In Vivo Administration of Phosphatidic Acid, a Direct Alcohol Target Rescues Fetal Growth Restriction and Maternal Uterine Artery Dysfunction in Rat FASD Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Treatment Groups and Alcohol/PA In Vivo Dosing Paradigm
2.2. Maternal and Fetal Weight Measurements
2.3. Reagent Preparation
2.4. Arteriography
2.5. Immunoblotting
2.6. Immunofluorescence
2.7. Statistics
3. Results
3.1. Growth Assessment
3.2. Phosphatidic Acid and Phosphatidyl Ethanol Assessments
3.3. In Vivo PA Supplementation and Reversal of Alcohol-Induced Vascular Dysfunction
3.4. Alcohol-Induced Decreases in Stimulatory eNOS Phosphorylation
3.5. In Vivo Phosphatidic Acid (PA) Reversed Alcohol-Induced Decreases in Stimulatory eNOS Phosphorylation
4. Discussion
4.1. Development of Lipid-Based Treatment Strategies in Pregnancy
4.2. Novelty of Utilizing PA in Discovering Etiology of Alcohol-Related End Organ Effects
4.3. Alcohol-Induced Uterine Artery Dysfunction and Its Reversal by PA
4.4. PA Reversed Alcohol-Induced Post-Translational Modification of eNOS
4.5. The Beneficial Effects of PA on FASD Growth Phenotypes
4.6. Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bertrand, J.F.R.; Weber, M.K.; O’Connor, M.; Riley, E.P.; Johnson, K.A.; Cohen, D.E. National Task Force on FAS/FAE. Fetal Alcohol Syndrome: Guidelines for Referral and Diagnosis; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2004.
- Mattson, S.N.; Bernes, G.A.; Doyle, L.R. Fetal alcohol spectrum disorders: A review of the neurobehavioral deficits associated with prenatal alcohol exposure. Alcohol. Clin. Exp. Res. 2019, 43, 1046–1062. [Google Scholar] [CrossRef] [PubMed]
- Wilhoit, L.F.; Scott, D.A.; Simecka, B.A. Fetal Alcohol Spectrum Disorders: Characteristics, Complications, and Treatment. Community Ment. Health J. 2017, 53, 711–718. [Google Scholar] [CrossRef]
- Wozniak, J.R.; Riley, E.P.; Charness, M.E. Clinical presentation, diagnosis, and management of fetal alcohol spectrum disorder. Lancet Neurol. 2019, 18, 760–770. [Google Scholar] [CrossRef]
- Jones, K.; Smith, D. Recognition of the fetal alcohol syndrome in early infancy. Lancet 1973, 302, 999–1001. [Google Scholar] [CrossRef]
- Popova, S.; Lange, S.; Probst, C.; Gmel, G.; Rehm, J. Estimation of national, regional, and global prevalence of alcohol use during pregnancy and fetal alcohol syndrome: A systematic review and meta-analysis. Lancet Glob. Health 2017, 5, e290–e299. [Google Scholar] [CrossRef]
- Oei, J.L. Alcohol use in pregnancy and its impact on the mother and child. Addiction 2020, 115, 2148–2163. [Google Scholar] [CrossRef]
- Sundermann, A.C.; Edwards, D.R.V.; Slaughter, J.C.; Wu, P.; Jones, S.H.; Torstenson, E.S.; Hartmann, K.E. Week-by-week alcohol consumption in early pregnancy and spontaneous abortion risk: A prospective cohort study. Am. J. Obstet. Gynecol. 2021, 224, 97.e1–97.e16. [Google Scholar] [CrossRef]
- Tan, C.H.; Denny, C.H.; Cheal, N.E.; Sniezek, J.E.; Kanny, D. Alcohol use and binge drinking among women of childbearing age—United States, 2011–2013. MMWR. Morb. Mortal. Wkly. Rep. 2015, 64, 1042–1046. [Google Scholar] [CrossRef] [PubMed]
- May, P.A.; Chambers, C.D.; Kalberg, W.O.; Zellner, J.; Feldman, H.; Buckley, D.; Kopald, D.; Hasken, J.M.; Xu, R.; Honerkamp-Smith, G.; et al. Prevalence of fetal alcohol spectrum disorders in 4 US communities. JAMA 2018, 319, 474–482. [Google Scholar] [CrossRef]
