Stepwise Discovery of Insulin Effects on Amino Acid and Protein Metabolism
Abstract
:1. Introduction
2. Early Studies on Human Amino Acid Metabolism
3. The Effects of Insulin on Organ Amino Acid Exchange
4. Whole-Body Amino Acid and Protein Kinetic Studies
5. Organ and Tissue Protein Kinetic Studies
6. Extending in Vivo Kinetic Studies to Molecular Mechanism(s) of the Anabolic Action of Insulin
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Bliss, M. The Discovery of Insulin; University of Toronto Press: Toronto, ON, Canada, 1982. [Google Scholar]
- Ionescu-Tirgoviste, C.; Buda, O.; Paulescu, N.C. The first explicit description of the internal secretion of the pancreas. Acta Med.-Hist. Adriat. 2017, 15, 303–322. [Google Scholar] [CrossRef] [PubMed]
- Atchley, D.W.; Loeb, R.F.; Richards, D.W.; Benedict, E.M.; Driscoll, M.E. ON DIABETIC ACIDOSIS: A Detailed Study of Electrolyte Balances Following the Withdrawal and Reestablishment of Insulin Therapy. J. Clin. Investig. 1933, 12, 297–326. [Google Scholar] [CrossRef] [PubMed]
- Felig, P.; Marliss, E.; Ohman, J.L.; Cahill, C.F., Jr. Plasma amino acid levels in diabetic ketoacidosis. Diabetes 1970, 19, 727–728. [Google Scholar] [CrossRef]
- Walsh, C.H.; Soler, N.G.; James, H. Studies in whole body potassium and whole body nitrogen in newly diagnosed diabetics. Q. J. Med. 1976, 45, 285–301. [Google Scholar]
- Cahill, G.F. Physiology of insulin in man. Diabetes 1971, 20, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Best, C.H. Insulin: The Banting Memorial Lecture. Diabetes 1952, 1, 257–297. [Google Scholar] [CrossRef]
- Kimball, S.R.; Flaim, K.E.; Peavy, D.E.; Jefferson, L.S. Protein Metabolism. In Diabetes Mellitus, Theory and Practice; Ellemberg, M., Rifkin, M., Eds.; Elsevier: New York, NY, USA; Amsterdam, The Netherlands; London, UK, 1989; pp. 41–50. [Google Scholar]
- Edgerton, D.S.; Cardin, S.; Pan, C.; Neal, D.; Farmer, B.; Converse, M.; Cherrington, A.D. Effects of insulin deficiency or excess on hepatic gluconeogenic flux during glycogenolytic inhibition in the conscious dog. Diabetes 2002, 51, 3151–3162. [Google Scholar] [CrossRef]
- Tamborlane, W.V.; Sherwin, R.S.; Genel, M.; Felig, P. Restoration of normal lipid and amino acid metabolism in diabetic patients treated with a portable insulin-infusion pump. Lancet 1979, 313, 1258–1261. [Google Scholar] [CrossRef]
- Huszar, G.; Koivisto, V.; Davis, E.; Felig, P. Urinary 3-methylhistidine excretion in juvenile-onset diabetics: Evidence of increased protein catabolism in the absence of ketoacidosis. Metabolism 1982, 31, 188–191. [Google Scholar] [CrossRef]
- Fukagawa, N.K.; Minaker, K.L.; Young, V.R.; Rowe, J.W. Insulin dose-dependent reductions in plasma amino acids in man. Am. J. Physiol. 1986, 250 Pt 1, E13–E17. [Google Scholar] [CrossRef]
- Tessari, P.; Trevisan, R.; Inchiostro, S.; Biolo, G.; Nosadini, R.; De Kreutzenberg, S.V.; Duner, E.; Tiengo, A.; Crepaldi, G. Dose-response curves of effects of insulin on leucine kinetics in humans. Am. J. Physiol. 1986, 251 Pt 1, E334–E342. [Google Scholar] [CrossRef] [PubMed]
