The Effects of Six-Gram D-Aspartic Acid Supplementation on the Testosterone, Cortisol, and Hematological Responses of Male Boxers Subjected to 11 Days of Nocturnal Exposure to Normobaric Hypoxia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Study Design
2.3. DAA Supplementation
2.4. LH–TL Protocol and Conditioning Training
2.5. Diet during the Experiment
2.6. Statistical Analysis
3. Results
3.1. Hormonal Response
3.2. Hematological Response
3.3. Training Loads and Changes in Blood Creatine Kinase (CK) Activity
4. Discussion
5. Study Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Millet, G.P.; Roels, B.; Schmitt, L.; Woorons, X.; Richalet, J.P. Combining hypoxic methods for peak performance. Sports Med. 2010, 40, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Czuba, M.; Fidos-Czuba, O.; Płoszczyca, K.; Zając, A.; Langfort, J. Comparison of the effect of intermittent hypoxic training vs. the live high, train low strategy on aerobic capacity and sports performance in cyclists in normoxia. Biol. Sport 2018, 35, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Płoszczyca, K.; Langfort, J.; Czuba, M. The Effects of Altitude Training on Erythropoietic Response and Hematological Variables in Adult Athletes: A Narrative Review. Front. Physiol. 2018, 9, 375. [Google Scholar] [CrossRef] [PubMed]
- Saunders, P.U.; Telford, R.D.; Pyne, D.B.; Cunningham, R.B.; Gore, C.J.; Hahn, A.G.; Hawley, J.A. Improved running economy in elite runners after 20 days of simulated moderate-altitude exposure. J. Appl. Physiol. 2004, 96, 931–937. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, L.; Millet, G.; Robach, P.; Nicolet, G.; Brugniaux, J.V.; Fouillot, J.P.; Richalet, J.P. Influence of “living high-training low” on aerobic performance and economy of work in elite athletes. Eur. J. Appl. Physiol. 2006, 97, 627–636. [Google Scholar] [CrossRef] [PubMed]
- Gore, C.J.; Clark, S.A.; Saunders, P.U. Nonhematological mechanisms of improved sea-level performance after hypoxic exposure. Med. Sci. Sports Exerc. 2007, 39, 1600–1609. [Google Scholar] [CrossRef] [PubMed]
- Gore, C.J.; Hahn, A.G.; Aughey, R.J.; Martin, D.T.; Ashenden, M.J.; Clark, S.A.; Garnham, A.P.; Roberts, A.D.; Slater, G.J.; McKenna, M.J. Live high: Train low increases muscle buffer capacity and submaximal cycling efficiency. Acta Physiol. Scand. 2001, 173, 275–286. [Google Scholar] [CrossRef]
- Nummela, A.; Rusko, H. Acclimatization to altitude and normoxic training improve 400-m running performance at sea level. J. Sports Sci. 2000, 18, 411–419. [Google Scholar] [CrossRef]
- Berglund, B. High-altitude training. Aspects of haematological adaptation. Sports Med. 1992, 14, 289–303. [Google Scholar] [CrossRef]
- Czuba, M.; Płoszczyca, K.; Kaczmarczyk, K.; Langfort, J.; Gajda, R. Chronic Exposure to Normobaric Hypoxia Increases Testosterone Levels and Testosterone/Cortisol Ratio in Cyclists. Int. J. Environ. Res. Public Health 2022, 19, 5246. [Google Scholar] [CrossRef]
- Shahani, S.; Braga-Basaria, M.; Maggio, M.; Basaria, S. Androgens and erythropoiesis: Past and present. J. Endocrinol. Investig. 2009, 32, 704–716. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, G.F. Serum testosterone levels and excessive erythrocytosis during the process of adaptation to high altitudes. Asian J. Androl. 2013, 15, 368–374. [Google Scholar] [CrossRef] [PubMed]
