The Impact of Free Sugar on Human Health—A Narrative Review
Abstract
:1. Introduction
2. Background
2.1. Controversies
2.2. Trends in Sugar Consumption
2.3. Obesity
2.4. Diabetes
Authors and Year | Design | Timeframe/ Follow-Up | Subjects | Measures | Intervention/ Independent Variable | Findings |
---|---|---|---|---|---|---|
Ahmadi-Abhari et al., 2014. [138] | Case-control study. | 6.3y (mean) | Aged 40–79y; n = 749 diabetes cases; n = 3496 controls. | FFQ (total sugars, fructose, glucose, lactose, sucrose, maltose). Physical assessment | ↑ Fructose and glucose | ↓ Risk of T2DM |
Bazzano et al., 2008 [136]. | Prospective cohort study | 18y | Female registered nurses (NHS); aged 30–55y; n = 71,346 | FFQ (fruit juice, whole fruit, whole vegetables) Self-reported T2DM | ↑ Fruit juice | ↑ T2DM risk (Whole fruits and green leafy vegetables decreased T2DM risk) |
Bernstein et al., 2012 [145]. | Prospective cohort study | NHS: 28y HPFS: 22y | NHS: Women aged 30–55y; n = 84,085 HPFS: men aged 40–75y; n = 43,371 | FFQ (SSB = soft drinks, fruit juice) Self-reported T2DM | ↑ SSB | ↑ Stroke risk |
Colditz et al., 1992 [135]. | Prospective cohort study | 6y | Female registered nurses (NHS); aged 30–55y; n = 84,360 | FFQ (sucrose) Self-reported T2DM | Sucrose | -Sucrose was not related to T2DM risk. |
De Koning et al., 2012 [15]. | Prospective cohort study | 22y | Adult males; n = 42,883 | FFQ (SSB = SD, fruit punch, fruit drinks) Self-reported CHD Biomarkers (n = 18,225) | ↑ SSB | ↑ CHD risk ↑ TG ↑ Inflammatory markers ↓ HDL ↓ Leptin |
Dhingra et al., 2007 [41]. | Prospective cohort study | 4y (mean) | Adults (FHS); n = 6039 | FFQ (SD) | ↑ SD | ↑ MetS prevalence |
Drouin-Chartier et al., 2019 [29]. | Prospective cohort study | NHS: 1986–2012 NHS II: 1991–2013 HPFS: 1986–2012 | NHS: women aged 30–55y; n = 76,531 NHS II: women aged 25–42y; n = 81,597 HPFS: men aged 40–75y; n = 34,224 | FFQ (SSB = soft drinks, fruit juice) Self-reported T2DM | ↑ SSB | ↑ T2DM risk |
Eshak et al., 2012 [25]. | Prospective cohort study | 18y | Aged 40–59; n = 43,149) | FFQ (SD) Medical records | ↑ SD | ↑ Total stroke risk ↑ Ischaemic stroke risk in women ↓ Ischaemic stroke risk in men |
Eshak et al., 2013 [126]. | Prospective cohort study | 10y | Aged 40–59y; n = 27,585 | FFQ (soft drink, 100% fruit juice, vegetable juice) Self-reported T2DM | ↑ SD | ↑ T2DM risk in women -No relationship between fruit/vegetable juice and T2DM |
Fagherazzi et al., 2013 [30]. | Prospective cohort study | 14y | Adult women; n = 66,118 | FFQ (SSB) Self-reported T2DM | ↑ SSB | ↑ T2DM risk |
Ferreira-Pego et al., 2016 [42]. | Prospective cohort study | 3.24y (median) | Adults; n = 1868 | FFQ (SSB) Physical assessment | >5 servings SSB per week | ↑ MetS risk |
Fung et al., 2009 [16]. | Prospective cohort study | 24y | Adult females (NHS); n = 88,520 | FFQ (SSB) Medical records | ↑ SSB | ↑ CHD Incidence |
Haslam et al., 2020 [19]. | Prospective cohort study | 12.5y (mean) | FHS Offspring: n = 3146 FHS Third generation: n = 3584 | FFQ (SSB) Physical assessment | ↑ SSB | ↓ HDL ↑ TG |
Hirahatake et al., 2019 [31]. | Prospective cohort study | 30y | Aged 18–30; n = 4719 | FFQ (SSB) Interviews Pathology results | ↑ SSB | ↑ T2DM risk |
Huang et al., 2017 [32]. | Prospective cohort study | 8.4y (mean) | Adult females (aged 50–79 years; n = 64,850) | FFQ (SSB) Self-reported T2DM | ↑ SSB | ↑ T2DM risk |
Romaguera et al., 2013 [33] | Retrospective Case-Cohort study. | NA | Adults; n = 12,403 diabetes cases; n = 16,154 controls | FFQ (SD, juice, nectar) | ↑ SSB | ↑ T2DM risk |
Janket et al., 2003 [134]. | Prospective cohort study. | 6y (mean) | Aged 45 years and over; n = 38,480 | FFQ (sucrose, fructose, glucose, lactose) | Total sugar intake | No relationship between sugars and T2DM incidence. |
Janzi et al., 2020 [26]. | Prospective cohort study. | 19.5y (mean) | Adults; n = 16,781 | FFQ (Added sugar, SSB, sugary treats). Physical assessment Interview | ↑ SSB | ↑ Stroke risk |
↑ Added sugar | ↑ Stroke risk ↓ Aortic stenosis | |||||
↑ Sugary treats | ↓ Coronary events | |||||
Jebril et al., 2020 [121]. | Cross-sectional survey | NA | Adults; n = 1000 | FFQ (added sugar) Physical health assessment Medical records | Added sugar intake | -No relationship between sugar and diagnosed T2DM. -Positive relationship between sugar and undiagnosed T2DM. |
Larsson et al., 2014 [27]. | Prospective cohort study | 10.3y (mean) | Aged 44–83y; n = 68,459 | FFQ (SSB) Medical records/death register | ≥2 servings SSB per day | ↑ Total stroke ↑ Cerebral infarction |
Le et al., 2006 [20]. | Repeated measures experimental study. | 4 weeks | Adult males; (n = 7) | High-fructose diet (1.5 g/kg). | Fructose (1.5 g/kg) | ↑ LDL ↑ TG ↑ Leptin ↓ Non-esterified fatty acids -No change in insulin resistance |
Lowndes et al., 2015 [63]. | Randomised Parallel group study | 10 weeks | Aged 20–60y; BMI = 21–35 kg/m2; n = 198 (28–34 per study group) | Consumption of milk containing HFCS, fructose, glucose, and sucrose, contributing 18%, 9%, 9%, and 18% of energy intake compared to controls. | Fructose 9% | ↑ Insulin ↑ Hepatic insulin resistance ↑ Weight (for all sugar intervention groups) |
Maersk et al., 2012 [39]. | Randomised Parallel group study | 6 months | Overweight adults; aged 26–40 years; n = 47 (SD group, n = 10) | Dietary record Physical assessment | 1 Litre SD per day (50% glucose, 50% fructose) | ↑ Visceral adipose tissue ↑ Liver fat ↑ Skeletal muscle fat ↑ TG ↑ Total cholesterol |
Miao et al., 2021 [28] | Prospective cohort study | 16y (mean) | Adults (FHS); n = 1384 | FFQ (SSB) Hospital admission records | ↑ SSB | ↑ Stroke risk |
Montonen et al., 2007 [146]. | Prospective cohort study | 12y | Ages 40–60y; n = 4304 | FFQ (total sugars, fructose, glucose, lactose, sucrose, maltose). | ↑ Fructose and glucose | ↑ T2DM incidence |
O’Connor et al., 2015 [34]. | Prospective cohort study | 10.8y | Aged 40–79y; n = 25,639 | 7-day food diaries (SD, fruit juice, sweetened tea/coffee, sweetened milk) Self-reported T2DM Medical records | ↑ SD or sweetened milk drinks | ↑ T2DM risk (No effect of fruit juice or tea/coffee) |
Odegaard et al., 2010 [35]. | Prospective cohort study | 5.7y (mean) | Aged 45–74; n = 43,580 | FFQ (SSB = Soft drink or fruit/vegetable juice). | ↑ SSB | ↑ T2DM risk |
Pacheco et al., 2020 [17]. | Prospective cohort study | 20y | Adult women; mean age 52.1y; n = 106,178 | FFQ (SSB = caloric soft drinks, sweetened water, fruit drinks) Medical records | ↑ SSB | ↑ CVD risk |
Palmer et al., 2008 [36]. | Prospective cohort study | 10y | Adult women; n = 43,960 | FFQ (SSB = soft drink and juice) Self-report T2DM | ↑ SSB | ↑ T2DM risk (Orange and grapefruit juice not associated with T2DM risk) |
Papier et al., 2017 [125]. | Prospective cohort study | 8y | Adults (n = 39,175) | FFQ (SSB) Self-report T2DM | ↑ SSB | ↑ T2DM risk in women |
Park et al., 2022 [40]. | Prospective cohort study | FHS Offspring: 6y FHS Third generation: 6.2y | FHS Offspring: Adults; mean age 62.8y; n = 691 FHS Third generation: Adults; mean age 48.4 years; n = 945. | FFQ (SSB) Physical assessment | ↑ SSB | ↑ NAFLD incidence ↑ Liver fat |
Paynter et al., 2006 [147]. | Prospective cohort study | 9y | Middle-aged adults; n = 12,204 | FFQ (SSB = fruit punch, non-diet soft drink, orange juice, grapefruit juice) | SSB | -No relationship between SSB and diabetes risk (with or without juice) |
Rahman et al., 2015 [14]. | Prospective cohort study | 11.7y (mean) | Men aged 45–79; n = 42,400 | FFQ (SSB) Medical records/death register | ↑ SSB | ↑ HF risk |
Sakurai et al., 2014 [127]. | Prospective cohort study. | 7y | Men aged 35–55y; n = 2037 | FFQ (SSB) Pathology results | ↑ SSB | -No effect on T2DM risk |
Schulze et al., 2004 [37]. | Prospective cohort study. | 8y | Adult women; n = 91,249 | FFQ (SSB) | ↑ SSB | ↑ T2DM risk ↑ Weight |
Shin et al., 2018 [43]. | Cross sectional | NA | Adults; n = 12,112 | FFQ (SSB = soft drinks, fruit juices, sweetened rice drinks). Physical assessment | ↑ SSB | ↑ MetS risk in women ↑ Obesity prevalence |
