Comparing Lifestyle Modifications and the Magnitude of Their Associated Benefit on Cancer Mortality
Abstract
1. Introduction
2. Methods
3. Specific Foods and Cancer Mortality
3.1. Red Meat
3.2. Dietary Fiber
3.3. Nuts
3.4. Whole Grains
3.5. Fruits and Vegetables
3.6. Other Foods
3.7. A Grain of Salt
4. Exercise and Cancer Mortality
4.1. Cardiorespiratory Fitness
4.2. Other Metrics of Physical Health: Strength and Physical Activity
5. Obesity
6. After Thoughts: Lifestyle Interventions after a Diagnosis of Cancer
7. Discussion
Limitations
8. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ligibel, J.A.; Bohlke, K.; May, A.M.; Clinton, S.K.; Demark-Wahnefried, W.; Gilchrist, S.C.; Irwin, M.L.; Late, M.; Mansfield, S.; Marshall, T.F.; et al. Exercise, Diet, and Weight Management During Cancer Treatment: ASCO Guideline. J. Clin. Oncol. 2022, 40, 2491–2507. [Google Scholar] [CrossRef]
- World Cancer Research Fund. American Institute for Cancer Research: Diet, Nutrition, Physical Activity and Cancer: A Global Perspective. Continuous Update Project. Report 2018. Available online: dietandcancerreport.org (accessed on 12 January 2023).
- Hu, F.B.; Rimm, E.; Smith-Warner, S.A.; Feskanich, D.; Stampfer, M.J.; Ascherio, A.; Sampson, L.; Willett, W.C. Reproducibility and validity of dietary patterns assessed with a food-frequency questionnaire. Am. J. Clin. Nutr. 1999, 69, 243–249. [Google Scholar] [CrossRef][Green Version]
- Willett, W.C.; Sampson, L.; Stampfer, M.J.; Rosner, B.; Bain, C.; Witschi, J.; Hennekens, C.H.; Speizer, F.E. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am. J. Epidemiol. 1985, 122, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Andersen, L.F.; Tomten, H.; Haggarty, P.; Løvø, A.; Hustvedt, B.E. Validation of energy intake estimated from a food frequency questionnaire: A doubly labelled water study. Eur. J. Clin. Nutr. 2003, 57, 279–284. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Okubo, H.; Sasaki, S.; Rafamantanantsoa, H.H.; Ishikawa-Takata, K.; Okazaki, H.; Tabata, I. Validation of self-reported energy intake by a self-administered diet history questionnaire using the doubly labeled water method in 140 Japanese adults. Eur. J. Clin. Nutr. 2008, 62, 1343–1350. [Google Scholar] [CrossRef]
- Sawaya, A.L.; Tucker, K.; Tsay, R.; Willett, W.; Saltzman, E.; Dallal, G.E.; Roberts, S.B. Evaluation of four methods for determining energy intake in young and older women: Comparison with doubly labeled water measurements of total energy expenditure. Am. J. Clin. Nutr. 1996, 63, 491–499. [Google Scholar] [CrossRef][Green Version]
- Ioannidis, J.P.A. The Challenge of Reforming Nutritional Epidemiologic Research. JAMA 2018, 320, 969–970. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef] [PubMed]
- Stroup, D.F.; Berlin, J.A.; Morton, S.C.; Olkin, I.; Williamson, G.D.; Rennie, D.; Moher, D.; Becker, B.J.; Sipe, T.A.; Thacker, S.B. Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000, 283, 2008–2012. [Google Scholar] [CrossRef] [PubMed]
- Brooke, B.S.; Schwartz, T.A.; Pawlik, T.M. MOOSE Reporting Guidelines for Meta-analyses of Observational Studies. JAMA Surg. 2021, 156, 787–788. [Google Scholar] [CrossRef]
- Wang, X.; Lin, X.; Ouyang, Y.Y.; Liu, J.; Zhao, G.; Pan, A.; Hu, F.B. Red and processed meat consumption and mortality: Dose-response meta-analysis of prospective cohort studies. Public Health Nutr. 2016, 19, 893–905. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kim, Y.; Je, Y. Dietary fibre intake and mortality from cardiovascular disease and all cancers: A meta-analysis of prospective cohort studies. Arch. Cardiovasc. Dis. 2016, 109, 39–54. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Park, Y.; Subar, A.F.; Hollenbeck, A.; Schatzkin, A. Dietary fiber intake and mortality in the NIH-AARP diet and health study. Arch. Intern. Med. 2011, 171, 1061–1068. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Grosso, G.; Yang, J.; Marventano, S.; Micek, A.; Galvano, F.; Kales, S.N. Nut consumption on all-cause, cardiovascular, and cancer mortality risk: A systematic review and meta-analysis of epidemiologic studies. Am. J. Clin. Nutr. 2015, 101, 783–793. [Google Scholar] [CrossRef][Green Version]
- Hshieh, T.T.; Petrone, A.B.; Gaziano, J.M.; Djoussé, L. Nut consumption and risk of mortality in the Physicians’ Health Study. Am. J. Clin. Nutr. 2015, 101, 407–412. [Google Scholar] [CrossRef][Green Version]