- Alverstrand, A.; DeFronzo, R.A.; Smith, K.; Wahren, J. Influence of hyperinsulinemia on intracellular amino acid levels and amino acid exchange across splanchnic and leg tissues in uremia. Clin. Sci. 1988, 74, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Longo, N.; Franchi-Gazzola, R.; Bussolati, O.; Dall’Asta, V.; Foà, P.P.; Guidotti, G.G.; Gazzola, G.C. Effect of insulin on the activity of amino acid transport systems in cultured human fibroblasts. Biochim. Biophys. Acta 1985, 844, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Kashiwagi, H.; Yamazaki, K.; Takekuma, Y.; Ganapathy, V.; Sugawara, M. Regulatory mechanisms of SNAT2, an amino acid transporter, in L6 rat skeletal muscle cells by insulin, osmotic shock and amino acid deprivation. Amino Acids 2009, 36, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Fajans, S.S.; Floyd, J.C., Jr.; Knopf, R.F.; Conn, F.W. Effect of amino acids and proteins on insulin secretion in man. Recent Prog. Horm. Res. 1967, 23, 617–662. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, L.S.; Hagenfeldt, L.; Felig, P.; Wahren, J. Leucine uptake by splanchnic and leg tissues in man: Relative independence of insulin levels. Clin. Sci. 1983, 65, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Wahren, J.; Felig, P.; Cerasi, E.; Luft, R. Splanchnic and peripheral glucose and amino acid metabolism in diabetes mellitus. J. Clin. Invest. 1972, 51, 1870–1878. [Google Scholar] [CrossRef]
- Matthews, D.E. An Overview of Phenylalanine and Tyrosine Kinetics in Humans. J. Nutr. 2007, 137 (Suppl. S1), 1549S–1575S. [Google Scholar] [CrossRef]
- Fukagawa, N.K.; Ajami, A.M.; Young, V.R. Plasma methionine and cysteine kinetics in response to an intravenous glutathione infusion in adult humans. Am. J. Physiol. 1996, 270 Pt 1, E209–E214. [Google Scholar] [CrossRef]
- Tessari, P.; Kiwanuka, E.; Coracina, A.; Zaramella, M.; Vettore, M.; Valerio, A.; Garibotto, G. Insulin in methionine and homocysteine kinetics in healthy humans: Plasma vs. intracellular models. Am. J. Physiol. Endocrinol. Metab. 2005, 288, E1270–E1276. [Google Scholar] [CrossRef]
- Meguid, M.M.; Matthews, D.E.; Bier, D.M.; Meredith, C.N.; Young, V.R. Valine kinetics at graded valine intakes in young men. Am. J. Clin. Nutr. 1986, 43, 781–786. [Google Scholar] [CrossRef] [PubMed]
- Nygren, J.; Nair, K.S. Differential Regulation of Protein Dynamics in Splanchnic and Skeletal Muscle Beds by Insulin and Amino Acids in Healthy Human Subjects. Diabetes 2003, 52, 1377–1385. [Google Scholar] [CrossRef] [PubMed]
- Bennet, W.M.; Connacher, A.A.; Jung, R.T.; Stehle, P.; Rennie, M.J. Effects of insulin and amino acids on leg protein turnover in IDDM patients. Diabetes 1991, 40, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Tessari, P.; Nosadini, R.; Trevisan, R.; De Kreutzenberg, S.V.; Inchiostro, S.; Duner, E.; Biolo, G.; Marescotti, M.C.; Tiengo, A.; Crepaldi, G. Defective suppression by insulin of leucine-carbon appearance and oxidation in type 1, insulin-dependent diabetes mellitus. Evidence for insulin resistance involving glucose and amino acid metabolism. J. Clin. Investig. 1986, 77, 1797–1804. [Google Scholar] [CrossRef] [PubMed]
- Tessari, P.; Biolo, G.; Inchiostro, S.; Saccà, L.; Nosadini, R.; Boscarato, M.T.; Trevisan, R.; De Kreutzenberg, S.V.; Tiengo, A. Effects of insulin on whole body and forearm leucine and KIC metabolism in type 1 diabetes. Am. J. Physiol. 1990, 259 Pt 1, E96–E103. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.K.; Ford, C.G.; Halliday, D. Effect of intravenous insulin treatment on in vivo whole body leucine kinetics and oxygen consumption in insulin-deprived type 1 diabetic patients. Metabolism 1987, 36, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Luzi, L.; Castellino, P.; Simonson, D.C.; Petrides, A.S.; DeFronzo, R.A. Leucine metabolism in IDDM. Role of insulin and substrate availability. Diabetes 1990, 39, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Umpleby, A.M.; Boroujerdi, M.A.; Brown, P.M.; Carson, E.R.; Sönsken, P.H. The effect of metabolic control on leucine metabolism in type 1 (insulin-dependent) diabetic patients. Diabetologia 1986, 29, 131–141. [Google Scholar] [CrossRef]