Stanhope et al., 2009 [21]. | Double-blinded parallel arm study with matched subjects. | 10 weeks | Aged 40–72y; BMI = 25–35 kg/m2; n = 32 | Consumption of glucose- or fructose-sweetened beverages providing 25% of energy. | Fructose | ↑ Increase body fat and weight ↑ Postprandial de novo lipogenesis ↑ Fasting glucose ↑ Fasting insulin ↓ Insulin sensitivity index |
Glucose | ↑ Increase body fat and weight ↑ TG ↓ Fasting glucose | |||||
Stern et al., 2019 [38]. | Prospective cohort study | 2.16y (median) | Women aged ≥ 25 years; n = 72,667 | FFQ (SD) Self-reported T2DM | ↑ SD | ↑ T2DM incidence |
Welsh et al., 2011 [22]. | Prospective cohort study (NHANES subgroup, 1999–2004) | NA | Aged 12 to 18y; n = 2157 | FFQ (added sugars) Pathology results | ↑ Added sugars | ↓ HDL ↑ TG ↑ Fasting insulin in overweight individuals only ↑ Insulin resistance in overweight individuals only |
Yang et al., 2014 [18]. | Prospective cohort study (NHANES: T1, 1988–1994; T2, 1999–2004; T3, 2005–2010) | 14.6y (median) | Adults; n = 11,733 (T1), 8786 (T2), 10,628 (T3); BMI ≥ 18.5 kg/m2 | FFQ (added sugars) Death register | ↑ Added sugars | ↑ CVD mortality risk |
Yu et al., 2018 [23]. | Cross-sectional survey (NHS) | NA | Women aged 30–55 years; n = 8492 | FFQ (SSB) Biospecimens | ↑ SSB | ↑ TG ↓ HDL ↑ Inflammatory biomarkers ↑ Insulin ↓ Adiponectin |
2.5. Heart Disease
2.6. Cognition
Author and Year | Design | Timeframe/ Follow-Up | Subjects | Tasks/Measures | Intervention/ Independent Variable | Significant Findings |
---|---|---|---|---|---|---|
Human studies | ||||||
Adan & Serra-Grabulosa, 2010 [179]. | RCT | 0–30 min (unclear) | Fasted adults, aged 18–25y; n = 72; glucose group, n = 18. | RAVLT Purdue-Pegboard JoLO WCST CalCAP Digit Span of WAIS VAS | 75 g glucose | ↑ Perdue pegboard assembly ↑ Reaction time -No effect of glucose on learning or memory |
Azari, 1991 [191]. | Double-blind, Repeated measures trial. | 30 min | Aged 19–25; n = 18. Fasted with standardized breakfast. | Word list recall and recognition | 30 g or 100 g glucose | -No effect of glucose |
Benton & Owens, 1993 [202]. | RCT | 15 min | Young adults, mean age 21y; n = 153 | Word list recall Spatial memory test Wechsler story Blood glucose | 50 g glucose | -No effect of glucose solution |
Brandt, 2015 [177]. | Double-blind, placebo-controlled trial. (Glucose compared to aspartame) | 15 min | Fasted young adults; mean age 19.47y; n = 41; BMI = 18.5 to 30 kg/m2 | Word recall task (recognition, recollection or familiarity). | 25 g glucose | ↓ Familiarity |
Chong et al., 2019 [8]. | Cross-sectional survey | NA | Adults aged ≥ 60 years | FFQ (total sugars, free sugars, fructose, glucose, sucrose, maltose, lactose) MMSE | ↑ Total and free sugar intake. | ↓ MMSE score |
Flint & Turek, 2003 [203]. | Randomised placebo-controlled trial. (Comparison groups: 10, 100, and 500 mg/kg, or 50 g glucose or saccharin placebo) | 2 min | Fasted adults aged 18–50 (n = 67) | TOVA program | 100 mg/kg glucose | ↓ Attention (impaired impulsivity and disinhibition) |
Gagnon et al., 2010 [178]. | Double-blinded, placebo-controlled trial. (Glucose compared to saccharin) | 15 min | Fasting older adults (aged 60 years and over; n = 44) | STROOP Trail making tests A and B Computerised dual task | 50 g glucose | ↑ Switching ↑ Inhibition ↑ Trail Making Test A, but not B. ↑ Attention |
Gui et al., 2021 [44]. | Cross-sectional survey | NA | Children; mean age 8.6 years; n = 6387 | FFQ (SSB) | ↑ SSB consumption | ↓ Executive functions ↑ Risk of executive dysfunction |
Hope et al., 2013 [176]. | Double-blind placebo-controlled experimental trial. | Immediate | Adults; mean age 25.1y; n = 12. Tested after consumption of standardised breakfast. | Erikson Flanker Task | 25 g glucose | ↓ Sensorimotor processing speed |
Kennedy & Scholey, 2000 [180]. | Randomised crossover design. (Glucose compared to saccharin) | 20 min | Fasted young adults; aged 19–30; n = 20 | Serial threes Serial sevens | 25 g glucose solution | ↑ Performance on Serial Sevens |
Macpherson et al., 2015 [181]. | Repeated measures RCT. (Glucose compared to saccharin) | 5–30 min (unclear) | Fasting young adults; mean age 20.6y; n = 24; Fasting older adults; mean age 72.5y; n = 24 | Memory task Tracking task | 25 g glucose solution | Older adults: ↑ Recognition memory ↑ Tracking precision Younger adults: No effects |
Martin & Benton, 1999 [194]. | RCT. 4 block design: glucose vs placebo; fasted vs breakfast (mean 1049 ± 767 kJ; 42.6 ± 30.3 g carbohydrate). | 20 min | Female adults; mean age 22.6y; n = 80 | Brown–Petersen task | 50 g glucose (fasted condition) | ↑ Recall |
50 g glucose (breakfast condition) | -No effect of glucose | |||||
Miao et al., 2021 [28]. | Prospective cohort study (FHS). | 19y (mean) | Adults; n = 1384 | FFQ (SSB) Clinical surveillance | ↑ SSB | ↑ Dementia ↑ AD |
Munoz-Garcia et al., 2020 [45]. | Prospective cohort study | 6y | University graduates; aged over 55y; n = 1069 | FFQ (SSB) STICS-m | ↑ SSB | ↓ Cognition |
Owen et al., 2010 [182]. | Between-participant, double-blind, placebo-controlled design. | 15 min | Fasted young adults; aged 18–30; n = 90 | Word presentation Immediate word recall Face presentation Implicit memory task Delayed word recall Delayed word recognition Face recognition | 25 g glucose | ↓ Word recognition (increased errors) |
60 g glucose | ↑ Immediate free recall ↑ Word recognition ↑ Implicit memory | |||||
Scholey et al., 2009 [183]. | RCT. (Glucose compared to saccharin) | 20 min | Fasted young adults (mean age 21.6 years; n = 120 | Word recognition Tracking task | 25 g glucose solution | ↑ tracking performance -No effect on memory |
Stollery & Christian, 2016 [175]. | Experimental. glucose or saccharin (no sugar). | 10 min | Fasting adults; n = 31 | Object location binding task | 30 g glucose | ↑ Object location binding memory ↑ Location memory |
Sunram-Lea et al., 2011. | Double-blind, placebo-controlled, balanced, crossover trial. (Glucose compared to saccharin) | 15 min | Fasted young adults; n = 30 | Immediate word recall Serial threes Serial sevens Corsi block-tapping task Delayed word recall Delayed word recognition | 15 g, 25 g, 50 g, or 60 g glucose solution | U-shaped dose-response. -Spatial WM, immediate recall, delayed recall, and recognition memory were all improved at 25 g only. |
Ye et al., 2011 [46]. | Cross-sectional survey. | NA | Aged 45–75y; n = 1500 | FFQ (Sucrose, glucose, fructose, galactose, lactose, maltose, fruit juice, or sugar-sweetened solid foods). MMSE Word list learning Digit span Clock drawing Figure copying STROOP Verbal fluency tests | ↑ Total sugars/added sugars/sucrose/glucose/fructose | ↓ MMSE -No effect of increased natural fructose, galactose, lactose, maltose, fruit juice, or sugar-sweetened solid foods. |
Zhang et al., 2022 [47]. | Cross-sectional survey | NA | Aged 13–18y; n = 1427 | FFQ (SSB) Questionnaire | ↑ SSB | ↓ Inhibition ↓ WM ↓ Cognitive flexibility |
Animal studies | ||||||
Beecher et al., 2021 [10]. | Longitudinal experimental study. (Sucrose compared to water) | 12 weeks | Adolescent mice; n = 46 | Elevated-plus-maze Novelty suppressed feeding Marble burying Open field test Forced swimming test NOR MWM Pathology tests | 25% sucrose solution | ↓ Episodic and spatial memory ↓ Overall density of dentate gyrus proliferating cells ↑ Locomotor activity |
Fierros-Campuzano et al., 2022 [48]. | Longitudinal experimental study. (Fructose compared to water) | 12 weeks | Adolescent male Wistar rats; aged 5–6 weeks; n = 60 | Barnes Maze Pathology tests | 10% fructose solution | ↓ Spatial memory ↓ Neurogenesis in hippocampus ↑ Inflammatory markers in PFC ↑ GFAP expression in hippocampus and PFC |
Hamelin et al., 2022 [49]. | Longitudinal experimental study. (Sucrose compared to water or artificial sweetener) | 6 weeks | Adult male mice; n = 297 | Mouse gambling task Pathology tests | 1% sucrose solution (25% daily sugar intake). | ↓ DA and DA turnover in PFC ↓ Decision-making ↓ c-Fos expression in prelimbic cortex, nucleus accumbens, and striatum. ↑ Activity in BLA |
Hsu et al., 2015 [50]. | Longitudinal experimental study. (Sucrose or fructose compared to water) | 30 days | Adolescent (n = 38) and adult (n = 38) male Sprague Dawley rats. | Barnes maze test Y-maze | SSB (11% sucrose) | Adolescents: ↓ Spatial learning Adults: -No effect observed |