- Lang, U.; Baker, R.S.; Braems, G.; Zygmunt, M.; Künzel, W.; Clark, K.E. Uterine blood flow—A determinant of fetal growth. Eur. J. Obstet. Gynecol. Reprod. Biol. 2003, 110, S55–S61. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, L.P.; Caton, J.S.; Redmer, D.A.; Grazul-Bilska, A.T.; Vonnahme, K.A.; Borowicz, P.P.; Luther, J.S.; Wallace, J.M.; Wu, G.; Spencer, T.E. Evidence for altered placental blood flow and vascularity in compromised pregnancies. J. Physiol. 2006, 572, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Konje, J.C.; Howarth, E.S.; Kaufmann, P.; Taylor, D.J. Longitudinal quantification of uterine artery blood volume flow changes during gestation in pregnancies complicated by intrauterine growth restriction. BJOG Int. J. Obstet. Gynaecol. 2003, 110, 301–305. [Google Scholar] [CrossRef]
- Rosenfeld, C.R. Distribution of cardiac output in ovine pregnancy. Am. J. Physiol. Heart Circ. Physiol. 1977, 232, H231–H235. [Google Scholar] [CrossRef] [PubMed]
- Caton, D.; Kalra, P.S. Endogenous hormones and regulation of uterine blood flow during pregnancy. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1986, 250, R365–R369. [Google Scholar] [CrossRef] [PubMed]
- Magness, R.R.; Shaw, C.E.; Phernetton, T.M.; Zheng, J.; Bird, I.M. Endothelial vasodilator production by uterine and systemic arteries. II. Pregnancy effects on NO synthase expression. Am. J. Physiol. Heart Circ. Physiol. 1997, 272, H1730–H1740. [Google Scholar] [CrossRef] [PubMed]
- Bird, I.M.; Zhang, L.; Magness, R.R. Possible mechanisms underlying pregnancy-induced changes in uterine artery endothelial function. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 284, R245–R258. [Google Scholar] [CrossRef] [PubMed]
- Mandala, M.; Osol, G. Physiological remodelling of the maternal uterine circulation during pregnancy. Basic Clin. Pharmacol. Toxicol. 2012, 110, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Magness, R.R.; Sullivan, J.A.; Li, Y.; Phernetton, T.M.; Bird, I.M. Endothelial vasodilator production by uterine and systemic arteries. VI. Ovarian and pregnancy effects on eNOS and NOx. Am. J. Physiol. Heart Circ. Physiol. 2001, 280, H1692–H1698. [Google Scholar] [CrossRef] [PubMed]
- Naik, V.D.; Davis-Anderson, K.; Subramanian, K.; Lunde-Young, R.; Nemec, M.J.; Ramadoss, J. Mechanisms Underlying Chronic Binge Alcohol Exposure-Induced Uterine Artery Dysfunction in Pregnant Rat. Alcohol. Clin. Exp. Res. 2018, 42, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Ramadoss, J.; Jobe, S.O.; Magness, R.R. Alcohol and Maternal Uterine Vascular Adaptations During Pregnancy—Part I: Effects of Chronic In Vitro Binge-Like Alcohol on Uterine Endothelial Nitric Oxide System and Function. Alcohol. Clin. Exp. Res. 2011, 35, 1686–1693. [Google Scholar] [CrossRef]
- Subramanian, K.; Naik, V.D.; Sathishkumar, K.; Yallampalli, C.; Saade, G.R.; Hankins, G.D.; Ramadoss, J. Chronic binge alcohol exposure during pregnancy impairs rat maternal uterine vascular function. Alcohol. Clin. Exp. Res. 2014, 38, 1832–1838. [Google Scholar] [CrossRef]
- Naik, V.D.; Lunde-Young, E.R.; Davis-Anderson, K.L.; Orzabal, M.; Ivanov, I.; Ramadoss, J. Chronic binge alcohol consumption during pregnancy alters rat maternal uterine artery pressure response. Alcohol 2016, 56, 59–64. [Google Scholar] [CrossRef]