- Bao, Y.; Han, J.; Hu, F.B.; Giovannucci, E.L.; Stampfer, M.J.; Willett, W.C.; Fuchs, C.S. Association of nut consumption with total and cause-specific mortality. N. Engl. J. Med. 2013, 369, 2001–2011. [Google Scholar] [CrossRef][Green Version]
- Chen, G.C.; Tong, X.; Xu, J.Y.; Han, S.F.; Wan, Z.X.; Qin, J.B.; Qin, L.Q. Whole-grain intake and total, cardiovascular, and cancer mortality: A systematic review and meta-analysis of prospective studies. Am. J. Clin. Nutr. 2016, 104, 164–172. [Google Scholar] [CrossRef][Green Version]
- Wang, X.; Ouyang, Y.; Liu, J.; Zhu, M.; Zhao, G.; Bao, W.; Hu, F.B. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2014, 349, g4490. [Google Scholar] [CrossRef][Green Version]
- Zhang, Z.; Chen, G.C.; Qin, Z.Z.; Tong, X.; Li, D.P.; Qin, L.Q. Poultry and Fish Consumption in Relation to Total Cancer Mortality: A Meta-Analysis of Prospective Studies. Nutr. Cancer 2018, 70, 204–212. [Google Scholar] [CrossRef]
- Kappeler, R.; Eichholzer, M.; Rohrmann, S. Meat consumption and diet quality and mortality in NHANES III. Eur. J. Clin. Nutr. 2013, 67, 598–606. [Google Scholar] [CrossRef]
- Lu, W.; Chen, H.; Niu, Y.; Wu, H.; Xia, D.; Wu, Y. Dairy products intake and cancer mortality risk: A meta-analysis of 11 population-based cohort studies. Nutr. J. 2016, 15, 91. [Google Scholar] [CrossRef][Green Version]
- Zargarzadeh, N.; Mousavi, S.M.; Santos, H.O.; Aune, D.; Hasani-Ranjbar, S.; Larijani, B.; Esmaillzadeh, A. Legume Consumption and Risk of All-Cause and Cause-Specific Mortality: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Adv. Nutr. 2023, 14, 64–76. [Google Scholar] [CrossRef] [PubMed]
- van den Brandt, P.A. Red meat, processed meat, and other dietary protein sources and risk of overall and cause-specific mortality in The Netherlands Cohort Study. Eur. J. Epidemiol. 2019, 34, 351–369. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mousavi, S.M.; Zargarzadeh, N.; Rigi, S.; Persad, E.; Pizarro, A.B.; Hasani-Ranjbar, S.; Larijani, B.; Willett, W.C.; Esmaillzadeh, A. Egg Consumption and Risk of All-Cause and Cause-Specific Mortality: A Systematic Review and Dose-Response Meta-analysis of Prospective Studies. Adv. Nutr. 2022, 13, 1762–1773. [Google Scholar] [CrossRef]
- Zhuang, P.; Wu, F.; Mao, L.; Zhu, F.; Zhang, Y.; Chen, X.; Jiao, J.; Zhang, Y. Egg and cholesterol consumption and mortality from cardiovascular and different causes in the United States: A population-based cohort study. PLoS Med. 2021, 18, e1003508. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, R.; Wang, B.; Zhao, C.; Zhu, B.; Tian, X. The Dose-Response Associations of Sugar-Sweetened Beverage Intake with the Risk of Stroke, Depression, Cancer, and Cause-Specific Mortality: A Systematic Review and Meta-Analysis of Prospective Studies. Nutrients 2022, 14, 777. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.S.; Li, Y.; Pan, A.; De Koning, L.; Schernhammer, E.; Willett, W.C.; Hu, F.B. Long-Term Consumption of Sugar-Sweetened and Artificially Sweetened Beverages and Risk of Mortality in US Adults. Circulation 2019, 139, 2113–2125. [Google Scholar] [CrossRef]
- Schmid, D.; Leitzmann, M.F. Cardiorespiratory fitness as predictor of cancer mortality: A systematic review and meta-analysis. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2015, 26, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Farrell, S.W.; Cortese, G.M.; LaMonte, M.J.; Blair, S.N. Cardiorespiratory fitness, different measures of adiposity, and cancer mortality in men. Obesity 2007, 15, 3140–3149. [Google Scholar] [CrossRef][Green Version]
- Farrell, S.W.; Finley, C.E.; McAuley, P.A.; Frierson, G.M. Cardiorespiratory fitness, different measures of adiposity, and total cancer mortality in women. Obesity 2011, 19, 2261–2267. [Google Scholar] [CrossRef]
- López-Bueno, R.; Andersen, L.L.; Koyanagi, A.; Núñez-Cortés, R.; Calatayud, J.; Casaña, J.; Del Pozo Cruz, B. Thresholds of handgrip strength for all-cause, cancer, and cardiovascular mortality: A systematic review with dose-response meta-analysis. Ageing Res. Rev. 2022, 82, 101778. [Google Scholar] [CrossRef]