HFCS (11%) | Adolescents: ↓ spatial learning and memory retention ↑ Hippocampal inflammatory markers Adults: -No effect observed | |||||
Kageyama et al., 2022 [60]. | Longitudinal experimental study. | 40 days | Postnatal, adolescent, and adult Sprague Dawley rats (n = 7–8 per group). | Pathology results | 20% HFCS | ↓ BDNF expression in childhood and adolescence -No effect in adult rats |
Lee et al., 2021 [51]. | Longitudinal experimental study. (Comparison of high sucrose to high-fat and control diets) | 21 days | Older Sprague Dawley rats; 15 months old; n = 36; high sucrose group, n = 17 | T-maze | Sucrose as 70% of carbohydrate kcal | ↓ Cognitive learning |
Lemos et al., 2016 [52]. | Longitudinal experimental study. | 9 weeks | Male Wistar rats; 12 weeks old; n = 6–8 rats per group. | Open field test Object displacement NOR Forced Swimming test Western Blot | 35% sucrose | ↓ Memory performance ↑ Inhibitory Adenosine A1 receptor in hippocampus |
Messier et al., 2007 [204]. | Repeated measures RCT. (Comparison of high-fructose diet to high-fat and control diets) | 3 months | 7-week-old C57BL/6 mice; n = 38; fructose group n = 8 | Operant bar pressing task | 15% fructose | ↑ Learning (on 2 of 5 testing days) |
Miles et al., 2021 [205]. | Longitudinal experimental study. | 14 days | Adult male Wistar rats; 8 weeks old; n = 16 | Location Discrimination task Pairwise Discrimination acquisition and reversal learning Processing speed | 10% sucrose (approx. 70 mL per day) | -No effect of sucrose |
Noble et al., 2019 [53]. | Longitudinal experimental study. | 30 days (Postnatal day 26 to 56) | Juvenile, male Sprague Dawley rats (n = 24). | Zero Maze Novel object in context task | 11% w/v HFCS | ↓ later-life hippocampal-dependent episodic contextual memory -No impact on glucose tolerance, weight, anxiety |
Reichelt et aal., 2022 [57]. | Longitudinal experimental study. | 28 days | male albino Sprague Dawley rats; 4 weeks old; n = 32 | Object-in-place task Locomotor behaviour Biconditional discrimination Immunohistochemistry | 200 mL 10% sucrose, 2 h per day. | ↓ Context-appropriate responses ↓ Hippocampal PV+ cells |
Ross et al., 2009 [206]. | Longitudinal experimental study. | 18 weeks | Male Sprague Dawley rats; n = 29. | Spatial Water Maze | 60% fructose | ↓ Retention performance -No impact on acquisitional performance |
Sanguesa et al., 2018 [61]. | Longitudinal experimental study. (Comparison of fructose, glucose, water) | 28 weeks | Female, adult, Sprague Dawley rats; n = 36; control, n = 12; Fructose, n = 12; glucose, n = 12 | NOR MWM Immunohistochemistry | 10% w/v fructose | ↓ NOR ↓ BDNF ↓ IRS-2 protein expression ↓ Akt phosphorylation |
Wong et al., 2017 [54]. | Longitudinal experimental study. | 24 days | Adolescent and young adult Sprague Dawley rats; n = 48 | Object and place recognition memory Delay-discounting task Progressive ratio T-maze forced alternation. | 10% sucrose solution, 2 h per day. | ↓ Spatial memory |
Wu et al., 2015 [55]. | Longitudinal experimental study. | 8 months | Male Sprague Dawley rats; 8 weeks old; n = 19 | MWM | 10% fructose solution | ↓ Spatial learning and memory |
Xu & Reichelt, 2018 [56]. | Longitudinal experimental study. | 28 days | Male Sprague Dawley rats; 3 weeks old; n = 36 | Open field test NPR NOR Immunohistochemistry | 10% sucrose, 2 h per day | ↓ NPR ↓ NOR ↓ Hippocampal PV+ cells |
2.7. Mood
3. Possible Mechanisms of Action
3.1. Addiction and Dopaminergic Alterations
3.2. Microbiome Disruption and Neuroinflammation
4. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organisation. Noncommunicable Diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 14 January 2023).
- Kazibwe, J.; Tran, P.B.; Annerstedt, K.S. The household financial burden of non-communicable diseases in low- and middle-income countries: A systematic review. Health Res. Policy Syst. 2021, 19, 96. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 14 January 2023).
- Cashion, W.; McClellan, W.; Judd, S.; Goyal, A.; Kleinbaum, D.; Goodman, M.; Prince, V.; Muntner, P.; Howard, G. Polypharmacy and mortality association by chronic kidney disease status: The REasons for Geographic And Racial Differences in Stroke Study. Pharmacol. Res. Perspect. 2021, 9, e00823. [Google Scholar] [CrossRef] [PubMed]
- Rieckert, A.; Trampisch, U.S.; Klaaßen-Mielke, R.; Drewelow, E.; Esmail, A.; Johansson, T.; Keller, S.; Kunnamo, I.; Löffler, C.; Mäkinen, J.; et al. Polypharmacy in older patients with chronic diseases: A cross-sectional analysis of factors associated with excessive polypharmacy. BMC Fam. Pract. 2018, 19, 113. [Google Scholar] [CrossRef] [PubMed]
- Budreviciute, A.; Damiati, S.; Sabir, D.K.; Onder, K.; Schuller-Goetzburg, P.; Plakys, G.; Katileviciute, A.; Khoja, S.; Kodzius, R. Management and Prevention Strategies for Non-communicable Diseases (NCDs) and Their Risk Factors. Front. Public Health 2020, 8, 574111. [Google Scholar] [CrossRef]
- Kendig, M.D. Cognitive and behavioural effects of sugar consumption in rodents. A review. Appetite 2014, 80, 41–54. [Google Scholar] [CrossRef]
- Chong, C.P.; Shahar, S.; Haron, H.; Din, N.C. Habitual sugar intake and cognitive impairment among multi-ethnic Malaysian older adults. Clin. Interv. Aging 2019, 14, 1331–1342. [Google Scholar] [CrossRef]
- Yu, B.; He, H.; Zhang, Q.; Wu, H.; Du, H.; Liu, L.; Wang, C.; Shi, H.; Xia, Y.; Guo, X.; et al. Soft drink consumption is associated with depressive symptoms among adults in China. J. Affect. Disord. 2015, 172, 422–427. [Google Scholar] [CrossRef]
- Beecher, K.; Alvarez Cooper, I.; Wang, J.; Walters, S.B.; Chehrehasa, F.; Bartlett, S.E.; Belmer, A. Long-Term Overconsumption of Sugar Starting at Adolescence Produces Persistent Hyperactivity and Neurocognitive Deficits in Adulthood. Front. Neurosci. 2021, 15, 574111. [Google Scholar] [CrossRef]
- Sievenpiper, J.L. Sickeningly Sweet: Does Sugar Cause Chronic Disease? No. Can. J. Diabetes 2016, 40, 287–295. [Google Scholar] [CrossRef]
- Archer, E.; Arjmandi, B. Falsehoods and facts about dietary sugars: A call for evidence-based policy. Crit. Rev. Food Sci. Nutr. 2021, 61, 3725–3739. [Google Scholar] [CrossRef]
- Flora, S.R.; Polenick, C.A. Effects of Sugar Consumption on Human Behavior and Performance. Psychol. Rec. 2013, 63, 513–524. [Google Scholar] [CrossRef]
- Rahman, I.; Wolk, A.; Larsson, S.C. The relationship between sweetened beverage consumption and risk of heart failure in men. Heart 2015, 101, 1961–1965. [Google Scholar] [CrossRef]
- de Koning, L.; Malik, V.S.; Kellogg, M.D.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Sweetened beverage consumption, incident coronary heart disease, and biomarkers of risk in men. Circulation 2012, 125, 1735–1741. [Google Scholar] [CrossRef]
- Fung, T.T.; Malik, V.; Rexrode, K.M.; Manson, J.E.; Willett, W.C.; Hu, F.B. Sweetened beverage consumption and risk of coronary heart disease in women. Am. J. Clin. Nutr. 2009, 89, 1037–1042. [Google Scholar] [CrossRef]
- Pacheco, L.S.; Lacey, J.V., Jr.; Martinez, M.E.; Lemus, H.; Araneta, M.R.G.; Sears, D.D.; Talavera, G.A.; Anderson, C.A.M. Sugar-Sweetened Beverage Intake and Cardiovascular Disease Risk in the California Teachers Study. J. Am. Heart Assoc. 2020, 9, e014883. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, Z.; Gregg, E.W.; Flanders, W.D.; Merritt, R.; Hu, F.B. Added Sugar Intake and Cardiovascular Diseases Mortality Among US Adults. JAMA Intern. Med. 2014, 174, 516–524. [Google Scholar] [CrossRef]
- Haslam, D.E.; Peloso, G.M.; Herman, M.A.; Dupuis, J.; Lichtenstein, A.H.; Smith, C.E.; McKeown, N.M. Beverage Consumption and Longitudinal Changes in Lipoprotein Concentrations and Incident Dyslipidemia in US Adults: The Framingham Heart Study. J. Am. Heart Assoc. 2020, 9, e014083. [Google Scholar] [CrossRef]
- Lê, K.A.; Faeh, D.; Stettler, R.; Ith, M.; Kreis, R.; Vermathen, P.; Boesch, C.; Ravussin, E.; Tappy, L. A 4-wk high-fructose diet alters lipid metabolism without affecting insulin sensitivity or ectopic lipids in healthy humans. Am. J. Clin. Nutr. 2006, 84, 1374–1379. [Google Scholar] [CrossRef]
- Stanhope, K.L.; Schwarz, J.M.; Keim, N.L.; Griffen, S.C.; Bremer, A.A.; Graham, J.L.; Hatcher, B.; Cox, C.L.; Dyachenko, A.; Zhang, W.; et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J. Clin. Investig. 2009, 119, 1322–1334. [Google Scholar] [CrossRef]
