Gender Differences in Liver Steatosis and Fibrosis in Overweight and Obese Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease before and after 8 Weeks of Very Low-Calorie Ketogenic Diet
Abstract
:1. Background
2. Materials and Methods
2.1. Study Design and Population
2.2. Diet Protocol
2.3. Anthropometric Parameters, Bioelectrical Impedance Analysis (BIA), and Biochemistry
2.4. Fibroscan and NAFLD Assessment
2.5. Statistical Analysis
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mayoral, L.P.; Andrade, G.M.; Mayoral, E.P.; Huerta, T.H.; Canseco, S.P.; Rodal Canales, F.J.; Cabrera-Fuentes, H.A.; Cruz, M.M.; Pérez Santiago, A.D.; Alpuche, J.J.; et al. Obesity subtypes, related biomarkers & heterogeneity. Indian J. Med. Res. 2020, 151, 11–21. [Google Scholar] [CrossRef]
- D’Errico, M.; Pavlova, M.; Spandonaro, F. The economic burden of obesity in Italy: A cost-of-illness study. Eur. J. Health Econ. 2022, 23, 177–192. [Google Scholar] [CrossRef]
- Apovian, C.M. Obesity: Definition, comorbidities, causes, and burden. Am. J. Manag. Care. 2016, 22 (Suppl. S7), s176–s185. [Google Scholar] [PubMed]
- Gerdts, E.; Regitz-Zagrosek, V. Sex differences in cardiometabolic disorders. Nat. Med. 2019, 25, 1657–1666. [Google Scholar] [CrossRef] [PubMed]
- Kappor, N.; Arora, S.; Kalra, S. Gender disparities in people living with obesity—An unchartered territory. J. Midlife Health 2021, 12, 103–107. [Google Scholar] [CrossRef]
- Kautzky-Willer, A.; Leutner, M.; Harreiter, J. Sex differences in type 2 diabetes. Diabetologia 2023, 66, 986–1002. [Google Scholar] [CrossRef] [PubMed]
- Guglielmi, V.; Sbraccia, P. Obesity phenotypes: Depot-differences in adipose tissue and their clinical implications. Eat Weight Disord. 2018, 23, 3–14. [Google Scholar] [CrossRef]
- Strack, C.; Behrens, G.; Sag, S.; Mohr, M.; Zeller, J.; Lahmann, C.; Hubauer, U.; Loew, T.; Maier, L.; Fischer, M.; et al. Gender differences in cardiometabolic health and disease in a cross-sectional observational obesity study. Biol. Sex Differ. 2022, 13, 8. [Google Scholar] [CrossRef]
- Williams, R.L.; Wood, L.G.; Collins, C.E.; Callister, R. Effectiveness of weight loss interventions–is there a difference between men and women: A systematic review. Obes. Rev. 2015, 16, 171–186. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Verde, L.; Vetrani, C.; Barrea, L.; Savastano, S.; Colao, A. Obesity: A gender-view. J. Endocrinol. Investig. 2024, 47, 299–306. [Google Scholar] [CrossRef]
- Dal Prà, C.; Fabris, R. Obesity and gender differences. Ital. J. Gender-Specific Med. 2020, 6, 3–14. [Google Scholar] [CrossRef]
- Godoy-Matos, A.F.; Silva Júnior, W.S.; Valerio, C.M. NAFLD as a Continuum: From Obesity to Metabolic Syndrome and Diabetes. Diabetol. Metab. Syndr. 2020, 12, 60. [Google Scholar] [CrossRef] [PubMed]
- Rinella, M.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. Ann. Hepatol. 2023, 20, 101133. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Huang, J.; Wang, M.; Kumar, R.; Liu, Y.; Liu, S.; Wu, Y.; Wang, X.; Zhu, Y. Comparison of MAFLD and NAFLD diagnostic criteria in real world. Liver Int. 2020, 40, 2082–2089. [Google Scholar] [CrossRef]