- Li, T.; Wei, S.; Shi, Y.; Pang, S.; Qin, Q.; Yin, J.; Deng, Y.; Chen, Q.; Wei, S.; Nie, S.; et al. The dose-response effect of physical activity on cancer mortality: Findings from 71 prospective cohort studies. Br. J. Sport. Med. 2016, 50, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Petrelli, F.; Cortellini, A.; Indini, A.; Tomasello, G.; Ghidini, M.; Nigro, O.; Salati, M.; Dottorini, L.; Iaculli, A.; Varricchio, A.; et al. Association of Obesity with Survival Outcomes in Patients with Cancer: A Systematic Review and Meta-analysis. JAMA Netw. Open 2021, 4, e213520. [Google Scholar] [CrossRef]
- Pepin, A.; Stanhope, K.L.; Imbeault, P. Are Fruit Juices Healthier Than Sugar-Sweetened Beverages? A Review. Nutrients 2019, 11, 1006. [Google Scholar] [CrossRef][Green Version]
- Pan, A.; Sun, Q.; Bernstein, A.M.; Schulze, M.B.; Manson, J.E.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Red meat consumption and mortality: Results from 2 prospective cohort studies. Arch. Intern. Med. 2012, 172, 555–563. [Google Scholar] [CrossRef][Green Version]
- Wu, H.; Flint, A.J.; Qi, Q.; van Dam, R.M.; Sampson, L.A.; Rimm, E.B.; Holmes, M.D.; Willett, W.C.; Hu, F.B.; Sun, Q. Association between dietary whole grain intake and risk of mortality: Two large prospective studies in US men and women. JAMA Intern. Med. 2015, 175, 373–384. [Google Scholar] [CrossRef]
- Calle, E.E.; Rodriguez, C.; Walker-Thurmond, K.; Thun, M.J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N. Engl. J. Med. 2003, 348, 1625–1638. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sinha, R.; Cross, A.J.; Graubard, B.I.; Leitzmann, M.F.; Schatzkin, A. Meat intake and mortality: A prospective study of over half a million people. Arch. Intern. Med. 2009, 169, 562–571. [Google Scholar] [CrossRef] [PubMed]
- Rohrmann, S.; Overvad, K.; Bueno-de-Mesquita, H.B.; Jakobsen, M.U.; Egeberg, R.; Tjønneland, A.; Nailler, L.; Boutron-Ruault, M.C.; Clavel-Chapelon, F.; Krogh, V.; et al. Meat consumption and mortality--results from the European Prospective Investigation into Cancer and Nutrition. BMC Med. 2013, 11, 63. [Google Scholar] [CrossRef]
- Whiteman, D.; Muir, J.; Jones, L.; Murphy, M.; Key, T. Dietary questions as determinants of mortality: The OXCHECK experience. Public Health Nutr. 1999, 2, 477–487. [Google Scholar] [CrossRef][Green Version]
- Lee, J.E.; McLerran, D.F.; Rolland, B.; Chen, Y.; Grant, E.J.; Vedanthan, R.; Inoue, M.; Tsugane, S.; Gao, Y.T.; Tsuji, I.; et al. Meat intake and cause-specific mortality: A pooled analysis of Asian prospective cohort studies. Am. J. Clin. Nutr. 2013, 98, 1032–1041. [Google Scholar] [CrossRef][Green Version]
- Chuang, S.C.; Norat, T.; Murphy, N.; Olsen, A.; Tjønneland, A.; Overvad, K.; Boutron-Ruault, M.C.; Perquier, F.; Dartois, L.; Kaaks, R.; et al. Fiber intake and total and cause-specific mortality in the European Prospective Investigation into Cancer and Nutrition cohort. Am. J. Clin. Nutr. 2012, 96, 164–174. [Google Scholar] [CrossRef][Green Version]
- Huang, T.; Xu, M.; Lee, A.; Cho, S.; Qi, L. Consumption of whole grains and cereal fiber and total and cause-specific mortality: Prospective analysis of 367,442 individuals. BMC Med. 2015, 13, 59. [Google Scholar] [CrossRef][Green Version]
- Johnsen, N.F.; Frederiksen, K.; Christensen, J.; Skeie, G.; Lund, E.; Landberg, R.; Johansson, I.; Nilsson, L.M.; Halkjær, J.; Olsen, A.; et al. Whole-grain products and whole-grain types are associated with lower all-cause and cause-specific mortality in the Scandinavian HELGA cohort. Br. J. Nutr. 2015, 114, 608–623. [Google Scholar] [CrossRef][Green Version]
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality—A systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef][Green Version]
- Yang, P.F.; Wang, C.R.; Hao, F.B.; Peng, Y.; Wu, J.J.; Sun, W.P.; Hu, J.J.; Zhong, G.C. Egg consumption and risks of all-cause and cause-specific mortality: A dose-response meta-analysis of prospective cohort studies. Nutr. Rev. 2022, 80, 1739–1754. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.B.; Jiang, Y.W.; Chen, J.X.; Xia, P.F.; Pan, A. Association of Consumption of Sugar-Sweetened Beverages or Artificially Sweetened Beverages with Mortality: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. Adv. Nutr. 2021, 12, 374–383. [Google Scholar] [CrossRef]
- Davidson, K.; McNaughton, L. Deep Water Running Training and Road Running Training Improve Vo2 max in Untrained Women. J. Strength Cond. Res. 2000, 14, 191–195. [Google Scholar] [CrossRef]