- Ramadoss, J.; Magness, R.R. 2-D DIGE uterine endothelial proteomic profile for maternal chronic binge-like alcohol exposure. J. Proteom. 2011, 74, 2986–2994. [Google Scholar] [CrossRef]
- Orzabal, M.R.; Lunde-Young, E.R.; Ramirez, J.I.; Naik, V.D.; Hillhouse, A.; Konganti, K.; Threadgill, D.W.; Ramadoss, J. Gestational binge alcohol-induced alterations in maternal uterine artery transcriptome. Reprod. Toxicol. 2019, 87, 42–49. [Google Scholar] [CrossRef]
- Ramadoss, J.; Magness, R.R. Vascular effects of maternal alcohol consumption. Am. J. Physiol. Heart Circ. Physiol. 2012, 303, H414–H421. [Google Scholar] [CrossRef] [PubMed]
- Washburn, S.E.; Sawant, O.B.; Lunde, E.R.; Wu, G.; Cudd, T.A. Acute alcohol exposure, acidemia or glutamine administration impacts amino acid homeostasis in ovine maternal and fetal plasma. Amino Acids 2013, 45, 543–554. [Google Scholar] [CrossRef]
- Caetano, R.M. The Hispanic Americans baseline alcohol survey (HABLAS): Rates and predictors of alcohol abuse and dependence across Hispanic national groups. J. Stud. Alcohol Drugs 2008, 69, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Church, M.W.; Gerkin, K.P. Hearing Disorders in Children with Fetal Alcohol Syndrome: Findings from Case Reports. Pediatrics 1988, 82, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Cudd, T.A.; Chen, W.-J.A.; Parnell, S.E.; West, J.R. Third trimester binge ethanol exposure results in fetal hypercapnea and acidemia but not hypoxemia in pregnant sheep. Alcohol. Clin. Exp. Res. 2001, 25, 269–276. [Google Scholar] [CrossRef]
- Thomas, J.D.; Idrus, N.M.; Monk, B.R.; Dominguez, H.D. Prenatal Choline Supplementation Mitigates Behavioral Alterations Associated with Prenatal Alcohol Exposure in Rats. Birth Defects Res. Part A Clin. Mol. Teratol. 2010, 88, 827–837. [Google Scholar] [CrossRef]
- Thompson, N.T.; E Tateson, J.; Randall, R.W.; Spacey, G.D.; Bonser, R.W.; Garland, L.G. The Temporal Relationship between Phospholipase Activation, Diradylglycerol Formation and Superoxide Production in the Human Neutrophil. Biochem. J. 1990, 271, 209–213. [Google Scholar] [CrossRef]
- Athenstaedt, K.; Daum, G. Phosphatidic acid, a key intermediate in lipid metabolism. Eur. J. Biochem. 1999, 266, 1–16. [Google Scholar] [CrossRef]
- Menon, D.; Salloum, D.; Bernfeld, E.; Gorodetsky, E.; Akselrod, A.; Frias, M.A.; Sudderth, J.; Chen, P.-H.; DeBerardinis, R.; Foster, D.A. Lipid sensing by mTOR complexes via de novo synthesis of phosphatidic acid. J. Biol. Chem. 2017, 292, 6303–6311. [Google Scholar] [CrossRef]
- Viel, G.; Boscolo-Berto, R.; Cecchetto, G.; Fais, P.; Nalesso, A.; Ferrara, S.D. Phosphatidylethanol in blood as a marker of chronic alcohol use: A systematic review and meta-analysis. Int. J. Mol. Sci. 2012, 13, 14788–14812. [Google Scholar] [CrossRef] [PubMed]
- Helander, A. Forensic Science Chapter 18 Analytical markers of acute and chronic alcohol consumption. In Handbook of Analytical Separations; Elsevier Science BV: Amsterdam, The Netherlands, 2008; Volume 6, pp. 567–588. [Google Scholar]
- Naik, V.; Lunde-Young, R.; Ramirez, J.; Lee, J.; Ramadoss, J. Distribution of phosphatidylethanol in maternal and fetal compartments after chronic gestational binge alcohol exposure. Alcohol. Clin. Exp. Res. 2020, 44, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Naik, V.D.; Ramadoss, J. Untargeted and Targeted Blood Lipidomic Signature Profile of Gestational Alcohol Exposure. Nutrients 2023, 15, 1411. [Google Scholar] [CrossRef] [PubMed]