- Welsh, J.A.; Sharma, A.; Cunningham, S.A.; Vos, M.B. Consumption of added sugars and indicators of cardiovascular disease risk among US adolescents. Circulation 2011, 123, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Ley, S.H.; Sun, Q.; Hu, F.B.; Malik, V.S. Cross-sectional association between sugar-sweetened beverage intake and cardiometabolic biomarkers in US women. Br. J. Nutr. 2018, 119, 570–580. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qi, W.; Song, G.; Pang, S.; Peng, Z.; Li, Y.; Wang, P. High-Fructose Diet Increases Inflammatory Cytokines and Alters Gut Microbiota Composition in Rats. Mediat. Inflamm. 2020, 2020, 6672636. [Google Scholar] [CrossRef] [PubMed]
- Eshak, E.S.; Iso, H.; Kokubo, Y.; Saito, I.; Yamagishi, K.; Inoue, M.; Tsugane, S. Soft drink intake in relation to incident ischemic heart disease, stroke, and stroke subtypes in Japanese men and women: The Japan Public Health Centre–based study cohort I. Am. J. Clin. Nutr. 2012, 96, 1390–1397. [Google Scholar] [CrossRef] [PubMed]
- Janzi, S.; Ramne, S.; González-Padilla, E.; Johnson, L.; Sonestedt, E. Associations Between Added Sugar Intake and Risk of Four Different Cardiovascular Diseases in a Swedish Population-Based Prospective Cohort Study. Front. Nutr. 2020, 7, 603653. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Åkesson, A.; Wolk, A. Sweetened Beverage Consumption Is Associated with Increased Risk of Stroke in Women and Men. J. Nutr. 2014, 144, 856–860. [Google Scholar] [CrossRef]
- Miao, H.; Chen, K.; Yan, X.; Chen, F. Sugar in Beverage and the Risk of Incident Dementia, Alzheimer’s disease and Stroke: A Prospective Cohort Study. J. Prev. Alzheimer’s Dis. 2021, 8, 188–193. [Google Scholar] [CrossRef]
- Drouin-Chartier, J.-P.; Zheng, Y.; Li, Y.; Malik, V.; Pan, A.; Bhupathiraju, S.N.; Tobias, D.K.; Manson, J.E.; Willett, W.C.; Hu, F.B. Changes in Consumption of Sugary Beverages and Artificially Sweetened Beverages and Subsequent Risk of Type 2 Diabetes: Results From Three Large Prospective U.S. Cohorts of Women and Men. Diabetes Care 2019, 42, 2181–2189. [Google Scholar] [CrossRef]
- Fagherazzi, G.; Vilier, A.; Saes Sartorelli, D.; Lajous, M.; Balkau, B.; Clavel-Chapelon, F. Consumption of artificially and sugar-sweetened beverages and incident type 2 diabetes in the Etude Epidémiologique auprès des femmes de la Mutuelle Générale de l’Education Nationale–European Prospective Investigation into Cancer and Nutrition cohort. Am. J. Clin. Nutr. 2013, 97, 517–523. [Google Scholar] [CrossRef]
- Hirahatake, K.M.; Jacobs, D.R.; Shikany, J.M.; Jiang, L.; Wong, N.D.; Steffen, L.M.; Odegaard, A.O. Cumulative intake of artificially sweetened and sugar-sweetened beverages and risk of incident type 2 diabetes in young adults: The Coronary Artery Risk Development In Young Adults (CARDIA) Study. Am. J. Clin. Nutr. 2019, 110, 733–741. [Google Scholar] [CrossRef]
- Huang, M.; Quddus, A.; Stinson, L.; Shikany, J.M.; Howard, B.V.; Kutob, R.M.; Lu, B.; Manson, J.E.; Eaton, C.B. Artificially sweetened beverages, sugar-sweetened beverages, plain water, and incident diabetes mellitus in postmenopausal women: The prospective Women’s Health Initiative observational study. Am. J. Clin. Nutr. 2017, 106, 614–622. [Google Scholar] [CrossRef] [Green Version]
- Romaguera, D.; Norat, T.; Wark, P.A.; Vergnaud, A.C.; Schulze, M.B.; van Woudenbergh, G.J.; Drogan, D.; Amiano, P.; Molina-Montes, E.; Sánchez, M.J.; et al. Consumption of sweet beverages and type 2 diabetes incidence in European adults: Results from EPIC-InterAct. Diabetologia 2013, 56, 1520–1530. [Google Scholar]
- O’Connor, L.; Imamura, F.; Lentjes, M.A.; Khaw, K.T.; Wareham, N.J.; Forouhi, N.G. Prospective associations and population impact of sweet beverage intake and type 2 diabetes, and effects of substitutions with alternative beverages. Diabetologia 2015, 58, 1474–1483. [Google Scholar] [CrossRef]
- Odegaard, A.O.; Koh, W.P.; Arakawa, K.; Yu, M.C.; Pereira, M.A. Soft drink and juice consumption and risk of physician-diagnosed incident type 2 diabetes: The Singapore Chinese Health Study. Am. J. Epidemiol. 2010, 171, 701–708. [Google Scholar] [CrossRef]
- Palmer, J.R.; Boggs, D.A.; Krishnan, S.; Hu, F.B.; Singer, M.; Rosenberg, L. Sugar-sweetened beverages and incidence of type 2 diabetes mellitus in African American women. Arch. Intern. Med. 2008, 168, 1487–1492. [Google Scholar] [CrossRef]
- Schulze, M.B.; Manson, J.E.; Ludwig, D.S.; Colditz, G.A.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. JAMA 2004, 292, 927–934. [Google Scholar] [CrossRef]
- Stern, D.; Mazariegos, M.; Ortiz-Panozo, E.; Campos, H.; Malik, V.S.; Lajous, M.; López-Ridaura, R. Sugar-Sweetened Soda Consumption Increases Diabetes Risk Among Mexican Women. J. Nutr. 2019, 149, 795–803. [Google Scholar] [CrossRef]
- Maersk, M.; Belza, A.; Stødkilde-Jørgensen, H.; Ringgaard, S.; Chabanova, E.; Thomsen, H.; Pedersen, S.B.; Astrup, A.; Richelsen, B. Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: A 6-mo randomized intervention study. Am. J. Clin. Nutr. 2012, 95, 283–289. [Google Scholar] [CrossRef]
- Park, W.Y.; Yiannakou, I.; Petersen, J.M.; Hoffmann, U.; Ma, J.; Long, M.T. Sugar-Sweetened Beverage, Diet Soda, and Nonalcoholic Fatty Liver Disease Over 6 Years: The Framingham Heart Study. Clin. Gastroentero.l Hepatol. 2022, 20, 2524–2532.e2. [Google Scholar] [CrossRef]
- Dhingra, R.; Sullivan, L.; Jacques, P.F.; Wang, T.J.; Fox, C.S.; Meigs, J.B.; D'Agostino, R.B.; Gaziano, J.M.; Vasan, R.S. Soft drink consumption and risk of developing cardiometabolic risk factors and the metabolic syndrome in middle-aged adults in the community. Circulation 2007, 116, 480–488. [Google Scholar] [CrossRef]
- Ferreira-Pêgo, C.; Babio, N.; Bes-Rastrollo, M.; Corella, D.; Estruch, R.; Ros, E.; Fitó, M.; Serra-Majem, L.; Arós, F.; Fiol, M.; et al. Frequent Consumption of Sugar- and Artificially Sweetened Beverages and Natural and Bottled Fruit Juices Is Associated with an Increased Risk of Metabolic Syndrome in a Mediterranean Population at High Cardiovascular Disease Risk. J. Nutr. 2016, 146, 1528–1536. [Google Scholar] [CrossRef]
- Shin, S.; Kim, S.-A.; Ha, J.; Lim, K. Sugar-Sweetened Beverage Consumption in Relation to Obesity and Metabolic Syndrome among Korean Adults: A Cross-Sectional Study from the 2012–2016 Korean National Health and Nutrition Examination Survey (KNHANES). Nutrients 2018, 10, 1467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gui, Z.; Huang, S.; Chen, Y.; Zhao, Y.; Jiang, N.; Zhang, S.; Chen, Y. Association between Sugar-Sweetened Beverage Consumption and Executive Function in Children. Nutrients 2021, 13, 4563. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-García, M.I.; Martínez-González, M.A.; Martín-Moreno, J.M.; Razquin, C.; Cervantes, S.; Guillén-Grima, F.; Toledo, E. Sugar-sweetened and artificially-sweetened beverages and changes in cognitive function in the SUN project. Nutr. Neurosci. 2020, 23, 946–954. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Gao, X.; Scott, T.; Tucker, K.L. Habitual sugar intake and cognitive function among middle-aged and older Puerto Ricans without diabetes. Br. J. Nutr. 2011, 106, 1423–1432. [Google Scholar] [CrossRef]
- Zhang, F.; Yin, X.; Liu, Y.; Li, M.; Gui, X.; Bi, C. Association Between Sugar-Sweetened Beverage Consumption and Executive Function Among Chinese Tibetan Adolescents at High Altitude. Front. Nutr. 2022, 9, 939256. [Google Scholar] [CrossRef]
- Fierros-Campuzano, J.; Ballesteros-Zebadúa, P.; Manjarrez-Marmolejo, J.; Aguilera, P.; Méndez-Diaz, M.; Prospero-García, O.; Franco-Pérez, J. Irreversible hippocampal changes induced by high fructose diet in rats. Nutr. Neurosci. 2022, 25, 1325–1337. [Google Scholar] [CrossRef]
- Hamelin, H.; Poizat, G.; Florian, C.; Kursa, M.B.; Pittaras, E.; Callebert, J.; Rampon, C.; Taouis, M.; Hamed, A.; Granon, S. Prolonged Consumption of Sweetened Beverages Lastingly Deteriorates Cognitive Functions and Reward Processing in Mice. Cereb. Cortex 2021, 32, 1365–1378. [Google Scholar] [CrossRef]