- Aspenes, S.T.; Nilsen, T.I.; Skaug, E.A.; Bertheussen, G.F.; Ellingsen, Ø.; Vatten, L.; Wisløff, U. Peak oxygen uptake and cardiovascular risk factors in 4631 healthy women and men. Med. Sci. Sport. Exerc. 2011, 43, 1465–1473. [Google Scholar] [CrossRef]
- Vainshelboim, B.; Chen, Z.; Lee, Y.N.; Sorayya, A.; Kokkinos, P.; Nead, K.T.; Chester, C.; Myers, J. Cardiorespiratory Fitness, Adiposity, and Cancer Mortality in Men. Obesity 2017, 25 (Suppl. S2), S66–S71. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Evenson, K.R.; Stevens, J.; Cai, J.; Thomas, R.; Thomas, O. The effect of cardiorespiratory fitness and obesity on cancer mortality in women and men. Med. Sci. Sport. Exerc. 2003, 35, 270–277. [Google Scholar] [CrossRef]
- Kampert, J.B.; Blair, S.N.; Barlow, C.E.; Kohl, H.W., 3rd. Physical activity, physical fitness, and all-cause and cancer mortality: A prospective study of men and women. Ann. Epidemiol. 1996, 6, 452–457. [Google Scholar] [CrossRef]
- Laukkanen, J.A.; Pukkala, E.; Rauramaa, R.; Mäkikallio, T.H.; Toriola, A.T.; Kurl, S. Cardiorespiratory fitness, lifestyle factors and cancer risk and mortality in Finnish men. Eur. J. Cancer 2010, 46, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Sawada, S.S.; Muto, T.; Tanaka, H.; Lee, I.M.; Paffenbarger, R.S., Jr.; Shindo, M.; Blair, S.N. Cardiorespiratory fitness and cancer mortality in Japanese men: A prospective study. Med. Sci. Sport. Exerc. 2003, 35, 1546–1550. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.S.M.; Vieira, A.R.; Aune, D.; Bandera, E.V.; Greenwood, D.C.; McTiernan, A.; Navarro Rosenblatt, D.; Thune, I.; Vieira, R.; Norat, T. Body mass index and survival in women with breast cancer-systematic literature review and meta-analysis of 82 follow-up studies. Ann. Oncol. 2014, 25, 1901–1914. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Izquierdo, M.; Pérez de Rojas, J.; Martínez-Ruiz, V.; Pérez-Gómez, B.; Sánchez, M.J.; Khan, K.S.; Jiménez-Moleón, J.J. Obesity as a Risk Factor for Prostate Cancer Mortality: A Systematic Review and Dose-Response Meta-Analysis of 280,199 Patients. Cancers 2021, 13, 4169. [Google Scholar] [CrossRef]
- Gupta, A.; Das, A.; Majumder, K.; Arora, N.; Mayo, H.G.; Singh, P.P.; Beg, M.S.; Singh, S. Obesity is Independently Associated with Increased Risk of Hepatocellular Cancer-related Mortality: A Systematic Review and Meta-Analysis. Am. J. Clin. Oncol. 2018, 41, 874–881. [Google Scholar] [CrossRef]
- Majumder, K.; Gupta, A.; Arora, N.; Singh, P.P.; Singh, S. Premorbid Obesity and Mortality in Patients with Pancreatic Cancer: A Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2016, 14, 355–368; quiz e332. [Google Scholar] [CrossRef][Green Version]
- Cao, Y.; Ma, J. Body mass index, prostate cancer-specific mortality, and biochemical recurrence: A systematic review and meta-analysis. Cancer Prev. Res. 2011, 4, 486–501. [Google Scholar] [CrossRef][Green Version]
- Hall, K.D.; Ayuketah, A.; Brychta, R.; Cai, H.; Cassimatis, T.; Chen, K.Y.; Chung, S.T.; Costa, E.; Courville, A.; Darcey, V.; et al. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metab. 2019, 30, 67–77.e3. [Google Scholar] [CrossRef][Green Version]
- Hall, K.D.; Farooqi, I.S.; Friedman, J.M.; Klein, S.; Loos, R.J.F.; Mangelsdorf, D.J.; O’Rahilly, S.; Ravussin, E.; Redman, L.M.; Ryan, D.H.; et al. The energy balance model of obesity: Beyond calories in, calories out. Am. J. Clin. Nutr. 2022, 115, 1243–1254. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, D.S.; Aronne, L.J.; Astrup, A.; de Cabo, R.; Cantley, L.C.; Friedman, M.I.; Heymsfield, S.B.; Johnson, J.D.; King, J.C.; Krauss, R.M.; et al. The carbohydrate-insulin model: A physiological perspective on the obesity pandemic. Am. J. Clin. Nutr. 2021, 114, 1873–1885. [Google Scholar] [CrossRef] [PubMed]
- De Cabo, R.; Mattson, M.P. Effects of Intermittent Fasting on Health, Aging, and Disease. N. Engl. J. Med. 2019, 381, 2541–2551. [Google Scholar] [CrossRef]
- Nencioni, A.; Caffa, I.; Cortellino, S.; Longo, V.D. Fasting and cancer: Molecular mechanisms and clinical application. Nat. Rev. Cancer 2018, 18, 707–719. [Google Scholar] [CrossRef] [PubMed]
- Holmes, M.D.; Chen, W.Y.; Feskanich, D.; Kroenke, C.H.; Colditz, G.A. Physical activity and survival after breast cancer diagnosis. JAMA 2005, 293, 2479–2486. [Google Scholar] [CrossRef][Green Version]