- Ravaioli, F.; Dajti, E.; Mantovani, A.; Newsome, P.N.; Targher, G.; Colecchia, A. Diagnostic accuracy of FibroScan-AST (FAST) score for the non-invasive identification of patients with fibrotic non-alcoholic steatohepatitis: A systematic review and meta-analysis. Gut 2023, 72, 1399–1409. [Google Scholar] [CrossRef] [PubMed]
- Caballeria, L.; Pera, G.; Arteaga, I.; Rodriguez, L.; Aluma, A.; Morillas, R.M.; de la Ossa, N.; Díaz, A.; Expósito, C.; Miranda, D.; et al. High Prevalence of Liver Fibrosis Among European Adults with Unknown Liver Disease: A Population-Based Study. Clin. Gastroenterol. Hepatol. 2018, 16, 1138–1145.e1135. [Google Scholar] [CrossRef] [PubMed]
- Lonardo, A.; Nascimbeni, F.; Ballestri, S.; Fairweather, D.; Win, S.; Than, A.T.; Abdelmalek, M.F.; Suzuki, A. Sex Differences in Nonalcoholic Fatty Liver Disease: State of the Art and Identification of Research Gaps. Hepatology 2019, 70, 1457–1469. [Google Scholar] [CrossRef] [PubMed]
- D’Abbondanza, M.; Ministrini, S.; Pucci, G.; Nulli Migliola, E.; Martorelli, E.-E.; Gandolfo, V.; Siepi, D.; Lupattelli, G.; Vaudo, G. Very Low-Carbohydrate Ketogenic Diet for the Treatment of Severe Obesity and Associated Non-Alcoholic Fatty Liver Disease: The Role of Sex Differences. Nutrients 2020, 12, 2748. [Google Scholar] [CrossRef] [PubMed]
- Donghia, R.; Schiano Di Cola, R.; Cesaro, F.; Vitale, A.; Lippolis, G.; Lisco, T.; Isernia, R.; De Pergola, G.; De Nucci, S.; Rinaldi, R.; et al. Gender and Liver Steatosis Discriminate Different Physiological Patterns in Obese Patients Undergoing Bariatric Surgery: Obesity Center Cohort. Nutrients 2023, 15, 2381. [Google Scholar] [CrossRef] [PubMed]
- Cheung, O.K.-V.; Cheng, A.S.-L. Gender Differences in Adipocyte Metabolism and Liver Cancer Progression. Front. Genet. 2016, 7, 168. [Google Scholar] [CrossRef]
- Nseir, W.; Hellou, E.; Assy, N. Role of Diet and Lifestyle Changes in Nonalcoholic Fatty Liver Disease. World J. Gastroenterol. 2014, 20, 9338–9344. [Google Scholar] [CrossRef] [PubMed]
- De Nucci, S.; Bonfiglio, C.; Donvito, R.; Di Chito, M.; Cerabino, N.; Rinaldi, R.; Sila, A.; Shahini, E.; Giannuzzi, V.; Pesole, P.L.; et al. Effects of an Eight Week Very Low-Calorie Ketogenic Diet (VLCKD) on White Blood Cell and Platelet Counts in Relation to Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) in Subjects with Overweight and Obesity. Nutrinets 2023, 15, 4468. [Google Scholar] [CrossRef] [PubMed]
- Bueno, N.B.; de Melo, I.S.V.; de Oliveira, S.L.; de Rocha Ataide, T. Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: A meta-analysis of randomised controlled trials. Br. J. Nutr. 2013, 110, 1178–1187. [Google Scholar] [CrossRef] [PubMed]
- Paoli, A.; Rubini, A.; Volek, J.S.; Grimaldi, K.A. Beyond weight loss: A review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur. J. Clin. Nutr. 2013, 67, 789–796. [Google Scholar] [CrossRef] [PubMed]