- Naik, V.D.; Lee, J.; Orzabal, M.O.; Ramadoss, J. Interaction of alcohol & phosphatidic acid in maternal rat uterine artery function. Reprod. Toxicol. 2022, 111, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Davis-Anderson, K.L.; Wesseling, H.; Siebert, L.M.; Lunde-Young, E.R.; Naik, V.D.; Steen, H.; Ramadoss, J. Fetal regional brain protein signature in FASD rat model. Reprod. Toxicol. 2018, 76, 84–92. [Google Scholar] [CrossRef]
- Cudd, T.A.; Chen, W.-J.A.; West, J.R. Fetal and Maternal Thyroid Hormone Responses to Ethanol Exposure During the Third Trimester Equivalent of Gestation in Sheep. Alcohol. Clin. Exp. Res. 2002, 26, 53–58. [Google Scholar] [CrossRef]
- Thomas, J.D.; Sather, T.M.; Whinery, L.A. Voluntary exercise influences behavioral development in rats exposed to alcohol during the neonatal brain growth spurt. Behav. Neurosci. 2008, 122, 1264–1273. [Google Scholar] [CrossRef]
- Mateev, S.; Sillau, A.H.; Mouser, R.; McCullough, R.E.; White, M.M.; Young, D.A.; Moore, L.G. Chronic hypoxia opposes pregnancy-induced increase in uterine artery vasodilator response to flow. Am. J. Physiol. Heart Circ. Physiol. 2003, 284, H820–H829. [Google Scholar] [CrossRef] [PubMed]
- Marshall, S.A.; Senadheera, S.N.; Jelinic, M.; O’Sullivan, K.; Parry, L.J.; Tare, M. Relaxin Deficiency Leads to Uterine Artery Dysfunction During Pregnancy in Mice. Front. Physiol. 2018, 9, 255. [Google Scholar] [CrossRef] [PubMed]
- Davis-Anderson, K.L.; Berger, S.; Lunde-Young, E.R.; Naik, V.D.; Seo, H.; Johnson, G.A.; Steen, H.; Ramadoss, J. Placental Proteomics Reveal Insights into Fetal Alcohol Spectrum Disorders. Alcohol. Clin. Exp. Res. 2017, 41, 1551–1558. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lunde-Young, R.; Naik, V.; Ramirez, J.; Orzabal, M.; Ramadoss, J. Chronic Binge Alcohol Exposure During Pregnancy Alters mTOR System in Rat Fetal Hippocampus. Alcohol. Clin. Exp. Res. 2020, 44, 1329–1336. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Orzabal, M.R.; Naik, V.D.; Ramadoss, J. Impact of e-cigarette vaping aerosol exposure in pregnancy on mTOR signaling in rat fetal hippocampus. Front. Neurosci. 2023, 17, 1217127. [Google Scholar] [CrossRef] [PubMed]
- Chang, G. Reducing Prenatal Alcohol Exposure and the Incidence of FASD: Is the Past Prologue? Alcohol Res. Curr. Rev. 2023, 43, 2. [Google Scholar] [CrossRef]
- Day, N.L.; Jasperse, D.; Richardson, G.; Robles, N.; Sambamoorthi, U.; Taylor, P.; Scher, M.; Stoffer, D.; Cornelius, M. Prenatal Exposure to Alcohol: Effect on Infant Growth and Morphologic Characteristics. Pediatrics 1989, 84, 536–541. [Google Scholar] [CrossRef] [PubMed]
- Day, N.L.; Leech, S.L.; A Richardson, G.; Cornelius, M.D.; Robles, N.; Larkby, C. Prenatal alcohol exposure predicts continued deficits in offspring size at 14 years of age. Alcohol. Clin. Exp. Res. 2002, 26, 1584–1591. [Google Scholar] [CrossRef] [PubMed]
- Riley, E.P.; Clarren, S.; Weinberg, J.; Jonsson, E. Fetal Alcohol Spectrum Disorder: Management and Policy Perspectives of FASD; Wiley: Hoboken, NJ, USA, 2010; Chapter 54; pp. 947–983. [Google Scholar]
