutr. 2013, 32, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Handrigan, G.; Hue, O.; Simoneau, M.; Corbeil, P.; Marceau, P.; Marceau, S.; Tremblay, A.; Teasdale, N. Weight loss and muscular strength affect static balance control. Int. J. Obes. 2010, 34, 936–942. [Google Scholar] [CrossRef]
- Stegen, S.; Derave, W.; Calders, P.; Van Laethem, C.; Pattyn, P. Physical fitness in morbidly obese patients: Effect of gastric bypass surgery and exercise training. Obes. Surg. 2011, 21, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Hue, O.; Berrigan, F.; Simoneau, M.; Marcotte, J.; Marceau, P.; Marceau, S.; Tremblay, A.; Teasdale, N. Muscle force and force control after weight loss in obese and morbidly obese men. Obes. Surg. 2008, 18, 1112–1118. [Google Scholar] [CrossRef]
- Balage, M.; Dardevet, D. Long-term effects of leucine supplementation on body composition. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Pasini, E.; Corsetti, G.; Aquilani, R.; Romano, C.; Picca, A.; Calvani, R.; Dioguardi, F.S. Protein-Amino Acid Metabolism Disarrangements: The Hidden Enemy of Chronic Age-Related Conditions. Nutrients 2018, 10, 391. [Google Scholar] [CrossRef] [PubMed]
- Ruocco, C.; Segala, A.; Valerio, A.; Nisoli, E. Essential amino acid formulations to prevent mitochondrial dysfunction and oxidative stress. Curr. Opin. Clin. Nutr. Metab. Care 2021, 24, 88–95. [Google Scholar] [CrossRef]
- Kimball, S.R.; Jefferson, L.S. Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. J. Nutr. 2006, 136 (Suppl. 1), 227S–231S. [Google Scholar] [CrossRef]
- Layman, D.K.; Walker, D.A. Potential importance of leucine in treatment of obesity and the metabolic syndrome. J. Nutr. 2006, 136 (Suppl. 1), 319S–323S. [Google Scholar] [CrossRef] [PubMed]
- Houston, D.K.; Tooze, J.A.; Davis, C.C.; Chaves, P.H.; Hirsch, C.H.; Robbins, J.A.; Arnold, A.M.; Newman, A.B.; Kritchevsky, S.B. Serum 25-hydroxyvitamin D and physical function in older adults: The Cardiovascular Health Study All Stars. J. Am. Geriatr. Soc. 2011, 59, 1793–1801. [Google Scholar] [CrossRef] [PubMed]
- Houston, D.K.; Cesari, M.; Ferrucci, L.; Cherubini, A.; Maggio, D.; Bartali, B.; Johnson, M.A.; Schwartz, G.G.; Kritchevsky, S.B. Association between vitamin D status and physical performance: The InCHIANTI study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2007, 62, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Hirani, V.; Naganathan, V.; Cumming, R.G.; Blyth, F.; Le Couteur, D.G.; Handelsman, D.J.; Waite, L.M.; Seibel, M.J. Associations between frailty and serum 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D concentrations in older Australian men: The Concord Health and Ageing in Men Project. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2013, 68, 1112–1121. [Google Scholar] [CrossRef] [PubMed]