- Meyerhardt, J.A.; Giovannucci, E.L.; Holmes, M.D.; Chan, A.T.; Chan, J.A.; Colditz, G.A.; Fuchs, C.S. Physical activity and survival after colorectal cancer diagnosis. J. Clin. Oncol. 2006, 24, 3527–3534. [Google Scholar] [CrossRef]
- Kenfield, S.A.; Stampfer, M.J.; Giovannucci, E.; Chan, J.M. Physical activity and survival after prostate cancer diagnosis in the health professionals follow-up study. J. Clin. Oncol. 2011, 29, 726–732. [Google Scholar] [CrossRef]
- Schmid, D.; Leitzmann, M.F. Association between physical activity and mortality among breast cancer and colorectal cancer survivors: A systematic review and meta-analysis. Ann. Oncol. 2014, 25, 1293–1311. [Google Scholar] [CrossRef]
- Ibrahim, E.M.; Al-Homaidh, A. Physical activity and survival after breast cancer diagnosis: Meta-analysis of published studies. Med. Oncol. 2011, 28, 753–765. [Google Scholar] [CrossRef]
- Cao, C.; Friedenreich, C.M.; Yang, L. Association of Daily Sitting Time and Leisure-Time Physical Activity with Survival Among US Cancer Survivors. JAMA Oncol. 2022, 8, 395–403. [Google Scholar] [CrossRef]
- Brown, J.C.; Ma, C.; Shi, Q.; Fuchs, C.S.; Meyer, J.; Niedzwiecki, D.; Zemla, T.; Couture, F.; Kuebler, P.; Kumar, P.; et al. Physical Activity in Stage III Colon Cancer: CALGB/SWOG 80702 (Alliance). J. Clin. Oncol. 2023, 41, 243–254. [Google Scholar] [CrossRef]
- Groarke, J.D.; Payne, D.L.; Claggett, B.; Mehra, M.R.; Gong, J.; Caron, J.; Mahmood, S.S.; Hainer, J.; Neilan, T.G.; Partridge, A.H.; et al. Association of post-diagnosis cardiorespiratory fitness with cause-specific mortality in cancer. Eur. Heart J. Qual. Care Clin. Outcomes 2020, 6, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Jochems, S.H.J.; Van Osch, F.H.M.; Bryan, R.T.; Wesselius, A.; van Schooten, F.J.; Cheng, K.K.; Zeegers, M.P. Impact of dietary patterns and the main food groups on mortality and recurrence in cancer survivors: A systematic review of current epidemiological literature. BMJ Open 2018, 8, e014530. [Google Scholar] [CrossRef] [PubMed]
- Schwedhelm, C.; Boeing, H.; Hoffmann, G.; Aleksandrova, K.; Schwingshackl, L. Effect of diet on mortality and cancer recurrence among cancer survivors: A systematic review and meta-analysis of cohort studies. Nutr. Rev. 2016, 74, 737–748. [Google Scholar] [CrossRef][Green Version]
- Fuchs, M.A.; Sato, K.; Niedzwiecki, D.; Ye, X.; Saltz, L.B.; Mayer, R.J.; Mowat, R.B.; Whittom, R.; Hantel, A.; Benson, A.; et al. Sugar-sweetened beverage intake and cancer recurrence and survival in CALGB 89803 (Alliance). PLoS ONE 2014, 9, e99816. [Google Scholar] [CrossRef][Green Version]
- Goncalves, M.D.; Lu, C.; Tutnauer, J.; Hartman, T.E.; Hwang, S.K.; Murphy, C.J.; Pauli, C.; Morris, R.; Taylor, S.; Bosch, K.; et al. High-fructose corn syrup enhances intestinal tumor growth in mice. Science 2019, 363, 1345–1349. [Google Scholar] [CrossRef] [PubMed]
- Pekmezi, D.W.; Demark-Wahnefried, W. Updated evidence in support of diet and exercise interventions in cancer survivors. Acta Oncol. 2011, 50, 167–178. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rock, C.L.; Doyle, C.; Demark-Wahnefried, W.; Meyerhardt, J.; Courneya, K.S.; Schwartz, A.L.; Bandera, E.V.; Hamilton, K.K.; Grant, B.; McCullough, M.; et al. Nutrition and physical activity guidelines for cancer survivors. CA A Cancer J. Clin. 2012, 62, 243–274. [Google Scholar] [CrossRef][Green Version]
- Van Blarigan, E.L.; Meyerhardt, J.A. Role of physical activity and diet after colorectal cancer diagnosis. J. Clin. Oncol. 2015, 33, 1825–1834. [Google Scholar] [CrossRef][Green Version]
- Kohler, L.N.; Garcia, D.O.; Harris, R.B.; Oren, E.; Roe, D.J.; Jacobs, E.T. Adherence to Diet and Physical Activity Cancer Prevention Guidelines and Cancer Outcomes: A Systematic Review. Cancer Epidemiol. Biomark. Prev. 2016, 25, 1018–1028. [Google Scholar] [CrossRef][Green Version]