- Bakhireva, L.N.; Savage, D.D. Focus on: Biomarkers of fetal alcohol exposure and fetal alcohol effects. Alcohol Res. Health 2011, 34, 56–63. [Google Scholar]
- Heier, C.; Xie, H.; Zimmermann, R. Nonoxidative ethanol metabolism in humans—From biomarkers to bioactive lipids. IUBMB Life 2016, 68, 916–923. [Google Scholar] [CrossRef]
- Zajicek, A.; Barrett, J.S. The grand challenges in obstetric and pediatric pharmacology. Front Pharmacol. 2013, 4, 170. [Google Scholar] [CrossRef] [PubMed]
- Wesley, B.D.; Sewell, C.A.; Chang, C.Y.; Hatfield, K.P.; Nguyen, C.P. Prescription medications for use in pregnancy–perspective from the US Food and Drug Administration. Am. J. Obstet. Gynecol. 2021, 225, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Röhricht, M.; Paschke, K.; Sack, P.; Weinmann, W.; Thomasius, R.; Wurst, F.M. Phosphatidylethanol reliably and objectively quantifies alcohol consumption in adolescents and young adults. Alcohol. Clin. Exp. Res. 2020, 44, 2177–2186. [Google Scholar] [CrossRef] [PubMed]
- Hasken, J.M.; Marais, A.-S.; de Vries, M.M.; Kalberg, W.O.; Buckley, D.; Parry, C.D.; Seedat, S.; May, P.A. Assessing the sensitivity and specificity of phosphatidylethanol (PEth) cutoffs to identify alcohol exposed pregnancies. Curr. Res. Toxicol. 2023, 4, 100105. [Google Scholar] [CrossRef] [PubMed]
- Bracero, L.A.; Maxwell, S.; Nyanin, A.; Seybold, D.J.; White, A.; Broce, M. Improving screening for alcohol consumption during pregnancy with phosphatidylethanol. Reprod. Toxicol. 2017, 74, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Thakur, R.; Naik, A.; Panda, A.; Raghu, P. Regulation of Membrane Turnover by Phosphatidic Acid: Cellular Functions and Disease Implications. Front. Cell Dev. Biol. 2019, 7, 83. [Google Scholar] [CrossRef]
- Palmer, S.K.; Zamudio, S.; Coffin, C.; Parker, S.; Stamm, E.; Moore, L.G. Quantitative estimation of human uterine artery blood flow and pelvic blood flow redistribution in pregnancy. Obstet. Gynecol. 1992, 80, 1000–1006. [Google Scholar] [PubMed]
- Magness, R.R. Maternal cardiovascular and other physiologic responses to the endocrinology of pregnancy. In The Endocrinology of Pregnancy; Bazer, F.W., Ed.; Humana Press: Totowa, NJ, USA, 1998; pp. 507–539. [Google Scholar]
- Boyle, D.W.; Lecklitner, S.; Liechty, E.A. Effect of prolonged uterine blood flow reduction on fetal growth in sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1996, 270, R246–R253. [Google Scholar] [CrossRef] [PubMed]
- Lang, U.; Baker, R.S.; Khoury, J.; Clark, K.E.; Yates, D.T.; Cadaret, C.N.; Beede, K.A.; Riley, H.E.; Macko, A.R.; Anderson, M.J.; et al. Effects of chronic reduction in uterine blood flow on fetal and placental growth in the sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 279, R53–R59. [Google Scholar] [CrossRef] [PubMed]
- Myers, S.A.; Sparks, J.W.; Makowski, E.L.; Meschia, G.; Battaglia, F.C. Relationship between placental blood flow and placental and fetal size in guinea pig. Am. J. Physiol. Heart Circ. Physiol. 1982, 243, H404–H409. [Google Scholar] [CrossRef]
- Stock, M.K.; Metcalfe, J. The Physiology of Reproduction; Knobil, E., Neill, J.D., Eds.; Wiley: Hoboken, NJ, USA, 1994. [Google Scholar]
- Falconer, J. The effect of maternal ethanol infusion on placental blood flow and fetal glucose metabolism in sheep. Alcohol Alcohol. 1990, 25, 413–416. [Google Scholar] [CrossRef] [PubMed]