- Schiavo, L.; Pilone, V.; Tramontano, S.; Rossetti, G.; Iannelli, A. May Bioelectrical Impedance Analysis Method Be Used in Alternative to the Dual-Energy X-Ray Absorptiometry in the Assessment of Fat Mass and Fat-Free Mass in Patients with Obesity? Pros, Cons, and Perspectives. Obes. Surg. 2020, 30, 3212–3215. [Google Scholar] [CrossRef]
- Parraca, J.A.; Adsuar, J.C.; Domínguez-Muñoz, F.J.; Barrios-Fernandez, S.; Tomas-Carus, P. Test-Retest Reliability of Isokinetic Strength Measurements in Lower Limbs in Elderly. Biology 2022, 11, 802. [Google Scholar] [CrossRef]
Parameter | Group | Baseline | 4-Weeks Follow-Up | p Value * | p Value ** |
---|---|---|---|---|---|
Total body weight (kg) | P+BCAA+Vit.D | 116.1 ± 22.5 | 103.6 ± 20.6 | 0.026 | 0.994 |
Protein alone | 118.4 ± 22.7 | 105.9 ± 20.1 | 0.040 | ||
BMI (kg/m2) | P+BCAA+Vit.D | 42.8 ± 5.98 | 38.3 ± 5.93 | 0.004 | 0.401 |
Protein alone | 43.3 ± 7.00 | 39.2 ± 5.82 | 0.027 | ||
Fat Mass (kg) | P+BCAA+Vit.D | 53.7 ± 11.1 | 43.8 ± 10.3 | <0.001 | 0.023 |
Protein alone | 55.6 ± 12.4 | 48.2 ± 11.4 | 0.030 | ||
Fat-Free Mass (kg) | P+BCAA+Vit.D | 57.1 ± 13.6 | 54.7 ± 12.8 | 0.485 | <0.001 |
Protein alone | 57.7 ± 12.2 | 51.1 ± 10.4 | 0.041 | ||
Muscle Strenght (kg) | P+BCAA+Vit.D | 39.1 ± 14.3 | 37.6 ± 13.4 | 0.675 | <0.001 |
Protein alone | 38.6 ± 13.4 | 31.3 ± 12.4 | 0.047 |
Clinical Characteristics | Group | Baseline | 4-Week Follow-Up | p |
---|---|---|---|---|
Glucose (mg/dL) | P+BCCAs+Vit. D | 122.1 ± 60.37 | 91.6 ± 18.62 | 0.011 |
Protein alone | 108.6 ± 16.48 | 91.2 ± 13.18 | <0.001 | |
Insulin (mU/L) | P+BCCAs+Vit. D | 25.9 ± 17.67 | 14.5 ± 8.32 | <0.001 |
Protein alone | 28.7 ± 21.27 | 16.9 ± 10.83 | 0.015 | |
HOMA Index | P+BCCAs+Vit. D | 8.74 ± 9.83 | 3.31 ± 2.14 | 0.005 |
Protein alone | 7.80 ± 6.38 | 3.80 ± 2.42 | 0.005 | |
Hemoglobin A1C (%) | P+BCCAs+Vit. D | 6.04 ± 1.68 | 5.52 ± 1.10 | 0.155 |
Protein alone | 5.54 ± 0.75 | 5.00 ± 0.80 | 0.015 | |
Creatine (mg/dL) | P+BCCAs+Vit. D | 0.80 ± 0.19 | 0.85 ± 0.34 | 0.310 |
Protein alone | 0.78 ± 0.17 | 0.86 ± 0.25 | 0.157 | |
GFR (mL/min) | P+BCCAs+Vit. D | 102.1 ± 15.42 | 100 ± 15.85 | 0.611 |
Protein alone | 98.9 ± 12.42 | 95.5 ± 20.88 | 0.479 | |
Iron (ng/dL) | P+BCCAs+Vit. D | 62.5 ± 32.14 | 63.5 ± 23.39 | 0.886 |
Protein alone | 71.6 ± 17.02 | 67.1 ± 22.88 | 0.425 | |
Uric Acid (mg/dL) | P+BCCAs+Vit. D | 5.63 ± 1.41 | 6.03 ± 1.92 | 0.347 |
Protein alone | 5.68 ± 1.17 | 6.06 ± 2.28 | 0.397 | |
Total cholesterol (mg/dL) | P+BCCAs+Vit. D | 204.4 ± 46.28 | 170.1 ± 28.51 | 0.001 |
Protein alone | 185.4 ± 45.10 | 167.3 ± 39.37 | 0.129 | |
HDL (mg/dL) | P+BCCAs+Vit. D | 49.6 ± 11.37 | 44.6 ± 10.87 | 0.082 |
Protein alone | 52.50 ± 21.37 | 47.8 ± 13.65 | 0.351 | |
Triglycerides (mg/dL) | P+BCCAs+Vit. D | 158.7 ± 132.76 | 124.1 ± 68.19 | 0.204 |
Protein alone | 122.8 ± 69.90 | 114.7 ± 51.88 | 0.637 | |