- Han, M.A.; Zeraatkar, D.; Guyatt, G.H.; Vernooij, R.W.M.; El Dib, R.; Zhang, Y.; Algarni, A.; Leung, G.; Storman, D.; Valli, C.; et al. Reduction of Red and Processed Meat Intake and Cancer Mortality and Incidence: A Systematic Review and Meta-analysis of Cohort Studies. Ann. Intern. Med. 2019, 171, 711–720. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Liu, L.; Wang, S.; Liu, J. Fiber consumption and all-cause, cardiovascular, and cancer mortalities: A systematic review and meta-analysis of cohort studies. Mol. Nutr. Food Res. 2015, 59, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Dai, C.; Zhou, L.; Li, Y.; Liu, K.; Deng, Y.J.; Li, N.; Zheng, Y.; Hao, Q.; Yang, S.; et al. Meta-analysis of the association between nut consumption and the risks of cancer incidence and cancer-specific mortality. Aging 2020, 12, 10772–10794. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Qie, R.; Shi, X.; Yang, Y.; Lu, J.; Hu, F.; Zhang, M.; Zhang, Z.; Hu, D.; Zhao, Y. Cardiorespiratory fitness and mortality from all causes, cardiovascular disease and cancer: Dose-response meta-analysis of cohort studies. Br. J. Sport. Med. 2022, 56, 733–739. [Google Scholar] [CrossRef]
- Van Dillen, S.M.; Noordman, J.; van Dulmen, S.; Hiddink, G.J. Examining the content of weight, nutrition and physical activity advices provided by Dutch practice nurses in primary care: Analysis of videotaped consultations. Eur. J. Clin. Nutr. 2014, 68, 50–56. [Google Scholar] [CrossRef] [PubMed][Green Version]
Lifestyle Factor Associated with Cancer Mortality | Hazard Ratio (95% CI) | Hazard Ratio Relative to _______ | Examples of Lifestyle Intervention to Derive Associated Cancer Mortality Benefit |
---|---|---|---|
Unprocessed Red Meat [12] | HR = 1.03 (0.95–1.13) | per daily serving | Reduction by: 1 large strip of bacon (~13 g/slice); 1 hot dog (45 g/frank); 2 slices of salami, bologna (~14 g/slice), per day. |
Processed Red Meat [12] | HR = 1.08 (1.06–1.11) * | per daily serving | One fewer 3-ounce steak (~85 g) per day. |
Total Red Meat [12] | HR = 1.12 (1.10–1.14) | per daily serving | One fewer of any combination of the examples given in the processed and unprocessed red meats sections per day. |
Fiber [13] | HR = 0.86 (0.79–0.93) | High vs. low (~25+ g/day vs. ~10 g/day [14]) | A daily meal plan of: a cup of oatmeal (5 g fiber) topped with a half cup of raspberries (4 g fiber) for breakfast plus an orange (3 g fiber) and a large handful (20 nuts) of almonds (3 g fiber) for lunch plus one cup of chopped broccoli (5 g fiber) over a cup of quinoa (5 g fiber) for dinner. |
Fiber [13] | HR = 0.94 (0.91–0.97) | per 10 g/day | An additional: 1 cup of canned baked beans; 2½ cups of Brussel sprouts; 3 large bananas; 5 slices of whole wheat bread, per day. |
Nuts [15] | HR = 0.86 (0.75–0.98) | High vs. low (Roughly > 5 servings per week vs. roughly < 1 serving per month/never [16,17]) | An additional: 115 almonds, 90 cashews, 70 walnuts, 95 pecans, 245 pistachios per week. |
Whole Grains [18] | HR = 0.82 (0.69–0.96) | per 50 g/day | An additional **: ⅔ cups of old-fashioned oats †; ¾ cup cooked quinoa (¼ uncooked) †; 3 slices of 100% whole wheat bread ‡; 3 cups of Cheerios ‡, per day. |
Vegetables [19] | HR = 0.99 (0.97–1.01) | per daily serving | N/A |
Fruit [19] | HR = 0.99 (0.97–1.00) | per daily serving | N/A |
Fish [20] | HR = 0.99 (0.94–1.05) | High vs. low (roughly 3×/week vs. <1×/month [21]) | N/A |
Poultry [20] | HR = 0.96 (0.93–1.00) | High vs. low (roughly 2×/week vs. <1×/month [21]) | N/A |
Total Dairy [22] | HR = 0.99 (0.92–1.07) | High vs. low (roughly ≥2×/day vs. <0.5/day) | N/A |
Legumes [23] | HR = 0.85 (0.72–1.01) | High vs. low (roughly 27.8 g/day vs. 0 g/day [24]) | N/A |
Eggs [25] | HR = 1.20 (1.04–1.39) | High vs. low (roughly half an egg/day vs. ≤3 egg/month [26]) | Decreasing egg consumption from 12 medium-sized eggs, or 4 omelets, per month to about 3 medium-sized eggs, or one omelet, per month. |
SSBs ◊ [27] | HR = 1.06 (1.01–1.12) | High vs. low (≥2 SSBs/day vs. <1 SSB/month [28]) | Decreasing consumption of two 12-ounce cans of soda (~80 g of sugar) per day to less than one 12-ounce can per month. |
CRF [29] | HR = 0.55 (0.47–0.65) | High vs. low (~13 METs vs. ~8.5 METs for men; ~12 METs vs. ~7 METs for women [30,31]) | Training a man who can sustain 6–7 min ® of ~12 min per mile pace (5 mph) to sustain 6–7 min of ~6-min per mile (10 mph); Training a woman who can sustain 6–7 min of ~13:20 min per mile pace (4.5 mph) to sustain 6–7 min of ~7:15-min per mile (8.3 mph). |
CRF [29] | HR = 0.80 (0.67–0.97) | Moderate vs. low (~11 METs vs. ~8.5 METs for men; ~9 METs vs. ~7 METs for women [30,31]) | Training a man who can sustain 6–7 min of ~12 min per mile pace (5 mph) to sustain 6–7 min of ~10-min per mile (6 mph); Training a woman who can sustain 6–7 min of ~13:20 min per mile pace (4.5 mph) to sustain 6–7 min of ~11:30-min per mile (5.2 mph). |