- Castellana, M.; Conte, E.; Cignarelli, A.; Perrini, S.; Giustina, A.; Giovanella, L.; Giorgino, F.; Trimboli, P. Efficacy and safety of very low calorie ketogenic diet (VLCKD) in patients with overweight and obesity: A systematic review and meta-analysis. Rev. Endocr. Metab. Disord. 2019, 21, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Cunha, G.M.; Guzman, G.; Correa De Mello, L.L.; Trein, B.; Spina, L.; Bussade, I.; Marques Prata, J.; Sajoux, I.; Countinho, W. Efficacy of a 2-month very low-calorie ketogenic diet (VLCKD) compared to a standard low-calorie diet in reducing visceral and liver fat accumulation in patients with obesity. Front. Endocrinol. 2020, 11, 607. [Google Scholar] [CrossRef]
- Watanabe, M.; Tozzi, M.; Risi, R.; Tuccinardi, D.; Marani, S.; Basciani, S.; Spera, G.; Lubrano, C.; Gnessi, L. Beneficial effects of the ketogenic diet on nonalcoholic fatty liver disease: A comprehensive review of the literature. Obes. Rev. 2020, 21, e13024. [Google Scholar] [CrossRef] [PubMed]
- Chalasani, N.; Younossi, Z.; LaVine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef] [PubMed]
- Marchesini, G.; Petta, S.; Grave, R.D. Diet, weight loss, and liver health in nonalcoholic fatty liver disease: Pathophysiology, evidence, and practice. Hepatology 2015, 63, 2032–2043. [Google Scholar] [CrossRef]
- Muscogiuri, G.; El Ghoch, M.; Colao, A.; Hassapidou, M.; Yumuk, V.; Busetto, L. European Guidelines for Obesity Management in Adults with a Very Low-Calorie Ketogenic Diet: A Systematic Review and Meta-Analysis. Obesity Management Task Force (OMTF) of the European Association for the Study of Obesity (EASO). Obes. Factis 2021, 14, 222–245. [Google Scholar] [CrossRef]
- Barrea, L.; Caprio, M.; Camajani, E.; Verde, L.; Perrini, S.; Cignarelli, A.; Prodam, F.; Gambineri, A.; Isidori, A.M.; Colao, A.; et al. Ketogenic nutritional therapy (KeNuT)—A multi-step dietary model with meal replacements for the management of obesity and its related metabolic disorders: A consensus statement from the working group of the Club of the Italian Society of Endocrinology (SIE)—Diet therapies in endocrinology and metabolism. J. Endocrinol. Investig. 2024, 66, 498–503. [Google Scholar] [CrossRef]
- Caprio, M.; Infante, M.; Moriconi, E.; Armani, A.; Fabbri, A.; Mantovani, G.; Mariani, S.; Lubrano, C.; Poggiogalle, E.; Migliaccio, S.; et al. Cardiovascular Endocrinology Club of the Italian Society of Endocrinology. Very-low-calorie ketogenic diet (VLCKD) in the management of metabolic diseases: Systematic review and consensus statement from the Italian Society of Endocrinology (SIE). J. Endocrinol. Investig. 2019, 42, 1365–1386. [Google Scholar] [CrossRef]
- Linsalata, M.; Russo, F.; Riezzo, G.; D’Attoma, B.; Prospero, L.; Orlando, A.; Ignazzi, A.; Di Chito, M.; Sila, A.; De Nucci, S.; et al. The effects of a very-low-calorie ketogenic diet on the intestinal barrier integrity and function in patients with obesity: A Pilot Study. Nutrients 2023, 15, 2561. [Google Scholar] [CrossRef]
- Rinaldi, R.; De Nucci, S.; Castellana, F.; Di Chito, M.; Giannuzzi, V.; Shahini, E.; Zupo, R.; Lampignano, L.; Piazzolla, G.; Triggiani, V.; et al. The Effects of Eight Weeks’ Very Low-Calorie Ketogenic Diet (VLCKD) on Liver Health in Subjects Affected by Overweight and Obesity. Nutrients 2023, 15, 825. [Google Scholar] [CrossRef]