- Hsu, T.M.; Konanur, V.R.; Taing, L.; Usui, R.; Kayser, B.D.; Goran, M.I.; Kanoski, S.E. Effects of sucrose and high fructose corn syrup consumption on spatial memory function and hippocampal neuroinflammation in adolescent rats. Hippocampus 2015, 25, 227–239. [Google Scholar] [CrossRef]
- Lee, J.M.; Otoo, T.; Brito, M.; Jaimes, A.; Martinez, A.; Trevitt, J. Effects of High-Sucrose and High-Saturated Fat Diets on Learning Abilities in Old Sprague-Dawley Rats. Calif. J. Health Promot. 2021, 19, 84–94. [Google Scholar] [CrossRef]
- Lemos, C.; Rial, D.; Gonçalves, F.Q.; Pires, J.; Silva, H.B.; Matheus, F.C.; da Silva, A.C.; Marques, J.M.; Rodrigues, R.J.; Jarak, I.; et al. High sucrose consumption induces memory impairment in rats associated with electrophysiological modifications but not with metabolic changes in the hippocampus. Neuroscience 2016, 315, 196–205. [Google Scholar] [CrossRef]
- Noble, E.E.; Hsu, T.M.; Liang, J.; Kanoski, S.E. Early-life sugar consumption has long-term negative effects on memory function in male rats. Nutr. Neurosci. 2019, 22, 273–283. [Google Scholar] [CrossRef]
- Wong, A.; Dogra, V.R.; Reichelt, A.C. High-sucrose diets in male rats disrupt aspects of decision making tasks, motivation and spatial memory, but not impulsivity measured by operant delay-discounting. Behav. Brain Res. 2017, 327, 144–154. [Google Scholar] [CrossRef]
- Wu, H.W.; Ren, L.F.; Zhou, X.; Han, D.W. A high-fructose diet induces hippocampal insulin resistance and exacerbates memory deficits in male Sprague-Dawley rats. Nutr. Neurosci. 2015, 18, 323–328. [Google Scholar] [CrossRef]
- Xu, T.J.; Reichelt, A.C. Sucrose or sucrose and caffeine differentially impact memory and anxiety-like behaviours, and alter hippocampal parvalbumin and doublecortin. Neuropharmacology 2018, 137, 24–32. [Google Scholar] [CrossRef]
- Reichelt, A.C.; Killcross, S.; Hambly, L.D.; Morris, M.J.; Westbrook, R.F. Impact of adolescent sucrose access on cognitive control, recognition memory, and parvalbumin immunoreactivity. Learn. Mem. 2015, 22, 215–224. [Google Scholar] [CrossRef]
- Xu, L.; Nan, J.; Lan, Y. The Nucleus Accumbens: A Common Target in the Comorbidity of Depression and Addiction. Front. Neural Circuits 2020, 14, 37. [Google Scholar] [CrossRef]
- Noble, E.E.; Olson, C.A.; Davis, E.; Tsan, L.; Chen, Y.-W.; Schade, R.; Liu, C.; Suarez, A.; Jones, R.B.; de La Serre, C.; et al. Gut microbial taxa elevated by dietary sugar disrupt memory function. Transl. Psychiatry 2021, 11, 194. [Google Scholar] [CrossRef]
- Kageyama, I.; Yamada, H.; Munetsuna, E.; Yamazaki, M.; Ando, Y.; Mizuno, G.; Fujii, R.; Nouchi, Y.; Wakasugi, T.; Sakakibara, T.; et al. Differential effects of excess high-fructose corn syrup on the DNA methylation of hippocampal neurotrophic factor in childhood and adolescence. PLoS ONE 2022, 17, e0270144. [Google Scholar] [CrossRef]
- Sangüesa, G.; Cascales, M.; Griñán, C.; Sánchez, R.M.; Roglans, N.; Pallàs, M.; Laguna, J.C.; Alegret, M. Impairment of Novel Object Recognition Memory and Brain Insulin Signaling in Fructose- but Not Glucose-Drinking Female Rats. Mol. Neurobiol. 2018, 55, 6984–6999. [Google Scholar] [CrossRef]
- Maya-Romero, A.M.; Dodd, G.E.; Landin, J.D.; Zaremba, H.K.; Allen, O.F.; Bilbow, M.A.; Hammaker, R.D.; Santerre-Anderson, J.L. Adolescent high-fructose corn syrup consumption leads to dysfunction in adult affective behaviors and mesolimbic proteins in male Sprague-Dawley rats. Behav. Brain Res. 2022, 419, 113687. [Google Scholar] [CrossRef]
- Lowndes, J.; Sinnett, S.S.; Rippe, J.M. No Effect of Added Sugar Consumed at Median American Intake Level on Glucose Tolerance or Insulin Resistance. Nutrients 2015, 7, 8830–8845. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, K.J. A Short History of Nutritional Science: Part 3 (1912–1944). J. Nutr. 2003, 133, 3023–3032. [Google Scholar] [CrossRef] [PubMed]
- Australian Institute of Health and Welfare. Trends in Cardiovascular Deaths; Australian Institute of Health and Welfare: Canberra, Australia, 2017. [Google Scholar]
- Kearns, C.E.; Schmidt, L.A.; Glantz, S.A. Sugar Industry and Coronary Heart Disease Research: A Historical Analysis of Internal Industry Documents. JAMA Intern. Med. 2016, 176, 1680–1685. [Google Scholar] [CrossRef] [PubMed]
- Yki-Järvinen, H.; Luukkonen, P.K.; Hodson, L.; Moore, J.B. Dietary carbohydrates and fats in nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 770–786. [Google Scholar] [CrossRef]
- Luukkonen, P.K.; Sädevirta, S.; Zhou, Y.; Kayser, B.; Ali, A.; Ahonen, L.; Lallukka, S.; Pelloux, V.; Gaggini, M.; Jian, C.; et al. Saturated Fat Is More Metabolically Harmful for the Human Liver Than Unsaturated Fat or Simple Sugars. Diabetes Care 2018, 41, 1732–1739. [Google Scholar] [CrossRef]
- Jensen, T.; Abdelmalek, M.F.; Sullivan, S.; Nadeau, K.J.; Green, M.; Roncal, C.; Nakagawa, T.; Kuwabara, M.; Sato, Y.; Kang, D.H.; et al. Fructose and sugar: A major mediator of non-alcoholic fatty liver disease. J. Hepatol. 2018, 68, 1063–1075. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Rosenberg, I.; Uauy, R. History of modern nutrition science—Implications for current research, dietary guidelines, and food policy. BMJ 2018, 361, k2392. [Google Scholar] [CrossRef]
- Temple, N.J. Fat, Sugar, Whole Grains and Heart Disease: 50 Years of Confusion. Nutrients 2018, 10, 39. [Google Scholar] [CrossRef]
- Damle, S.G. Smart Sugar? The Sugar Conspiracy. Contemp. Clin. Dent. 2017, 8, 191–192. [Google Scholar] [CrossRef]
- Johns, D.M.; Oppenheimer, G.M. Was there ever really a sugar conspiracy? Science 2018, 359, 747–750. [Google Scholar] [CrossRef]
- Huebbe, P.; Rimbach, G. Historical Reflection of Food Processing and the Role of Legumes as Part of a Healthy Balanced Diet. Foods 2020, 9, 1056. [Google Scholar] [CrossRef]
- Bray, G.A.; Nielsen, S.J.; Popkin, B.M. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am. J. Clin. Nutr. 2004, 79, 537–543. [Google Scholar] [CrossRef]
- Bentley, J. U.S. Trends in Food Availability and a Dietary Assessment of Loss-Adjusted Food Availability, 1970–2014; United States Department of Agriculture: Washington, DC, USA, 2017. [Google Scholar]
- Cole, S.; Hopkins, L. Consequences of dietary sugar consumption: A historical perspective. Nurse Pract. 2019, 44, 4. [Google Scholar] [CrossRef]
- Amoutzopoulos, B.; Steer, T.; Roberts, C.; Collins, D.; Page, P. Free and Added Sugar Consumption and Adherence to Guidelines: The UK National Diet and Nutrition Survey (2014/15–2015/16). Nutrients 2020, 12, 393. [Google Scholar] [CrossRef]
- DiFrancesco, L.; Fulgoni, V.L.; Gaine, P.C.; Scott, M.O.; Ricciuto, L. Trends in added sugars intake and sources among U.S. adults using the National Health and Nutrition Examination Survey (NHANES) 2001–2018. Front. Nutr. 2022, 9, 897952. [Google Scholar] [CrossRef]
- Australian Bureau of Statistics. Consumption of Added Sugars—A Comparison of 1995 to 2011–2012. Available online: https://www.abs.gov.au/ausstats/[email protected]/Lookup/by%20Subject/4364.0.55.011~2011-12~Main%20Features~Consumption%20of%20Added%20Sugars%20-%20A%20comparison%20of%201995%20to%202011-12~20 (accessed on 20 January 2023).
- Shan, Z.; Rehm, C.D.; Rogers, G.; Ruan, M.; Wang, D.D.; Hu, F.B.; Mozaffarian, D.; Zhang, F.F.; Bhupathiraju, S.N. Trends in Dietary Carbohydrate, Protein, and Fat Intake and Diet Quality Among US Adults, 1999-2016. JAMA 2019, 322, 1178–1187. [Google Scholar] [CrossRef]
- NHS. Sugar: The Facts. Available online: https://www.nhs.uk/live-well/eat-well/food-types/how-does-sugar-in-our-diet-affect-our-health/ (accessed on 20 January 2023).
- World Health Organisation. Guideline: Sugars Intake for Adults And Children; WHO: Gineva, Switzerland, 2015. [Google Scholar]
- Marriott, B.P.; Hunt, K.J.; Malek, A.M.; Newman, J.C. Trends in Intake of Energy and Total Sugar from Sugar-Sweetened Beverages in the United States among Children and Adults, NHANES 2003–2016. Nutrients 2019, 11, 2004. [Google Scholar] [CrossRef]
- Moynihan, P.J.; Kelly, S.A. Effect on caries of restricting sugars intake: Systematic review to inform WHO guidelines. J. Dent. Res. 2014, 93, 8–18. [Google Scholar] [CrossRef]
- Australian Institute of Health and Welfare. Overweight and Obesity. Available online: https://www.aihw.gov.au/reports/australias-health/overweight-and-obesity (accessed on 14 January 2023).