- Gundogan, F.; Elwood, G.; Longato, L.; Tong, M.; Feijoo, A.; Carlson, R.; Wands, J.; de la Monte, S. Impaired placentation in fetal alcohol syndrome. Placenta 2008, 29, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Ramadoss, J.; Magness, R.R. Multiplexed digital quantification of binge-like alcohol-mediated alterations in maternal uterine angiogenic mRNA transcriptome. Physiol. Genom. 2012, 44, 622–628. [Google Scholar] [CrossRef]
- Ramadoss, J.; Magness, R.R. Alcohol-Induced Alterations in Maternal Uterine Endothelial Proteome: A Quantitative iTRAQ Mass Spectrometric Approach. Reprod. Toxicol. 2012, 34, 538–544. [Google Scholar] [CrossRef]
- Joy, J.M.; Gundermann, D.M.; Lowery, R.P.; Jäger, R.; A McCleary, S.; Purpura, M.; Roberts, M.D.; MC Wilson, S.; A Hornberger, T.; Wilson, J.M. Phosphatidic acid enhances mTOR signaling and resistance exercise induced hypertrophy. Nutr. Metab. 2014, 11, 29. [Google Scholar] [CrossRef]
- Ohanian, J.; Ollerenshaw, J.; Collins, P.; Heagerty, A. Agonist-induced production of 1,2-diacylglycerol and phosphatidic acid in intact resistance arteries. Evidence that accumulation of diacylglycerol is not a prerequisite for contraction. J. Biol. Chem. 1990, 265, 8921–8928. [Google Scholar] [CrossRef]
- Bhugra, P.; Xu, Y.-J.; Rathi, S.; Dhalla, N.S. Modification of intracellular free calcium in cultured A10 vascular smooth muscle cells by exogenous phosphatidic acid. Biochem. Pharmacol. 2003, 65, 2091–2098. [Google Scholar] [CrossRef]
- Lassègue, B.; Alexander, R.W.; Clark, M.; Akers, M.; Griendling, K.K. Phosphatidylcholine Is a Major Source of Phosphatidic-Acid and Diacylglycerol in Angiotensin-Ii-Stimulated Vascular Smooth-Muscle Cells. Biochem. J. 1993, 292, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Sueldo, D.J.; Foresi, N.P.; Casalongué, C.A.; Lamattina, L.; Laxalt, A.M. Phosphatidic acid formation is required for extracellular ATP-mediated nitric oxide production in suspension-cultured tomato cells. New Phytol. 2010, 185, 909–916. [Google Scholar] [CrossRef]
- Streissguth, A.P.; Martin, D.C.; Martin, J.C.; Barr, H.M. The Seattle longitudinal prospective study on alcohol and pregnancy. Neurobehav. Toxicol. Teratol. 1981, 3, 223–233. [Google Scholar]
- Greene, T.; Ernhart, C.B.; Sokol, R.J.; Martier, S.; Marler, M.R.; Boyd, T.A.; Ager, J. Prenatal alcohol exposure and preschool physical growth: A longitudinal analysis. Alcohol. Clin. Exp. Res. 1991, 15, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Day, N.L.; Goldschmidt, L.; Robles, N.; Richardson, G.; Cornelius, M.; Taylor, P.; Geva, D.; Stoffer, D. Prenatal alcohol exposure and offspring growth at 18 months of age: The predictive validity of two measures of drinking. Alcohol. Clin. Exp. Res. 1991, 15, 914–918. [Google Scholar] [CrossRef] [PubMed]
- Day, N.L.; Richardson, G.A.; Geva, D.; Robles, N. Alcohol, marijuana, and tobacco: Effects of prenatal exposure on offspring growth and morphology at age six. Alcohol. Clin. Exp. Res. 1994, 18, 786–794. [Google Scholar] [CrossRef]
- Day, N.; Robles, N.; Richardson, G.; Geva, D.; Taylor, P.; Scher, M.; Stoffer, D.; Cornelius, M.; Goldschmidt, L. The effects of prenatal alcohol use on the growth of children at three years of age. Alcohol. Clin. Exp. Res. 1991, 15, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J. The developmental origins of chronic adult disease. Acta Paediatr. 2004, 93, 26–33. [Google Scholar] [CrossRef]