- Bruci, A.; Tuccinardi, D.; Tozzi, R.; Balena, A.; Santucci, S.; Frontani, R.; Mariani, S.; Basciani, S.; Spera, G.; Gnessi, L.; et al. Very Low-Calorie Ketogenic Diet: A Safe and Effective Tool for Weight Loss in Patients with Obesity and Mild Kidney Failure. Nutrients 2020, 12, 333. [Google Scholar] [CrossRef]
- Beaudart, C.; Bruyère, O.; Geerinck, A.; Hajaoui, M.; Scafoglieri, A.; Perkisas, S.; Bautmans, I.; Gielen, E.; Reginster, J.-V.; Buckinx, F.; et al. Equation models developed with bioelectric 439 impedance analysis tools to assess muscle mass: A systematic review. Clin. Nutr. ESPEN 2020, 35, 47–62. [Google Scholar] [CrossRef]
- Kushner, R.F. Bioelectrical impedance analysis: A review of principles and applications. J. Am. Coll. Nutr. 1992, 11, 199–209. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance 444 and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Cholongitas, E.; Pavlopoulou, I.; Papatheodoridi, M.; Markakis, G.E.; Bouras, E.; Haidich, A.-B.; Papatheodoridis, G. Epidemiology of non-alcoholic fatty liver disease in europe: A systematic review and meta-analysis. Ann. Gastroenterol. Hepatol. 2021, 34, 404–414. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver; Clinical Practice Guideline Panel. EASL Clinical Practice Guidelines on non-invasive tests for evaluation of liver disease severity and prognosis—2021 update. J. Hepatol. 2021, 75, 659–689. [Google Scholar] [CrossRef]
- Berzigotti, A. Non-invasive assessment of non-alcoholic fatty liver disease: Ultrasound and transient elastography. Rev. Recent Clin. Trials 2014, 9, 170–177. [Google Scholar] [CrossRef]
- Cooper, A.J.; Gupta, S.R.; Moustafa, A.F.; Chao, A.M. Sex/Gender Differences in Obesity Prevalence, Comorbidities, and Treatment. Curr. Obes. Rep. 2021, 10, 458–466. [Google Scholar] [CrossRef]
- Halaoui, A.F.; Ali Hajj, A.; Habib, S.G.; Kanso, M.; Daniel, F.; Mukherji, D.M.; Khalife, M.J.; Jaafar, R.F.; Faraj, W. Gender differences in liver fibrosis among patients younger 50 years: A retrospective cohort study. Clin. Res. Hepatol. Gastroenterol. 2020, 44, 733–738. [Google Scholar] [CrossRef]
- Català-Senent, J.F.; Hidalgo, M.R.; Berenguer, M.; Parthasarathy, G.; Malhi, H.; Malmierca-Merlo, P.; de la Iglesia-Vayá, M.; García-García, F. Hepatic steatosis and steatohepatitis: A functional meta-analysis of sex-based differences in transcriptomic studies. Biol. Sex Differ. 2021, 12, 29. [Google Scholar] [CrossRef]
- Bredella, M.A. Sex Differences in Body Composition. Adv. Exp. Med. Biol. 2017, 1043, 9–27. [Google Scholar] [CrossRef]
- Griggs, R.C.; Kingston, W.; Jozefowicz, R.F.; Herr, B.E.; Forbes, G.; Halliday, D. Effect of testosterone on muscle mass and muscle protein synthesis. J. Appl. Physiol. 1989, 66, 498–503. [Google Scholar] [CrossRef]
- Lippi, G.; Albiero, A.; Montagnana, M.; Salvagno, G.L.; Scevarolli, S.; Franchi, M.; Guidi, G.C. Lipid and lipoprotein profile in physiological pregnancy. Clin. Lab. 2007, 53, 173–177. [Google Scholar]
- Desoye, G.; Schweditsch, M.O.; Pfeiffer, K.P.; Zechner, R.; Kostner, G.M. Correlation of hormones with lipid and lipoprotein levels during normal pregnancy and postpartum. J. Clin. Endocrinol. Metab. 1987, 64, 704–712. [Google Scholar] [CrossRef]