- Blüher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef]
- Kahn, R.; Sievenpiper, J.L. Dietary sugar and body weight: Have we reached a crisis in the epidemic of obesity and diabetes?: We have, but the pox on sugar is overwrought and overworked. Diabetes Care 2014, 37, 957–962. [Google Scholar] [CrossRef]
- Hall, K.D.; Farooqi, I.S.; Friedman, J.M.; Klein, S.; Loos, R.J.F.; Mangelsdorf, D.J.; O'Rahilly, S.; Ravussin, E.; Redman, L.M.; Ryan, D.H.; et al. The energy balance model of obesity: Beyond calories in, calories out. Am. J. Clin. Nutr. 2022, 115, 1243–1254. [Google Scholar] [CrossRef] [PubMed]
- Alexander, B.R.; Ruck, D.J.; Fouts, H.N. U.S. obesity as delayed effect of excess sugar. Econ. Hum. Biol. 2020, 36, 100818. [Google Scholar] [CrossRef] [PubMed]
- Sylvetsky, A.C.; Rother, K.I. Trends in the consumption of low-calorie sweeteners. Physiol. Behav. 2016, 164, 446–450. [Google Scholar] [CrossRef] [PubMed]
- Higgins, K.A.; Mattes, R.D. A randomized controlled trial contrasting the effects of 4 low-calorie sweeteners and sucrose on body weight in adults with overweight or obesity. Am. J. Clin. Nutr. 2019, 109, 1288–1301. [Google Scholar] [CrossRef]
- Debras, C.; Chazelas, E.; Sellem, L.; Porcher, R.; Druesne-Pecollo, N.; Esseddik, Y.; de Edelenyi, F.S.; Agaësse, C.; De Sa, A.; Lutchia, R.; et al. Artificial sweeteners and risk of cardiovascular diseases: Results from the prospective NutriNet-Santé cohort. BMJ 2022, 378, e071204. [Google Scholar] [CrossRef] [PubMed]
- Debras, C.; Chazelas, E.; Srour, B.; Druesne-Pecollo, N.; Esseddik, Y.; Szabo de Edelenyi, F.; Agaësse, C.; De Sa, A.; Lutchia, R.; Gigandet, S.; et al. Artificial sweeteners and cancer risk: Results from the NutriNet-Santé population-based cohort study. PLoS Med. 2022, 19, e1003950. [Google Scholar] [CrossRef]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Worldwide trends in insufficient physical activity from 2001 to 2016: A pooled analysis of 358 population-based surveys with 1·9 million participants. Lancet Glob. Health 2018, 6, e1077–e1086. [Google Scholar]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Global trends in insufficient physical activity among adolescents: A pooled analysis of 298 population-based surveys with 1·6 million participants. Lancet Child Adolesc. Health 2020, 4, 23–35. [Google Scholar]
- Seid, H.; Rosenbaum, M. Low Carbohydrate and Low-Fat Diets: What We Don’t Know and Why We Should Know It. Nutrients 2019, 11, 2749. [Google Scholar] [CrossRef]
- Gow, M.L.; Ho, M.; Burrows, T.L.; Baur, L.A.; Stewart, L.; Hutchesson, M.J.; Cowell, C.T.; Collins, C.E.; Garnett, S.P. Impact of dietary macronutrient distribution on BMI and cardiometabolic outcomes in overweight and obese children and adolescents: A systematic review. Nutr. Rev. 2014, 72, 453–470. [Google Scholar] [CrossRef]
- Chawla, S.; Tessarolo Silva, F.; Amaral Medeiros, S.; Mekary, R.A.; Radenkovic, D. The Effect of Low-Fat and Low-Carbohydrate Diets on Weight Loss and Lipid Levels: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 3774. [Google Scholar] [CrossRef]
- Foster, G.D.; Wyatt, H.R.; Hill, J.O.; Makris, A.P. Weight and Metabolic Outcomes after 2 Years on a Low-Carbohydrate Versus Low-Fat Diet. Ann. Intern. Med. 2010, 153, 147–157. [Google Scholar] [CrossRef]
- Gardner, C.D.; Trepanowski, J.F.; Del Gobbo, L.C.; Hauser, M.E.; Rigdon, J.; Ioannidis, J.P.A.; Desai, M.; King, A.C. Effect of Low-Fat vs Low-Carbohydrate Diet on 12-Month Weight Loss in Overweight Adults and the Association With Genotype Pattern or Insulin Secretion: The DIETFITS Randomized Clinical Trial. JAMA 2018, 319, 667–679. [Google Scholar] [CrossRef]
- Hall, K.D.; Bemis, T.; Brychta, R.; Chen, K.Y.; Courville, A.; Crayner, E.J.; Goodwin, S.; Guo, J.; Howard, L.; Knuth, N.D.; et al. Calorie for Calorie, Dietary Fat Restriction Results in More Body Fat Loss than Carbohydrate Restriction in People with Obesity. Cell Metab. 2015, 22, 427–436. [Google Scholar] [CrossRef]
- Aronica, L.; Rigdon, J.; Offringa, L.C.; Stefanick, M.L.; Gardner, C.D. Examining differences between overweight women and men in 12-month weight loss study comparing healthy low-carbohydrate vs. low-fat diets. Int. J. Obes. 2021, 45, 225–234. [Google Scholar] [CrossRef]
- Sacks, F.M.; Bray, G.A.; Carey, V.J.; Smith, S.R.; Ryan, D.H.; Anton, S.D.; McManus, K.; Champagne, C.M.; Bishop, L.M.; Laranjo, N.; et al. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N. Engl. J. Med. 2009, 360, 859–873. [Google Scholar] [CrossRef]
- Sartorius, K.; Sartorius, B.; Madiba, T.E.; Stefan, C. Does high-carbohydrate intake lead to increased risk of obesity? A systematic review and meta-analysis. BMJ Open 2018, 8, e018449. [Google Scholar] [CrossRef]
- Isken, F.; Klaus, S.; Petzke, K.J.; Loddenkemper, C.; Pfeiffer, A.F.; Weickert, M.O. Impairment of fat oxidation under high- vs. low-glycemic index diet occurs before the development of an obese phenotype. Am. J. Physiol. Endocrinol. Metab. 2010, 298, E287–E295. [Google Scholar] [CrossRef]
- Zafar, M.I.; Mills, K.E.; Zheng, J.; Peng, M.M.; Ye, X.; Chen, L.L. Low glycaemic index diets as an intervention for obesity: A systematic review and meta-analysis. Obes. Rev. 2019, 20, 290–315. [Google Scholar] [CrossRef]
- Islam, A.; Civitarese, A.E.; Hesslink, R.L.; Gallaher, D.D. Viscous Dietary Fiber Reduces Adiposity and Plasma Leptin and Increases Muscle Expression of Fat Oxidation Genes in Rats. Obesity 2012, 20, 349–355. [Google Scholar] [CrossRef]
- Anderson, J.J.; Celis-Morales, C.A.; Mackay, D.F.; Iliodromiti, S.; Lyall, D.M.; Sattar, N.; Gill, J.; Pell, J.P. Adiposity among 132 479 UK Biobank participants; contribution of sugar intake vs other macronutrients. Int. J. Epidemiol. 2017, 46, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Magriplis, E.; Michas, G.; Petridi, E.; Chrousos, G.P.; Roma, E.; Benetou, V.; Cholopoulos, N.; Micha, R.; Panagiotakos, D.; Zampelas, A. Dietary Sugar Intake and Its Association with Obesity in Children and Adolescents. Children 2021, 8, 676. [Google Scholar] [CrossRef] [PubMed]
- St George, S.M.; Van Horn, M.L.; Lawman, H.G.; Wilson, D.K. Reliability of 24-Hour Dietary Recalls as a Measure of Diet in African-American Youth. J. Acad. Nutr. Diet. 2016, 116, 1551–1559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravelli, M.N.; Schoeller, D.A. Traditional Self-Reported Dietary Instruments Are Prone to Inaccuracies and New Approaches Are Needed. Front. Nutr. 2020, 7, 90. [Google Scholar] [CrossRef]
- Luger, M.; Lafontan, M.; Bes-Rastrollo, M.; Winzer, E.; Yumuk, V.; Farpour-Lambert, N. Sugar-Sweetened Beverages and Weight Gain in Children and Adults: A Systematic Review from 2013 to 2015 and a Comparison with Previous Studies. Obes. Facts 2017, 10, 674–693. [Google Scholar] [CrossRef]
- Malik, V.S.; Pan, A.; Willett, W.C.; Hu, F.B. Sugar-sweetened beverages and weight gain in children and adults: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2013, 98, 1084–1102. [Google Scholar] [CrossRef]
- Nguyen, M.; Jarvis, S.E.; Tinajero, M.G.; Yu, J.; Chiavaroli, L.; Mejia, S.B.; Khan, T.A.; Tobias, D.K.; Willett, W.C.; Hu, F.B.; et al. Sugar-sweetened beverage consumption and weight gain in children and adults: A systematic review and meta-analysis of prospective cohort studies and randomized controlled trials. Am. J. Clin. Nutr. 2022, 117, 160–174. [Google Scholar] [CrossRef]
- Santos, L.P.; Gigante, D.P.; Delpino, F.M.; Maciel, A.P.; Bielemann, R.M. Sugar sweetened beverages intake and risk of obesity and cardiometabolic diseases in longitudinal studies: A systematic review and meta-analysis with 1.5 million individuals. Clin. Nutr. ESPEN 2022, 51, 128–142. [Google Scholar] [CrossRef]
- Malik, V.S.; Hu, F.B. Fructose and Cardiometabolic Health: What the Evidence From Sugar-Sweetened Beverages Tells Us. J. Am. Coll. Cardiol. 2015, 66, 1615–1624. [Google Scholar] [CrossRef]
- Miller, V.; Webb, P.; Cudhea, F.; Shi, P.; Zhang, J.; Reedy, J.; Erndt-Marino, J.; Coates, J.; Mozaffarian, D. Global dietary quality in 185 countries from 1990 to 2018 show wide differences by nation, age, education, and urbanicity. Nat. Food 2022, 3, 694–702. [Google Scholar] [CrossRef]
- Wang, M.; Yu, M.; Fang, L.; Hu, R.-Y. Association between sugar-sweetened beverages and type 2 diabetes: A meta-analysis. J. Diabetes Investig. 2015, 6, 360–366. [Google Scholar] [CrossRef]
- Tsilas, C.S.; de Souza, R.J.; Mejia, S.B.; Mirrahimi, A.; Cozma, A.I.; Jayalath, V.H.; Ha, V.; Tawfik, R.; Di Buono, M.; Jenkins, A.L.; et al. Relation of total sugars, fructose and sucrose with incident type 2 diabetes: A systematic review and meta-analysis of prospective cohort studies. CMAJ 2017, 189, E711–E720. [Google Scholar] [CrossRef]
- Jebril, M.; Liu, X.; Shi, Z.; Mazidi, M.; Altaher, A.; Wang, Y. Prevalence of Type 2 Diabetes and Its Association with Added Sugar Intake in Citizens and Refugees Aged 40 or Older in the Gaza Strip, Palestine. Int. J. Environ. Res. Public Health 2020, 17, 8594. [Google Scholar] [CrossRef]
- Weeratunga, P.; Jayasinghe, S.; Perera, Y.; Jayasena, G.; Jayasinghe, S. Per capita sugar consumption and prevalence of diabetes mellitus—Global and regional associations. BMC Public Health 2014, 14, 186. [Google Scholar] [CrossRef]