- Barker, D.J. The developmental origins of insulin resistance. Horm. Res. Paediatr. 2005, 64, 2–7. [Google Scholar] [CrossRef]
- Barker, D.J.P. Adult consequences of fetal growth restriction. Clin. Obstet. Gynecol. 2006, 49, 270–283. [Google Scholar] [CrossRef]
- Caetano, R.; Babor, T.F. Diagnosis of alcohol dependence in epidemiological surveys: An epidemic of youthful alcohol dependence or a case of measurement error? Addiction 2006, 101 (Suppl. S1), 111–114. [Google Scholar] [CrossRef]
- Ramadoss, J.; Lunde, E.R.; Piña, K.B.; Chen, W.A.; Cudd, T.A. All three trimester binge alcohol exposure causes fetal cerebellar purkinje cell loss in the presence of maternal hypercapnea, acidemia, and normoxemia: Ovine model. Alcohol. Clin. Exp. Res. 2007, 31, 1252–1258. [Google Scholar] [CrossRef]
- Catchpole, H.R. Hormonal mechanisms in pregnancy and parturition. Reprod. Domest. Anim. 1991, 4, 361. [Google Scholar]
- CDC. Alcohol consumption among women who are pregnant or who might become pregnant—United States, 2002. MMWR 2004, 53, 1178–1181. [Google Scholar]
- Institute of Medicine. Fetal Alcohol Syndrome. Diagnosis, Epidemiology, Prevention, and Treatment; National Academy Press: Washington, DC, USA, 1996. [Google Scholar]
- Maternal and Child Health Data Reports. Alcohol Use Before and during Pregnancy; Washington Department of Health: Tumwater, WT, USA, 2022; p. 162-015.
- NIAAA. Tenth Special Report to the U.S. Congress on Alcohol and Health; U.S. Department of Health and Human Services: Washington, DC, USA, 2000; pp. 285–322.
- Paley, B.; O’Connor, M.J. Intervention for individuals with fetal alcohol spectrum disorders: Treatment approaches and case management. Dev. Disabil. Res. Rev. 2009, 15, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Goodlett, C.R.; Horn, K.H.; Zhou, F.C. Alcohol teratogenesis: Mechanisms of damage and strategies for intervention. Exp. Biol. Med. 2005, 230, 394–406. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janeski, J.D.; Naik, V.D.; Carabulea, A.L.; Jiang, H.; Ramadoss, J. In Vivo Administration of Phosphatidic Acid, a Direct Alcohol Target Rescues Fetal Growth Restriction and Maternal Uterine Artery Dysfunction in Rat FASD Model. Nutrients 2024, 16, 1409. https://doi.org/10.3390/nu16101409
Janeski JD, Naik VD, Carabulea AL, Jiang H, Ramadoss J. In Vivo Administration of Phosphatidic Acid, a Direct Alcohol Target Rescues Fetal Growth Restriction and Maternal Uterine Artery Dysfunction in Rat FASD Model. Nutrients. 2024; 16(10):1409. https://doi.org/10.3390/nu16101409
Chicago/Turabian StyleJaneski, Joseph D., Vishal D. Naik, Alexander L. Carabulea, Hong Jiang, and Jayanth Ramadoss. 2024. "In Vivo Administration of Phosphatidic Acid, a Direct Alcohol Target Rescues Fetal Growth Restriction and Maternal Uterine Artery Dysfunction in Rat FASD Model" Nutrients 16, no. 10: 1409. https://doi.org/10.3390/nu16101409
APA StyleJaneski, J. D., Naik, V. D., Carabulea, A. L., Jiang, H., & Ramadoss, J. (2024). In Vivo Administration of Phosphatidic Acid, a Direct Alcohol Target Rescues Fetal Growth Restriction and Maternal Uterine Artery Dysfunction in Rat FASD Model. Nutrients, 16(10), 1409. https://doi.org/10.3390/nu16101409