Hand grip [32] | HR = 1.27 (1.01–1.59) | Lowest third vs. highest third | Grip strength of roughly < 20 kg vs. >30 kg; this is the force exerted on a hand dynamometer. |
Hand grip [32] | HR = 1.12 (1.03–1.23) | Lowest third vs. middle third | Grip strength of roughly < 20 kg vs. roughly 20–30 kg; this is the force exerted on a hand dynamometer. |
Physical Activity € [33] | HR = 0.83 (0.79–0.87) | High vs. low (very roughly ≥ 25 MET-hours per week vs. little to no MET-hours per week) ¥ | ~1 h per day (7 h over a week) of walking at a moderate pace (3 mph); running at 10 min-per-mile pace for 30 min 5x/week; playing 2 rounds of golf per week (using a golf cart); 4 h per week of resistance training (lifting weights) plus 2 h per week of gardening plus 1 h of playing tennis. |
Physical Activity € [33] | HR = 0.88 (0.82–0.95) | 5 MET-hours per week vs. little to no MET-hours per week ¥ | ~1 h of a leisurely bike ride per week; gardening about two hours per week; ~2 h per week of casual walking. |
Obesity [34] | HR = 1.17 (1.12–1.23) | Obese (BMI ≥ 30) vs. non-obese (BMI < 30) | A 5′ 9” man, weighing 220 pounds (BMI 32.5), who loses 25 pounds (BMI 28.8). A 5′ 4” female, weighing 190 pounds (BMI 32.6), who loses 20 pounds (BMI 29.2). |
Epidemiological Factor | N | Follow-Up | Age | Adjusted Hazard Ratio (Second Quintile Compared to Lowest) | Raw NNT * (Second Quintile Compared to Lowest) | Interpretation of NNT | Adjusted Hazard Ratio (Highest Quintile Compared to Lowest) | Raw NNT * (Highest Quintile Compared to Lowest) | Interpretation of NNT |
---|---|---|---|---|---|---|---|---|---|
Total Red meat [36] | 37,698 | Up to 22 years | 40–75 (range) | 1.05 (0.94–1.18) † | 110 in favor of 0.62 servings per day vs. 0.22 servings per day | 110 men would have to eat 1 more small slice of bacon per day, over roughly 2 decades, to avoid one cancer death. | 1.24 (1.09–1.40) † | 73 in favor of 0.22 servings per day vs. 2.36 per day | 73 men would have to avoid 2 small slices of bacon for breakfast and one 3-ounce steak for diner per day, over roughly two decades, to avoid one cancer death. |
Fiber [14] | 219,123 | 9 years (mean) | 50–71 (62, mean) | 0.98 (0.91–1.04) † | 94 in favor of 16.4 g/day vs. 12.6 g/day | 94 men would need to increase their fiber intake by one medium sized apple per day, over 9 years, to avoid one cancer death. | 0.83 (0.76–0.92) † | 42 in favor of 29.4 g/day vs. 12.6 g/day | 42 men would have to increase their fiber intake by roughly 15 g (1 cup of lentils or 6 cups of broccoli) per day, over 9 years, to prevent one cancer death. |
Nuts [16] | 20,742 | 9.6 years (mean) | 66.6 (mean) | 0.91 (0.77–1.08) ‡ | 120 in favor of 1–3 servings per week vs. <1 serving per week | 120 men would need to increase their nut consumption by ~20 walnuts per day, over 10 years, to avoid one cancer death. | 0.87 (0.66–1.15) ‡ | 124 in favor of ≥5 servings per week versus <1 serving per week | 124 men would need to increase their nut consumption by ~70 walnuts per week, over 10 years, to avoid one cancer death. |
Whole Grains [37] | 51,529 | Up to 24 years | 53.2 (mean) | 1.01 (0.92–1.11) ‡ | 46 ◊ in favor of ~14 g/day vs. 5.8 g/day | 46 men would have to consume two-thirds of a cup of Cheerios per day over 24 years to avoid one cancer death. | 0.95 (0.86–1.05) ‡ | 34 ◊ in favor of 52.6 g/day vs. 5.8 g/day | 34 men would have to consume a little more than half a cup of oatmeal per day over 24 years to avoid one cancer death. |
CRF [30] | 38,410 | 17.2 years (mean) | 43.8 (mean) | 0.71 (0.60–0.85) † | 63 in favor of 10.2 maximal METs vs. 8.4 maximal METs | If 63 men, who can currently run 12-min-per-mile pace for 6–7 consecutive minutes, improve their fitness as to be able to sustain 10-min-per-mile pace for the same 6–7 min, one cancer death will be prevented over 17 years. | 0.53 (0.43–0.67) † | 35 in favor of 14.9 maximal METs vs. 8.4 maximal METs | If 35 men, who can currently run 12-min-per-mile pace for 6–7 consecutive minutes, improve their fitness as to be able to sustain 6-min-per-mile pace for the same 6–7 min, one cancer death will be prevented over 17 years. |