- Baena, M.; Sangüesa, G.; Dávalos, A.; Latasa, M.-J.; Sala-Vila, A.; Sánchez, R.M.; Roglans, N.; Laguna, J.C.; Alegret, M. Fructose, but not glucose, impairs insulin signaling in the three major insulin-sensitive tissues. Sci. Rep. 2016, 6, 26149. [Google Scholar] [CrossRef]
- McKeown, N.M.; Dashti, H.S.; Ma, J.; Haslam, D.E.; Kiefte-de Jong, J.C.; Smith, C.E.; Tanaka, T.; Graff, M.; Lemaitre, R.N.; Rybin, D.; et al. Sugar-sweetened beverage intake associations with fasting glucose and insulin concentrations are not modified by selected genetic variants in a ChREBP-FGF21 pathway: A meta-analysis. Diabetologia 2018, 61, 317–330. [Google Scholar] [CrossRef]
- Papier, K.; D’Este, C.; Bain, C.; Banwell, C.; Seubsman, S.; Sleigh, A.; Jordan, S. Consumption of sugar-sweetened beverages and type 2 diabetes incidence in Thai adults: Results from an 8-year prospective study. Nutr. Diabetes 2017, 7, e283. [Google Scholar] [CrossRef]
- Eshak, E.S.; Iso, H.; Mizoue, T.; Inoue, M.; Noda, M.; Tsugane, S. Soft drink, 100% fruit juice, and vegetable juice intakes and risk of diabetes mellitus. Clin. Nutr. 2013, 32, 300–308. [Google Scholar] [CrossRef]
- Sakurai, M.; Nakamura, K.; Miura, K.; Takamura, T.; Yoshita, K.; Nagasawa, S.Y.; Morikawa, Y.; Ishizaki, M.; Kido, T.; Naruse, Y.; et al. Sugar-sweetened beverage and diet soda consumption and the 7-year risk for type 2 diabetes mellitus in middle-aged Japanese men. Eur. J. Nutr. 2014, 53, 251–258. [Google Scholar] [CrossRef]
- Imamura, F.; O’Connor, L.; Ye, Z.; Mursu, J.; Hayashino, Y.; Bhupathiraju, S.N.; Forouhi, N.G. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: Systematic review, meta-analysis, and estimation of population attributable fraction. BMJ 2015, 351, h3576. [Google Scholar] [CrossRef]
- Malik, V.S.; Popkin, B.M.; Bray, G.A.; Després, J.P.; Willett, W.C.; Hu, F.B. Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: A meta-analysis. Diabetes Care 2010, 33, 2477–2483. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, D.C.; Threapleton, D.E.; Evans, C.E.L.; Cleghorn, C.L.; Nykjaer, C.; Woodhead, C.; Burley, V.J. Association between sugar-sweetened and artificially sweetened soft drinks and type 2 diabetes: Systematic review and dose-response meta-analysis of prospective studies. Br. J. Nutr. 2014, 112, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Li, S.; Khan, J.; Dai, Z.; Chang, L.; Hu, X.; Shen, Q.; Xue, Y. Sugar- and Artificially Sweetened Beverages Consumption Linked to Type 2 Diabetes, Cardiovascular Diseases, and All-Cause Mortality: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. Nutrients 2021, 13, 2636. [Google Scholar] [CrossRef] [PubMed]
- Xi, B.; Li, S.; Liu, Z.; Tian, H.; Yin, X.; Huai, P.; Tang, W.; Zhou, D.; Steffen, L.M. Intake of fruit juice and incidence of type 2 diabetes: A systematic review and meta-analysis. PLoS ONE 2014, 9, e93471. [Google Scholar] [CrossRef] [PubMed]
- Basu, S.; Yoffe, P.; Hills, N.; Lustig, R.H. The relationship of sugar to population-level diabetes prevalence: An econometric analysis of repeated cross-sectional data. PLoS ONE 2013, 8, e57873. [Google Scholar] [CrossRef]
- Janket, S.J.; Manson, J.E.; Sesso, H.; Buring, J.E.; Liu, S. A prospective study of sugar intake and risk of type 2 diabetes in women. Diabetes Care 2003, 26, 1008–1015. [Google Scholar] [CrossRef]
- Colditz, G.A.; Manson, J.E.; Stampfer, M.J.; Rosner, B.; Willett, W.C.; Speizer, F.E. Diet and risk of clinical diabetes in women. Am. J. Clin. Nutr. 1992, 55, 1018–1023. [Google Scholar] [CrossRef]
- Bazzano, L.A.; Li, T.Y.; Joshipura, K.J.; Hu, F.B. Intake of Fruit, Vegetables, and Fruit Juices and Risk of Diabetes in Women. Diabetes Care 2008, 31, 1311–1317. [Google Scholar] [CrossRef]
- Sluijs, I.; Beulens, J.W.; van der Schouw, Y.T.; van der, A.D.; Buckland, G.; Kuijsten, A.; Schulze, M.B.; Amiano, P.; Ardanaz, E.; Balkau, B.; et al. Dietary glycemic index, glycemic load, and digestible carbohydrate intake are not associated with risk of type 2 diabetes in eight European countries. J. Nutr. 2013, 143, 93–99. [Google Scholar] [CrossRef]
- Ahmadi-Abhari, S.; Luben, R.N.; Powell, N.; Bhaniani, A.; Chowdhury, R.; Wareham, N.J.; Forouhi, N.G.; Khaw, K.T. Dietary intake of carbohydrates and risk of type 2 diabetes: The European Prospective Investigation into Cancer-Norfolk study. Br. J. Nutr. 2014, 111, 342–352. [Google Scholar] [CrossRef]
- Khan, T.; Chen, V.; Lee, D.; Tayyiba, M.; Saleh, A.; Ahmed, A.; Au-Yeung, F.; Mejia, S.B.; Chiavaroli, L.; Malik, V.; et al. Important Food Sources of Sugars and Type 2 Diabetes: A Systematic Review and Meta-analysis of Prospective Cohort Studies. Can. J. Diabetes 2022, 46, S11–S12. [Google Scholar] [CrossRef]
- Meyer, K.A.; Kushi, L.H.; Jacobs, D.R., Jr.; Slavin, J.; Sellers, T.A.; Folsom, A.R. Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am. J. Clin. Nutr. 2000, 71, 921–930. [Google Scholar] [CrossRef]
- Aune, D.; Norat, T.; Romundstad, P.; Vatten, L.J. Whole grain and refined grain consumption and the risk of type 2 diabetes: A systematic review and dose-response meta-analysis of cohort studies. Eur. J. Epidemiol. 2013, 28, 845–858. [Google Scholar] [CrossRef]
- Li, M.; Fan, Y.; Zhang, X.; Hou, W.; Tang, Z. Fruit and vegetable intake and risk of type 2 diabetes mellitus: Meta-analysis of prospective cohort studies. BMJ Open 2014, 4, e005497. [Google Scholar] [CrossRef]
- Rice Bradley, B.H. Dietary Fat and Risk for Type 2 Diabetes: A Review of Recent Research. Curr. Nutr. Rep. 2018, 7, 214–226. [Google Scholar] [CrossRef]
- Aune, D.; Norat, T.; Romundstad, P.; Vatten, L.J. Dairy products and the risk of type 2 diabetes: A systematic review and dose-response meta-analysis of cohort studies. Am. J. Clin. Nutr. 2013, 98, 1066–1083. [Google Scholar] [CrossRef]
- Bernstein, A.M.; de Koning, L.; Flint, A.J.; Rexrode, K.M.; Willett, W.C. Soda consumption and the risk of stroke in men and women. Am. J. Clin. Nutr. 2012, 95, 1190–1199. [Google Scholar] [CrossRef]
- Montonen, J.; Järvinen, R.; Knekt, P.; Heliövaara, M.; Reunanen, A. Consumption of sweetened beverages and intakes of fructose and glucose predict type 2 diabetes occurrence. J. Nutr. 2007, 137, 1447–1454. [Google Scholar] [CrossRef]
- Paynter, N.P.; Yeh, H.C.; Voutilainen, S.; Schmidt, M.I.; Heiss, G.; Folsom, A.R.; Brancati, F.L.; Kao, W.H. Coffee and sweetened beverage consumption and the risk of type 2 diabetes mellitus: The atherosclerosis risk in communities study. Am. J. Epidemiol. 2006, 164, 1075–1084. [Google Scholar] [CrossRef]
- Te Morenga, L.A.; Howatson, A.J.; Jones, R.M.; Mann, J. Dietary sugars and cardiometabolic risk: Systematic review and meta-analyses of randomized controlled trials of the effects on blood pressure and lipids. Am. J. Clin. Nutr. 2014, 100, 65–79. [Google Scholar] [CrossRef]
- Li, Y.; Hruby, A.; Bernstein, A.M.; Ley, S.H.; Wang, D.D.; Chiuve, S.E.; Sampson, L.; Rexrode, K.M.; Rimm, E.B.; Willett, W.C.; et al. Saturated Fats Compared With Unsaturated Fats and Sources of Carbohydrates in Relation to Risk of Coronary Heart Disease: A Prospective Cohort Study. J. Am. Coll. Cardiol. 2015, 66, 1538–1548. [Google Scholar] [CrossRef] [PubMed]
- Dehghan, M.; Mente, A.; Zhang, X.; Swaminathan, S.; Li, W.; Mohan, V.; Iqbal, R.; Kumar, R.; Wentzel-Viljoen, E.; Rosengren, A.; et al. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): A prospective cohort study. Lancet 2017, 390, 2050–2062. [Google Scholar] [CrossRef] [PubMed]
- Saadatagah, S.; Pasha, A.K.; Alhalabi, L.; Sandhyavenu, H.; Farwati, M.; Smith, C.Y.; Wood-Wentz, C.M.; Bailey, K.R.; Kullo, I.J. Coronary Heart Disease Risk Associated with Primary Isolated Hypertriglyceridemia; a Population-Based Study. J. Am. Heart Assoc. 2021, 10, e019343. [Google Scholar] [CrossRef] [PubMed]
- Toth, P.P.; Shah, P.K.; Lepor, N.E. Targeting hypertriglyceridemia to mitigate cardiovascular risk: A review. Am J Prev Cardiol. 2020, 3, 100086. [Google Scholar] [CrossRef] [PubMed]
- Adeva-Andany, M.M.; Martínez-Rodríguez, J.; González-Lucán, M.; Fernández-Fernández, C.; Castro-Quintela, E. Insulin resistance is a cardiovascular risk factor in humans. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 1449–1455. [Google Scholar] [CrossRef]
- Després, J.P.; Lamarche, B.; Mauriège, P.; Cantin, B.; Dagenais, G.R.; Moorjani, S.; Lupien, P.J. Hyperinsulinemia as an independent risk factor for ischemic heart disease. N. Engl. J. Med. 1996, 334, 952–957. [Google Scholar] [CrossRef]
- Van Rompay, M.I.; McKeown, N.M.; Goodman, E.; Eliasziw, M.; Chomitz, V.R.; Gordon, C.M.; Economos, C.D.; Sacheck, J.M. Sugar-Sweetened Beverage Intake Is Positively Associated with Baseline Triglyceride Concentrations, and Changes in Intake Are Inversely Associated with Changes in HDL Cholesterol over 12 Months in a Multi-Ethnic Sample of Children. J. Nutr. 2015, 145, 2389–2395. [Google Scholar] [CrossRef]
- Watts, M.E.; Pocock, R.; Claudianos, C. Brain Energy and Oxygen Metabolism: Emerging Role in Normal Function and Disease. Front. Mol. Neurosci. 2018, 11, 216. [Google Scholar] [CrossRef]
- Mergenthaler, P.; Lindauer, U.; Dienel, G.A.; Meisel, A. Sugar for the brain: The role of glucose in physiological and pathological brain function. Trends Neurosci. 2013, 36, 587–597. [Google Scholar] [CrossRef]