- D’Aniello, G.; Ronsini, S.; Notari, T.; Grieco, N.; Infante, V.; D’Angel, N.; Mascia, F.; Fiore, M.; Fisher, G.; D’Aniello, A. D-Aspartate, a key element for the improvement of sperm quality. Adv. Sex. Med. ASM 2012, 2, 45–53. [Google Scholar] [CrossRef]
- Willoughby, D.S.; Leutholtz, B. D-aspartic acid supplementation combined with 28 days of heavy resistance training has no effect on body composition, muscle strength, and serum hormones associated with the hypothalamo-pituitary-gonadal axis in resistance-trained men. Nutr. Res. 2013, 33, 803–810. [Google Scholar] [CrossRef]
- Willoughby, D.S.; Spillane, M.; Schwarz, N. Heavy Resistance Training and Supplementation with the Alleged Testosterone Booster Nmda has No Effect on Body Composition, Muscle Performance, and Serum Hormones Associated with the Hypothalamo-Pituitary-Gonadal Axis in Resistance-Trained Males. J. Sports Sci. Med. 2014, 13, 192–199. [Google Scholar]
- Melville, G.W.; Siegler, J.C.; Marshall, P.W. Three and six grams supplementation of d-aspartic acid in resistance trained men. J. Int. Soc. Sports Nutr. 2015, 12, 15. [Google Scholar] [CrossRef]
- Rodgers, L.; Schriefer, J.; Gunnels, T.; Bloomer, R. Impact of a multi-component dietary supplement on blood testosterone, nitrate/nitrite and physical performance in resistance-trained men. Br. J. Med. Med. Res. 2016, 11, 19427. [Google Scholar] [CrossRef]
- Crewther, B.; Witek, K.; Draga, P.; Zmijewski, P.; Obmiński, Z. Short-Term d-Aspartic Acid Supplementation Does Not Affect Serum Biomarkers Associated with the Hypothalamic-Pituitary-Gonadal Axis in Male Climbers. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 259–264. [Google Scholar] [CrossRef]
- Topo, E.; Soricelli, A.; D’Aniello, A.; Ronsini, S.; D’Aniello, G. The role and molecular mechanism of D-aspartic acid in the release and synthesis of LH and testosterone in humans and rats. Reprod. Biol. Endocrinol. 2009, 7, 120. [Google Scholar] [CrossRef]
- Bloomer, R.J.; Gunnels, T.A.; Moran, R.G.; Schriefer, J.M. Influence of a D-aspartic acid/sodium nitrate/vitamin D3 dietary supplement on physiological parameters in middle-aged men: A pilot study. Open Nutraceuticals J. 2015, 8, 43–48. [Google Scholar] [CrossRef]
- Melville, G.W.; Siegler, J.C.; Marshall, P.W.M. The effects of d-aspartic acid supplementation in resistance-trained men over a three month training period: A randomised controlled trial. PLoS ONE 2017, 12, e0182630. [Google Scholar] [CrossRef] [PubMed]
- Coviello, A.D.; Kaplan, B.; Lakshman, K.M.; Chen, T.; Singh, A.B.; Bhasin, S. Effects of graded doses of testosterone on erythropoiesis in healthy young and older men. J. Clin. Endocrinol. Metab. 2008, 93, 914–919. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, G.F.; Tapia, V.; Gasco, M.; Rubio, J.; Gonzales-Castañeda, C. High serum zinc and serum testosterone levels were associated with excessive erythrocytosis in men at high altitudes. Endocrine 2011, 40, 472–480. [Google Scholar] [CrossRef] [PubMed]
- Oyedokun, P.A.; Akhigbe, R.E.; Ajayi, L.O.; Ajayi, A.F. Impact of hypoxia on male reproductive functions. Mol. Cell Biochem. 2023, 478, 875–885. [Google Scholar] [CrossRef]
- Humpeler, E.; Skrabal, F.; Bartsch, G. Influence of exposure to moderate altitude on the plasma concentration of cortisol, aldosterone, renin, testosterone, and gonadotropins. Eur. J. Appl. Physiol. Occup. Physiol. 1980, 45, 167–176. [Google Scholar] [CrossRef]
Day | Microcycle 1 | Microcycle 2 |
---|---|---|