GOT (U/L) | P+BCCAs+Vit. D | 24.5 ± 13.82 | 33.0 ± 18.21 | 0.043 |
Protein alone | 27.6 ± 23.87 | 31.0 ± 19.65 | 0.583 | |
GPT (U/L) | P+BCCAs+Vit. D | 30.2 ± 20.11 | 40.4 ± 23.68 | 0.073 |
Protein alone | 37.6 ± 37.24 | 41.4 ± 32.87 | 0.703 | |
GGT (U/L) | P+BCCAs+Vit. D | 33.4 ± 24.39 | 29.4 ± 16.89 | 0.456 |
Protein alone | 32.3 ± 20.10 | 30.4 ± 19.62 | 0.728 | |
ESR (mm/h) | P+BCCAs+Vit. D | 20.8 ± 11.92 | 19.3 ± 13.25 | 0.637 |
Protein alone | 17.4 ± 10.83 | 18.9 ± 12.65 | 0.631 | |
RCP (mg/L) | P+BCCAs+Vit. D | 3.62 ± 4.70 | 1.29 ± 1.92 | 0.015 |
Protein alone | 4.12 ± 8.24 | 1.51 ± 3.00 | 0.139 | |
Na (mEq/L) | P+BCCAs+Vit. D | 140.9 ± 3.31 | 141.3 ± 2.16 | 0.291 |
Protein alone | 141.2 ± 2.23 | 142.3 ± 2.65 | 0.119 | |
K (mEq/L) | P+BCCAs+Vit. D | 4.36 ± 0.41 | 4.14 ± 0.44 | 0.046 |
Protein alone | 4.37 ± 0.41 | 4.26 ± 0.47 | 0.368 | |
Cl (mEq/L) | P+BCCAs+Vit. D | 103.3 ± 3.08 | 103.4 ± 2.14 | 0.849 |
Protein alone | 104.1 ± 2.95 | 103.5 ± 2.52 | 0.422 | |
Vitamin D (ng/mL) | P+BCCAs+Vit. D | 24.3 ± 3.1 | 31.4 ± 2.14 | 0.031 |
Protein alone | 22.4 ± 2.75 | 23.2 ± 2.21 | 0.295 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schiavo, L.; Santella, B.; Paolini, B.; Rahimi, F.; Giglio, E.; Martinelli, B.; Boschetti, S.; Bertolani, L.; Gennai, K.; Arolfo, S.; et al. Adding Branched-Chain Amino Acids and Vitamin D to Whey Protein Is More Effective than Protein Alone in Preserving Fat Free Mass and Muscle Strength in the First Month after Sleeve Gastrectomy. Nutrients 2024, 16, 1448. https://doi.org/10.3390/nu16101448
Schiavo L, Santella B, Paolini B, Rahimi F, Giglio E, Martinelli B, Boschetti S, Bertolani L, Gennai K, Arolfo S, et al. Adding Branched-Chain Amino Acids and Vitamin D to Whey Protein Is More Effective than Protein Alone in Preserving Fat Free Mass and Muscle Strength in the First Month after Sleeve Gastrectomy. Nutrients. 2024; 16(10):1448. https://doi.org/10.3390/nu16101448
Chicago/Turabian StyleSchiavo, Luigi, Biagio Santella, Barbara Paolini, Farnaz Rahimi, Emmanuele Giglio, Barbara Martinelli, Stefano Boschetti, Lilia Bertolani, Katia Gennai, Simone Arolfo, and et al. 2024. "Adding Branched-Chain Amino Acids and Vitamin D to Whey Protein Is More Effective than Protein Alone in Preserving Fat Free Mass and Muscle Strength in the First Month after Sleeve Gastrectomy" Nutrients 16, no. 10: 1448. https://doi.org/10.3390/nu16101448
APA StyleSchiavo, L., Santella, B., Paolini, B., Rahimi, F., Giglio, E., Martinelli, B., Boschetti, S., Bertolani, L., Gennai, K., Arolfo, S., Bertani, M. P., & Pilone, V. (2024). Adding Branched-Chain Amino Acids and Vitamin D to Whey Protein Is More Effective than Protein Alone in Preserving Fat Free Mass and Muscle Strength in the First Month after Sleeve Gastrectomy. Nutrients, 16(10), 1448. https://doi.org/10.3390/nu16101448