- Connelly, P.J.; Currie, G.; Delles, C. Sex Differences in the Prevalence, Outcomes and Management of Hypertension. Curr. Hypertens. Rep. 2022, 24, 185–192. [Google Scholar] [CrossRef]
- Gado, M.; Tsaousidou, E.; Bornstein, S.R.; Perakakis, N. Sex-based differences in insulin resistance. J. Endocrinol. 2024, 261, e230245. [Google Scholar] [CrossRef]
- Xia, M.-F.; Bian, H.; Gao, X. NAFLD and Diabetes: Two Sides of the Same Coin? Rationale for Gene-Based Personalized NAFLD Treatment. Front. Pharmacol. 2019, 10, 877. [Google Scholar] [CrossRef] [PubMed]
- Luukkonen, P.K.; Dufour, S.; Lyu, K.; Zhang, X.-M.; Hakkarainen, A.; Lehtimäki, T.E.; Cline, G.W.; Petersen, K.F.; Shulman, G.I.; Yki-Järvinen, H. Effect of a ketogenic diet on hepatic steatosis and hepatic mitochondrial metabolism in nonalcoholic fatty liver disease. Proc. Natl. Acad. Sci. USA 2020, 117, 7347–7354. [Google Scholar] [CrossRef] [PubMed]
Parameters * | Gender | Gender | p † | p ѱ | ||||
---|---|---|---|---|---|---|---|---|
F (n = 75) | M (n = 37) | |||||||
Before | After | p ^ | Before | After | p ^ | |||
Age (yrs) | 41.48 ± 13.15 | -- | -- | 42.46 ± 11.69 | -- | 0.85 | -- | |
Weight (Kg) | 92.53 ± 15.70 | 84.38 ± 14.04 | <0.0001 | 110.66 ± 22.99 | 100.41 ± 21.38 | <0.0001 | <0.0001 | <0.0001 |
BMI (Kg/m2) | 35.28 ± 5.52 | 32.30 ± 5.12 | <0.0001 | 36.69 ± 7.20 | 33.28 ± 6.87 | <0.0001 | <0.0001 | 0.74 |
BMI Classes | 0.0003 α | 0.002 α | 0.87 ¥ | 0.37 ¥ | ||||
Normal Weight (<25.0) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | ||||
Overweight (25.0–30.0) | 11 (14.67) | 24 (32.00) | 5 (13.51) | 15 (40.54) | ||||
Obese (>30.0) | 64 (85.33) | 51 (68.00) | 32 (86.49) | 22 (59.46) | ||||
Waist (cm) | 107.54 ± 12.60 | 99.31 ± 12.61 | <0.0001 | 119.47 ± 12.84 | 109.39 ± 12.87 | <0.0001 | <0.0001 | 0.0002 |
Systolic pressure (mmHg) | 128.43 ± 12.47 | 122.39 ± 9.62 | <0.0001 | 133.46 ± 11.09 | 124.73 ± 7.65 | <0.0001 | 0.01 | 0.28 |
Diastolic pressure (mmHg) | 80.34 ± 10.00 | 75.12 ± 7.51 | <0.0001 | 85.81 ± 8.62 | 78.98 ± 5.72 | <0.0001 | 0.005 | 0.01 |
Smoke (Yes) (%) | 11 (14.67) | -- | -- | 14 (37.84) | -- | -- | 0.006 | -- |
Glycemia (mg/dL) | 92.77 ± 8.76 | 87.31 ± 9.50 | <0.0001 | 96.35 ± 11.33 | 89.89 ± 10.26 | <0.0001 | 0.13 | 0.18 |
Insulin (µU/mL) | 15.66 ± 9.38 | 9.35 ± 4.69 | <0.0001 | 19.58 ± 11.88 | 10.72 ± 5.09 | <0.0001 | 0.05 | 0.16 |
HOMA | 3.60 ± 2.18 | 2.04 ± 1.06 | <0.0001 | 4.70 ± 3.06 | 2.41 ± 1.24 | <0.0001 | 0.03 | 0.11 |
HbA1c (%) | 5.42 ± 0.35 | 5.22 ± 0.35 | <0.0001 | 5.50 ± 0.42 | 5.28 ± 0.35 | <0.0001 | 0.45 | 0.67 |
Triglycerides (mg/dL) | 96.83 ± 40.55 | 76.12 ± 28.02 | <0.0001 | 140.35 ± 94.23 | 101.05 ± 42.83 | 0.0008 | 0.02 | 0.001 |
Total cholesterol | 193.28 ± 40.67 | 166.02 ± 37.01 | <0.0001 | 197.53 ± 55.97 | 169.41 ± 41.75 | <0.0001 | 0.42 | 0.28 |
HDL (mg/dL) | 57.02 ± 14.63 | 49.23 ± 11.30 | <0.0001 | 45.01 ± 1.09 | 41.87 ± 9.38 | 0.02 | <0.0001 | 0.0001 |
LDL (mg/dL) | 127.61 ± 31.92 | 106.96 ± 29.97 | <0.0001 | 139.89 ± 35.69 | 117.32 ± 26.54 | 0.0002 | 0.08 | 0.05 |
Creatininemia (mg/dL) | 0.73 ± 0.10 | 0.73 ± 0.10 | 0.99 | 0.90 ± 0.13 | 1.11 ± 1.02 | 0.02 | <0.0001 | <0.0001 |