1 | Morning: First series of study (S1), Boxing training—technical training, boxing drills (60 min) Afternoon: Strength training—upper body (90 min) | Morning: Boxing training—high intensity (60 min) Afternoon: Strength training—lower body (90 min) |
2 | Morning: Boxing training—high intensity (60 min) Afternoon: Strength training—lower body (90 min) | Day off Active recovery |
3 | Morning: off Afternoon: Boxing training—high intensity (90 min) | Morning: Third series of study (S3), Endurance training—medium intensity (90 min) Afternoon: Boxing training—technical training, boxing drills (60 min) |
4 | Morning: Traveling Afternoon: Active recovery | Morning: Boxing training—high intensity (60 min) Afternoon: Strength training—upper body (90 min) |
5 | Morning: Second series of study (S2), Endurance training—medium intensity (90 min) Afternoon: Boxing training—technical training, boxing drills (60 min) | Morning: Endurance training—interval running—high intensity (60 min) Afternoon: Boxing training—technical training (60 min) |
6 | Morning: Boxing training—high intensity (60 min) Afternoon: Strength training—upper body (90 min) | Morning: Boxing training—high intensity (60 min) Afternoon: Strength training—lower body (90 min) |
7 | Morning: Endurance training—interval running—high intensity (60 min) Afternoon: Boxing training—technical training (60 min) | Day off Active recovery |
Variables | Group | (S1) | (S2) | (S3) | (S4) |
---|---|---|---|---|---|
RBC (mL/uL) | DAA C | 4.90 ± 0.16 5.02 ± 0.47 | 4.90 ± 0.14 5.11 ± 0.51 | 4.95 ± 0.08 5.11 ± 0.43 | 5.09 ± 0.13 * 5.26 ± 0.48 * |
HGB (g/dL) | DAA C | 14.71 ± 0.81 14.96 ± 1.04 | 14.61 ± 0.71 15.08 ± 0.98 | 15.04 ± 0.68 15.22 ± 1.01 | 15.42 ± 0.56 * 15.70 ± 1.09 * |
HCT (%) | DAA C | 43.98 ± 1.91 44.25 ± 2.44 | 43.62 ± 1.89 44.10 ± 2.44 | 44.07 ± 1.59 44.73 ± 2.39 | 45.36 ± 1.27 * 45.79 ± 3.18 * |
Ret(%) | DAA C | 8.57 ± 4.27 10.05 ± 2.35 | 10.80 ± 3.69 11.96 ± 3.23 | 13.24 ± 2.89 ** 14.58 ± 3.39 *** | 16.44 ± 4.06 *** 17.66 ± 3.36 *** |
AUC T | DAA C | 9981.4 ± 2398.5 8544.1 ± 1469.3 | |||
AUC fT | DAA C | 223.9 ± 44.2 224.6 ± 79.3 | |||
AUC C | DAA C | 250.4 ± 12.4 255.1 ± 28.3 | |||
AUC LH | DAA C | 81.1 ± 13.52 77.1 ± 23.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Płoszczyca, K.; Czuba, M.; Zakrzeska, A.; Gajda, R. The Effects of Six-Gram D-Aspartic Acid Supplementation on the Testosterone, Cortisol, and Hematological Responses of Male Boxers Subjected to 11 Days of Nocturnal Exposure to Normobaric Hypoxia. Nutrients 2024, 16, 76. https://doi.org/10.3390/nu16010076
Płoszczyca K, Czuba M, Zakrzeska A, Gajda R. The Effects of Six-Gram D-Aspartic Acid Supplementation on the Testosterone, Cortisol, and Hematological Responses of Male Boxers Subjected to 11 Days of Nocturnal Exposure to Normobaric Hypoxia. Nutrients. 2024; 16(1):76. https://doi.org/10.3390/nu16010076
Chicago/Turabian StylePłoszczyca, Kamila, Miłosz Czuba, Agnieszka Zakrzeska, and Robert Gajda. 2024. "The Effects of Six-Gram D-Aspartic Acid Supplementation on the Testosterone, Cortisol, and Hematological Responses of Male Boxers Subjected to 11 Days of Nocturnal Exposure to Normobaric Hypoxia" Nutrients 16, no. 1: 76. https://doi.org/10.3390/nu16010076
APA StylePłoszczyca, K., Czuba, M., Zakrzeska, A., & Gajda, R. (2024). The Effects of Six-Gram D-Aspartic Acid Supplementation on the Testosterone, Cortisol, and Hematological Responses of Male Boxers Subjected to 11 Days of Nocturnal Exposure to Normobaric Hypoxia. Nutrients, 16(1), 76. https://doi.org/10.3390/nu16010076