- Tessari, P.; Pehling, G.; Nissen, S.L.; Gerich, J.E.; Service, F.J.; Rizza, R.A.; Haymond, M.W. Regulation of whole-body leucine metabolism with insulin during mixed meal absorption in normal and diabetic humans. Diabetes 1988, 37, 512–516. [Google Scholar] [CrossRef]
- Jahoor, F.; Shangraw, R.E.; Miyoshi, H.; Wallfish, H.; Herndon, N.; Wolfe, R.R. Role of insulin and glucose oxidation in mediating the protein catabolism of burns and sepsis. Am. J. Physiol. 1989, 257, E323–E331. [Google Scholar] [CrossRef]
- Denne, S.C.; Litchely, E.A.; Liu, Y.M.; Brechtel, G.; Baron, A.D. Proteolysis in skeletal muscle and whole body in response to euglycemic hyperinsulinemia in normal adults. Am. J. Physiol. 1981, 261, E809–E814. [Google Scholar] [CrossRef] [PubMed]
- De Feo, P.; Gan Gaisano, M.; Haymond, M.W. Differential effects of insulin deficiency on albumin and fibrinogen synthesis in humans. J. Clin. Investig. 1991, 88, 833–840. [Google Scholar] [CrossRef] [PubMed]
- Tessari, P.; Inchiostro, S.; Biolo, G.; Trevisan, R.; Fantin, G.; Marescotti, M.C.; Iori, E.; Tiengo, A.; Crepaldi, G. Differential effects of hyperinsulinemia and hyperaminoacidemia on leucine-carbon metabolism in vivo: Evidence for distinct mechanisms in regulation of net amino acid deposition. J. Clin. Investig. 1987, 79, 1062–1069. [Google Scholar] [CrossRef] [PubMed]
- Bennet, W.M.; Connacher, A.A.; Scrimgeour, C.M.; Smith, K.; Rennie, M.J. Increase in anterior tibialis muscle protein synthesis in healthy man during mixed amino acid infusion: Studies of incorporation of [1–13C]leucine. Clin. Sci. 1989, 76, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Pacy, P.J.; Nair, K.S.; Ford, C.; Halliday, D. Failure of insulin infusion to stimulate fractional muscle protein synthesis in type I diabetic patients. Anabolic effect of insulin and decreased proteolysis. Diabetes 1989, 38, 618–624. [Google Scholar] [CrossRef]
- Heslin, M.J.E.; Newman, E.; Wolf, R.F.; Pisters, P.W.T. Effect of hyperinsulinemia on whole body and skeletal muscle leucine carbon kinetics in humans. Am. J. Physiol. 1992, 262, E911–E918. [Google Scholar] [CrossRef]
- Flakoll, P.J.; Kulaylat, M.; Frexes-Steed, M.; Hourani, H.; Brown, L.; Hill, J.O.; Abumrad, N.N. Amino acids augment insulin’s suppression of whole body proteolysis. Am. J. Physiol. 1989, 257, E939–E947. [Google Scholar] [CrossRef]
- Castellino, P.; Luzi, L.; Simonson, D.C.; Haymond, M.W.; DeFronzo, R.A. Effect of insulin and plasma amino acid concentration on leucine metabolism in man: Role of substrate availability on estimates of whole body protein synthesis. J. Clin. Investig. 1987, 80, 1784–1793. [Google Scholar] [CrossRef]
- Bennet, W.M.; Connacher, A.A.; Scrimgeour, C.M.; Jung, R.T.; Rennie, M.J. Euglycemic hyperinsulinemia augments amino acid uptake by human leg tissues during hyperaminoacidemia. Am. J. Physiol. 1990, 259 Pt 1, E185–E194. [Google Scholar] [CrossRef]
- Biolo, G.; Declan Fleming, R.Y.; Wolfe, R.R. Physiologic hyperinsulinemia stimulates protein synthesis and enhances transport of selected amino acids in human skeletal muscle. J. Clin. Investig. 1995, 95, 811–819. [Google Scholar] [CrossRef]