Obesity [38] | 107,030 | 16 years | 57 (mean) | 1.11 (1.05–1.18) ¥ | 144 in favor of normal weight (BMI 18.5–24.9) vs. overweight (BMI 25.0–29.9) | If 144 men who are 5′ 9” and weigh 190 pounds lose 30 pounds, one cancer death will be prevented over 16 years (note: a 160-pound man at the same height has a BMI of 23.6). | 1.38 (1.24–1.52) ¥ | 45 in favor of normal weight (BMI 18.5–24.9) vs. obese (BMI 30.0–34.9) | If 45 men who are 5′ 9” and weigh 220 pounds (BMI 32.5) lose 60 pounds, one cancer death will be prevented over 16 years (note: a 160-pound man at the same height has a BMI of 23.6). |
Epidemiological Factor | N | Follow-Up | Age | Adjusted Hazard Ratio (Second Quintile Compared to Lowest) | Raw NNT * (Second Quintile Compared to Lowest) | Interpretation of NNT | Adjusted Hazard Ratio (Highest Quintile Compared to Lowest) | Raw NNT * (Highest Quintile Compared to Lowest) | Interpretation of NNT |
---|---|---|---|---|---|---|---|---|---|
Total Red meat [36] | 83,644 | Up to 28 years | 34–59 (range) | 1.05 (0.97–1.14) † | 132 in favor of 1.04 servings per day vs. 0.53 per day | 132 women would have to eat 1 more slice of bacon per day, over roughly 2 decades, to avoid one cancer death. | 1.17 (1.08–1.24) † | 85 in favor of 0.53 servings per day vs. 3.10 per day | 85 women would have to avoid 2 pieces of salami for lunch and one 3-ounce steak for diner, per day, over roughly two decades, to avoid one cancer death. |
Fiber [14] | 168,999 | 9 years (mean) | 50–71 (62, mean) | 0.93 (0.85–1.01) ‡ | 69 in favor of 14.3 g/day vs. 10.8 g/day | 69 women would need to increase their fiber intake by one medium sized apple per day, over 9 years, to avoid one cancer death. | 0.96 (0.85–1.08) ‡ | 63 in favor of 25.8 g/day vs. 10.8 g/day | 63 women would have to increase their fiber intake by roughly 15 g (1 cup of lentil or 6 cups of broccoli) per day, over 9 years, to prevent one cancer death. |
Whole grains [37] | 121,700 | Up to 26 years | 50.2 (mean) | 1.02 (0.94–1.10) ‡ | 53 ◊ in favor of ~10 g/day vs. 4.3 g/day | 53 women would have to consume roughly two-thirds of a cup of Cheerios per day for 26 years to prevent one cancer death. | 0.99 (0.91–1.07) ‡ | 41 in favor of 35.6 g/day vs. 4.3 g/day | 41 women would have to consume a little over one third of a cup of oatmeal per day over 26 years to prevent one cancer death. |
CRF [31] | 14,256 | 15.2 years (mean) | 43.8 (mean) | 0.89 (0.67–1.18) ¥ | 61 in favor of moderate vs. low CRF (8.9 METs vs. 7.0) | If 61 women, who can currently run 12:30-min-per-mile pace for 6–7 consecutive minutes, improve their fitness as to be able to sustain 11:30-min-per-mile pace for the same 6–7 min, one cancer death will be prevented over 15 years. | 0.68 (0.47–0.97) ¥ | 40 in favor of high vs. low CRF (11.4 METs vs. 7.0) | If 40 women, who can currently run 12:30-min-per-mile pace for 6–7 consecutive minutes, improve their fitness as to be able to sustain 8:20-min-per-mile pace for the same 6–7 min, one cancer death will be prevented over 15 years. |
Obesity [38] | 276,564 | 16 years | 57 (mean) | 1.14 (1.09–1.18) † | 170 in favor of normal weight (BMI 18.5–24.9) vs. overweight (BMI 25.0–29.9) | If 170 women who are 5′ 4” and weigh 160 pounds (BMI 37.5) lose 25 pounds, one cancer death will be prevented over 16 years (note: a 140-pound woman at the same height has a BMI of 24.0). | 1.33 (1.25–1.41) † | 70 in favor of normal weight (BMI 18.5–24.9) vs. obese (BMI 30.0–34.9) | If 70 women who are 5′ 4” and weigh 190 pounds (BMI 37.5) lose 50 pounds, one cancer death will be prevented over 16 years (note: a 140-pound woman at the same height has a BMI of 24.0). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dougherty, T.P.; Meyer, J.E. Comparing Lifestyle Modifications and the Magnitude of Their Associated Benefit on Cancer Mortality. Nutrients 2023, 15, 2038. https://doi.org/10.3390/nu15092038
Dougherty TP, Meyer JE. Comparing Lifestyle Modifications and the Magnitude of Their Associated Benefit on Cancer Mortality. Nutrients. 2023; 15(9):2038. https://doi.org/10.3390/nu15092038
Chicago/Turabian StyleDougherty, Timothy P., and Joshua E. Meyer. 2023. "Comparing Lifestyle Modifications and the Magnitude of Their Associated Benefit on Cancer Mortality" Nutrients 15, no. 9: 2038. https://doi.org/10.3390/nu15092038
APA StyleDougherty, T. P., & Meyer, J. E. (2023). Comparing Lifestyle Modifications and the Magnitude of Their Associated Benefit on Cancer Mortality. Nutrients, 15(9), 2038. https://doi.org/10.3390/nu15092038