FM (Kg) | 39.76 ± 11.17 | 33.51 ± 10.24 | <0.0001 | 39.29 ± 15.30 | 31.59 ± 13.61 | <0.0001 | 0.45 | 0.30 |
FFM (kg) | 51.85 ± 5.50 | 50.33 ± 4.96 | 0.0004 | 72.15 ± 9.71 | 69.00 ± 10.59 | 0.0008 | <0.0001 | <0.0001 |
Parameters * | Gender | Gender | p † | p ѱ | ||||
---|---|---|---|---|---|---|---|---|
F (n = 75) | M (n = 37) | |||||||
Before | After | p ^ | Before | After | p ^ | |||
Uricaemia (mg/dL) | 4.71 ± 1.02 | 5.34 ± 1.13 | 0.0004 | 6.32 ± 1.10 | 6.88 ± 1.47 | 0.19 | <0.0001 | <0.0001 |
AST (mg/dL) | 19.00 ± 8.86 | 18.04 ± 5.61 | 0.91 | 26.97 ± 12.17 | 22.43 ± 7.85 | 0.006 | <0.0001 | 0.005 |
ALT (mg/dL) | 23.43 ± 18.11 | 19.32 ± 9.16 | 0.002 | 43.57 ± 28.77 | 32.84 ± 19.56 | 0.003 | <0.0001 | <0.0001 |
γGT (mg/dL) | 20.52 ± 13.04 | 14.13 ± 6.14 | <0.0001 | 33.76 ± 19.53 | 20.30 ± 10.81 | <0.0001 | <0.0001 | 0.0004 |
CRP (mg/dL) | 1.14 ± 6.18 | 1.08 ± 5.81 | 0.42 | 0.35 ± 0.36 | 0.28 ± 0.26 | 0.17 | 0.27 | 0.02 |
Ferritin (mg/dL) | 68.80 ± 53.42 | 86.52 ± 67.67 | <0.0001 | 306.77 ± 221.55 | 298.09 ± 184.86 | 0.99 | <0.0001 | <0.0001 |
CAP (dB/m) | 270.87 ± 55.19 | 224.97 ± 55.79 | <0.0001 | 308.70 ± 57.57 | 246.16 ± 66.27 | <0.0001 | 0.001 | 0.05 |
E | 5.69 ± 2.97 | 5.34 ± 2.14 | 0.24 | 6.73 ± 3.51 | 5.36 ± 1.93 | 0.01 | 0.02 | 0.82 |
Parameters | CAP | |||
---|---|---|---|---|
β | se (β) | p | 95% C.I. | |
Gender (M) | 23.96 | 10.06 | 0.019 | 4.00 to 43.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rinaldi, R.; De Nucci, S.; Donghia, R.; Donvito, R.; Cerabino, N.; Di Chito, M.; Penza, A.; Mongelli, F.P.; Shahini, E.; Zappimbulso, M.; et al. Gender Differences in Liver Steatosis and Fibrosis in Overweight and Obese Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease before and after 8 Weeks of Very Low-Calorie Ketogenic Diet. Nutrients 2024, 16, 1408. https://doi.org/10.3390/nu16101408
Rinaldi R, De Nucci S, Donghia R, Donvito R, Cerabino N, Di Chito M, Penza A, Mongelli FP, Shahini E, Zappimbulso M, et al. Gender Differences in Liver Steatosis and Fibrosis in Overweight and Obese Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease before and after 8 Weeks of Very Low-Calorie Ketogenic Diet. Nutrients. 2024; 16(10):1408. https://doi.org/10.3390/nu16101408
Chicago/Turabian StyleRinaldi, Roberta, Sara De Nucci, Rossella Donghia, Rosanna Donvito, Nicole Cerabino, Martina Di Chito, Alice Penza, Francesco Pio Mongelli, Endrit Shahini, Marianna Zappimbulso, and et al. 2024. "Gender Differences in Liver Steatosis and Fibrosis in Overweight and Obese Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease before and after 8 Weeks of Very Low-Calorie Ketogenic Diet" Nutrients 16, no. 10: 1408. https://doi.org/10.3390/nu16101408
APA StyleRinaldi, R., De Nucci, S., Donghia, R., Donvito, R., Cerabino, N., Di Chito, M., Penza, A., Mongelli, F. P., Shahini, E., Zappimbulso, M., Pesole, P. L., Coletta, S., Triggiani, V., Cozzolongo, R., Giannelli, G., & De Pergola, G. (2024). Gender Differences in Liver Steatosis and Fibrosis in Overweight and Obese Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease before and after 8 Weeks of Very Low-Calorie Ketogenic Diet. Nutrients, 16(10), 1408. https://doi.org/10.3390/nu16101408