- Gelfand, R.A.; Barrett, E.J. Effect of physiologic hyperinsulinemia on skeletal muscle protein synthesis and breakdown in man. J. Clin. Invest. 1987, 80, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Tessari, P.; Inchiostro, S.; Biolo, G.; Vincenti, E.; Sabadin, L. Effects of acute systemic hyperinsulinemia on forearm muscle proteolysis in healthy man. J. Clin. Investig. 1991, 88, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Meek, S.E.; Persson, M.; Ford, G.C.; Nair, K.S. Differential regulation of amino acid exchange and protein dynamics across splanchnic and skeletal muscle beds by insulin in healthy human subjects. Diabetes 1998, 47, 1824–1835. [Google Scholar] [CrossRef] [PubMed]
- Arfvidsson, B.; Zachrisson, H.; Möller-Loswick, A.C.; Hyltander, A.; Sandström, R.; Lundholm, K. Effect of systemic hyperinsulinemia on amino acid flux across human legs in postabsorptive state. Am. J. Physiol. 1991, 260 Pt 1, E46–E52. [Google Scholar] [CrossRef] [PubMed]
- Timmerman, K.L.; Lee, J.L.; Dreyer, H.C.; Dhanani, S.; Glynn, E.L.; Fry, C.S.; Drummond, M.J.; Sheffield-Moore, M.; Rasmussen, B.B.; Volpi, E. Insulin Stimulates Human Skeletal Muscle Protein Synthesis via an Indirect Mechanism Involving Endothelial-Dependent Vasodilation and Mammalian Target of Rapamycin Complex 1 Signaling. J. Clin. Endocrinol. Metab. 2010, 95, 3848–3857. [Google Scholar] [CrossRef] [PubMed]
- Tessari, P.; Coracina, A.; Puricelli, L.; Vettore, M.; Cosma, A.; Millioni, R.; Cecchet, D.; Avogaro, A.; Tiengo, A.; Kiwanuka, E. Acute effect of insulin on nitric oxide synthesis in humans: A precursor-product isotopic study. Am. J. Physiol. Endocrinol. Metab. 2007, 293, E776–E782. [Google Scholar] [CrossRef]
- Munro, H.N. Mammalian Protein Metabolism; Academic Press: New York, NY, USA; London, UK, 2014. [Google Scholar]
- Wahren, J.; Felig, P. Renal substrate exchange in human diabetes mellitus. Diabetes 1975, 24, 730–734. [Google Scholar] [CrossRef]
- Swe, M.T.; Pongchaidecha, A.; Chatsudthipong, V.; Chattipakorn, N.; Lungkaphin, A. Molecular signaling mechanisms of renal gluconeogenesis in nondiabetic and diabetic conditions. J. Cell Physiol. 2019, 234, 8134–8151. [Google Scholar] [CrossRef]
- Gerich, J.E. Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: Therapeutic implications. Diabet. Med. 2010, 27, 136–142. [Google Scholar] [CrossRef]
- Moller, N.; Jensen, M.D.; Rizza, R.A.; Andrews, J.C.; Nair, K.S. Renal amino acid, fat and glucose metabolism in type 1 diabetic and non-diabetic humans: Effects of acute insulin withdrawal. Diabetologia 2006, 49, 1901–1908. [Google Scholar] [CrossRef]
- Smith, C.B.; Deibler, G.E.; Eng, N.; Schmidt, K.; Sokoloff, L. Measurement of local cerebral protein synthesis in vivo: Influence of recycling of amino acids derived from protein degradation. Proc. Natl. Acad. Sci. USA 1988, 85, 9341–9345. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, B.B. Insulin Signaling and Action: Glucose, Lipids, Protein; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2015. [Google Scholar]
- Sandri, M. Protein breakdown in muscle wasting: Role of autophagy-lysosome and ubiquitin-proteasome. Int. J. Biochem. Cell Biol. 2013, 45, 2121–2129. [Google Scholar] [CrossRef] [PubMed]
- Rome, S.; Meugnier, E.; Vidal, H. The ubiquitin-proteasome pathway is a new partner for the control of insulin signaling. Curr. Opin. Clin. Nutr. Metab. Care 2004, 7, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Nystrom, F.H.; Quon, M.J. Insulin signaling: Metabolic pathways and mechanisms for specificity. Cell Signal 1999, 11, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Palsgaard, J.; Brown, A.E.; Jensen, M.; Borup, R.; Walker, M.; De Meyts, P. Insulin-like growth factor I (IGF-I) is a more potent regulator of gene expression than insulin in primary human myoblasts and myotubes. Growth Horm. IGF Res. 2009, 19, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Dibble, C.C.; Cantley, L.C. Regulation of mTORC1 by PI3K signaling. Trends Cell Biol. 2015, 25, 545–555. [Google Scholar] [CrossRef] [PubMed]
- James, H.A.; O’Neill, B.T.; Nair, K.S. Insulin Regulation of Proteostasis and Clinical Implications. Cell Metab. 2017, 26, 310–323. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Williams, M.; Terada, N.; Alessi, D.R.; Proud, C.G. Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. EMBO J. 2001, 20, 4370–4379. [Google Scholar] [CrossRef]
- Kimball, S.R.; Jurasinski, C.V.; Lawrence, J.C., Jr.; Jefferson, L.S. Insulin stimulates protein synthesis in skeletal muscle by enhancing the association of eIF-4E and eIF-4G. Am. J. Physiol. 1997, 272 Pt 1, C754–C759. [Google Scholar] [CrossRef]
- Lee, S.; Dong, H.H. FoxO integration of insulin signaling with glucose and lipid metabolism. Endocrinology 2017, 233, R67–R79. [Google Scholar] [CrossRef]
- O’Neill, B.T.; Bhardwaj, G.; Penniman, C.M.; Krumpoch, M.T.; Suarez Beltran, P.A.; Klaus, K.; Poro, K.; Li, M.; Pan, H.; Dreyfuss, M.J.; et al. FoxO Transcription Factors Are Critical Regulators of Diabetes-Related Muscle Atrophy. Diabetes 2019, 68, 556–570. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Pocai, A.; Rossetti, L.; Depinho, R.A.; Accili, D. Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver. Cell Metab. 2007, 6, 208–216. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, B.T.; Lee, K.Y.; Klaus, K.; Softic, S.; Krumpoch, M.T.; Fentz, J.; Stanford, K.I.; Robinson, M.M.; Cai, W.; Kleinridders, A.; et al. Insulin and IGF-1 receptors regulate FoxO-mediated signaling in muscle proteostasis. J. Clin. Invest. 2016, 126, 3433–3446. [Google Scholar] [CrossRef] [PubMed]
Parameter | Methodology | Year |
---|---|---|
“Melting down of the flesh into urine” | Aretaeus description | ≈200 a.C. |
Blood urea concentration and urine urea excretion in experimental diabetes | Measurements in the diabetic condition and after correction by a pancreatic extract | 1916 |
Electrolyte balances w/o and with insulin | Analytical methods | 1933 |
Plasma amino acid pattern and concentration | Plasma measurements | 1970 |
In vivo organ balance catheterization studies | Organ arterial–venous catheterization | 1971 |
Insulin signaling on tissue protein turnover | Intracellular mediators | 1982 |
Whole-body proteolysis and protein synthesis | Amino acid turnover studies | 1984 |
Handling of mixed meals by dual isotope techniques | Intravenous and oral amino acid isotope administration | 1988 |
Muscle-protein synthesis | Isotope infusion, arterial–venous leg catheterization, and muscle biopsy | 1990 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tessari, P. Stepwise Discovery of Insulin Effects on Amino Acid and Protein Metabolism. Nutrients 2024, 16, 119. https://doi.org/10.3390/nu16010119
Tessari P. Stepwise Discovery of Insulin Effects on Amino Acid and Protein Metabolism. Nutrients. 2024; 16(1):119. https://doi.org/10.3390/nu16010119
Chicago/Turabian StyleTessari, Paolo. 2024. "Stepwise Discovery of Insulin Effects on Amino Acid and Protein Metabolism" Nutrients 16, no. 1: 119. https://doi.org/10.3390/nu16010119
APA StyleTessari, P. (2024). Stepwise Discovery of Insulin Effects on Amino Acid and Protein Metabolism. Nutrients, 16(1), 119. https://doi.org/10.3390/nu16010119