- Lien, L.; Lien, N.; Heyerdahl, S.; Thoresen, M.; Bjertness, E. Consumption of soft drinks and hyperactivity, mental distress, and conduct problems among adolescents in Oslo, Norway. Am. J. Public Health 2006, 96, 1815–1820. [Google Scholar] [CrossRef]
- Jeong, S.K.; Nam, H.S.; Son, M.H.; Son, E.J.; Cho, K.H. Interactive Effect of Obesity Indexes on Cognition. Dement Geriatr Cogn Disord. 2005, 19, 91–96. [Google Scholar] [CrossRef]
- Hassing, L.B.; Dahl, A.K.; Pedersen, N.L.; Johansson, B. Overweight in Midlife Is Related to Lower Cognitive Function 30 Years Later: A Prospective Study with Longitudinal Assessments. Dement. Geriatr. Cogn. Disord. 2010, 29, 543–552. [Google Scholar] [CrossRef]
- Kuang, H.; Sun, M.; Lv, J.; Li, J.; Wu, C.; Chen, N.; Bo, L.; Wei, X.; Gu, X.; Liu, Z.; et al. Hippocampal apoptosis involved in learning deficits in the offspring exposed to maternal high sucrose diets. J. Nutr. Biochem. 2014, 25, 985–990. [Google Scholar] [CrossRef]
- Yamazaki, M.; Yamada, H.; Munetsuna, E.; Ishikawa, H.; Mizuno, G.; Mukuda, T.; Mouri, A.; Nabeshima, T.; Saito, K.; Suzuki, K.; et al. Excess maternal fructose consumption impairs hippocampal function in offspring via epigenetic modification of BDNF promoter. FASEB J. 2018, 32, 2549–2562. [Google Scholar] [CrossRef]
- Cohen, J.F.W.; Rifas-Shiman, S.L.; Young, J.; Oken, E. Associations of Prenatal and Child Sugar Intake with Child Cognition. Am. J. Prev. Med. 2018, 54, 727–735. [Google Scholar] [CrossRef]
- Berger, P.K.; Plows, J.F.; Jones, R.B.; Alderete, T.L.; Rios, C.; Pickering, T.A.; Fields, D.A.; Bode, L.; Peterson, B.S.; Goran, M.I. Associations of maternal fructose and sugar-sweetened beverage and juice intake during lactation with infant neurodevelopmental outcomes at 24 months. Am. J. Clin. Nutr. 2020, 112, 1516–1522. [Google Scholar] [CrossRef]
- Gao, R.; Liu, X.; Li, X.; Zhang, Y.; Wei, M.; Sun, P.; Zhang, J.; Cai, L. Association between maternal sugar-sweetened beverage consumption and the social-emotional development of child before 1 year old: A prospective cohort study. Front. Nutr. 2022, 9, 966271. [Google Scholar] [CrossRef]
- Berger, P.K.; Monk, C.; Bansal, R.; Sawardekar, S.; Goran, M.I.; Peterson, B.S. Association of Prenatal Sugar Consumption with Newborn Brain Tissue Organization. Nutrients 2021, 13, 2435. [Google Scholar] [CrossRef]
- Choi, C.S.; Kim, P.; Park, J.H.; Gonzales, E.L.; Kim, K.C.; Cho, K.S.; Ko, M.J.; Yang, S.M.; Seung, H.; Han, S.H.; et al. High sucrose consumption during pregnancy induced ADHD-like behavioral phenotypes in mice offspring. J. Nutr. Biochem. 2015, 26, 1520–1526. [Google Scholar] [CrossRef]
- Miller, D.J.; Derefinko, K.J.; Lynam, D.R.; Milich, R.; Fillmore, M.T. Impulsivity and Attention Deficit-Hyperactivity Disorder: Subtype Classification Using the UPPS Impulsive Behavior Scale. J. Psychopathol. Behav. Assess. 2010, 32, 323–332. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Li, L.; Taylor, M.J.; Bälter, K.; Kuja-Halkola, R.; Chen, Q.; Hegvik, T.A.; Tate, A.E.; Chang, Z.; Arias-Vásquez, A.; Hartman, C.A.; et al. Attention-deficit/hyperactivity disorder symptoms and dietary habits in adulthood: A large population-based twin study in Sweden. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2020, 183, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Yang, Y.; Wang, X.; Yang, R.; Li, X. The Association between Sugar-Sweetened Beverages and Cognitive Function in Middle-Aged and Older People: A Meta-Analysis. J. Prev. Alzheimers Dis. 2022, 9, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.G.; Wu, J.; Feng, L.; Yuan, J.M.; Koh, E.P.; Pan, A. [Sugar-sweetened beverages consumption in midlife and risk of late-life cognitive impairment in Chinese adults]. Zhonghua Liu Xing Bing Xue Za Zhi 2020, 41, 55–61. [Google Scholar] [PubMed]
- Crichton, G.E.; Elias, M.F.; Torres, R.V. Sugar-sweetened soft drinks are associated with poorer cognitive function in individuals with type 2 diabetes: The Maine–Syracuse Longitudinal Study. Br. J. Nutr. 2016, 115, 1397–1405. [Google Scholar] [CrossRef]
- García, C.R.; Piernas, C.; Martínez-Rodríguez, A.; Hernández-Morante, J.J. Effect of glucose and sucrose on cognition in healthy humans: A systematic review and meta-analysis of interventional studies. Nutr. Rev. 2021, 79, 171–187. [Google Scholar] [CrossRef]
- Stollery, B.; Christian, L. Glucose improves object-location binding in visual-spatial working memory. Psychopharmacology 2016, 233, 529–547. [Google Scholar] [CrossRef]
- Hope, C.; Seiss, E.; Dean, P.J.; Williams, K.E.; Sterr, A. Consumption of glucose drinks slows sensorimotor processing: Double-blind placebo-controlled studies with the Eriksen flanker task. Front. Hum. Neurosci. 2013, 7, 651. [Google Scholar] [CrossRef]
- Brandt, K.R. Effects of glucose administration on category exclusion recognition. J. Psychopharmacol. 2015, 29, 777–782. [Google Scholar] [CrossRef]
- Gagnon, C.; Greenwood, C.E.; Bherer, L. The acute effects of glucose ingestion on attentional control in fasting healthy older adults. Psychopharmacology 2010, 211, 337–346. [Google Scholar] [CrossRef]
- Adan, A.; Serra-Grabulosa, J.M. Effects of caffeine and glucose, alone and combined, on cognitive performance. Hum. Psychopharmacol. 2010, 25, 310–317. [Google Scholar] [CrossRef]
- Kennedy, D.O.; Scholey, A.B. Glucose administration, heart rate and cognitive performance: Effects of increasing mental effort. Psychopharmacology 2000, 149, 63–71. [Google Scholar] [CrossRef]
- Macpherson, H.; Roberstson, B.; Sünram-Lea, S.; Stough, C.; Kennedy, D.; Scholey, A. Glucose administration and cognitive function: Differential effects of age and effort during a dual task paradigm in younger and older adults. Psychopharmacology 2015, 232, 1135–1142. [Google Scholar] [CrossRef] [PubMed]
- Owen, L.; Finnegan, Y.; Hu, H.; Scholey, A.B.; Sünram-Lea, S.I. Glucose effects on long-term memory performance: Duration and domain specificity. Psychopharmacology 2010, 211, 131–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scholey, A.B.; Sünram-Lea, S.I.; Greer, J.; Elliott, J.; Kennedy, D.O. Glucose administration prior to a divided attention task improves tracking performance but not word recognition: Evidence against differential memory enhancement? Psychopharmacology 2009, 202, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Peña-Jorquera, H.; Campos-Núñez, V.; Sadarangani, K.P.; Ferrari, G.; Jorquera-Aguilera, C.; Cristi-Montero, C. Breakfast: A Crucial Meal for Adolescents’ Cognitive Performance According to Their Nutritional Status. The Cogni-Action Project. Nutrients 2021, 13, 1320. [Google Scholar] [CrossRef]
- Galioto, R.; Spitznagel, M.B. The Effects of Breakfast and Breakfast Composition on Cognition in Adults. Adv. Nutr. 2016, 7, 576s–589s. [Google Scholar] [CrossRef]
- Szoke, E.; Shrayyef, M.Z.; Messing, S.; Woerle, H.J.; van Haeften, T.W.; Meyer, C.; Mitrakou, A.; Pimenta, W.; Gerich, J.E. Effect of Aging on Glucose Homeostasis: Accelerated deterioration of β-cell function in individuals with impaired glucose tolerance. Diabetes Care 2008, 31, 539–543. [Google Scholar] [CrossRef]
- van der Zwaluw, N.L.; van de Rest, O.; Kessels, R.P.; de Groot, L.C. Short-term effects of glucose and sucrose on cognitive performance and mood in elderly people. J. Clin. Exp. Neuropsychol. 2014, 36, 517–527. [Google Scholar] [CrossRef]
- Messier, C.; Gagnon, M. Glucose regulation and cognitive functions: Relation to Alzheimer’s disease and diabetes. Behav. Brain Res. 1996, 75, 1–11. [Google Scholar] [CrossRef]
- Kaplan, R.J.; Greenwood, C.E.; Winocur, G.; Wolever, T.M. Cognitive performance is associated with glucose regulation in healthy elderly persons and can be enhanced with glucose and dietary carbohydrates. Am. J. Clin. Nutr. 2000, 72, 825–836. [Google Scholar] [CrossRef]
- Korol, D.L.; Gold, P.E. Glucose, memory, and aging. Am. J. Clin. Nutr. 1998, 67, 764s–771s. [Google Scholar] [CrossRef]
- Azari, N.P. Effects of glucose on memory processes in young adults. Psychopharmacology 1991, 105, 521–524. [Google Scholar] [CrossRef]
- Meikle, A.; Riby, L.M.; Stollery, B. The impact of glucose ingestion and gluco-regulatory control on cognitive performance: A comparison of younger and middle aged adults. Hum. Psychopharmacol. 2004, 19, 523–535. [Google Scholar] [CrossRef]
- Riby, L.M.; McLaughlin, J.; Riby, D.M.; Graham, C. Lifestyle, glucose regulation and the cognitive effects of glucose load in middle-aged adults. Br. J. Nutr. 2008, 100, 1128–1134. [Google Scholar] [CrossRef]
- Martin, P.Y.; Benton, D. The Influence of a Glucose Drink on a Demanding Working Memory Task. Physiol. Behav. 1999, 67, 69–74. [Google Scholar] [CrossRef]
- Craft, S.; Murphy, C.; Wemstrom, J. Glucose effects on complex memory and nonmemory tasks: The influence of age, sex, and glucoregulatory response. Psychobiology 1994, 22, 95–105. [Google Scholar] [CrossRef]
- Duffy, C.M.; Hofmeister, J.J.; Nixon, J.P.; Butterick, T.A. High fat diet increases cognitive decline and neuroinflammation in a model of orexin loss. Neurobiol. Learn. Mem. 2019, 157, 41–47. [Google Scholar] [CrossRef]
- Chiu, S.; Williams, P.T.; Krauss, R.M. Effects of a very high saturated fat diet on LDL particles in adults with atherogenic dyslipidemia: A randomized controlled trial. PLoS ONE 2017, 12, e0170664. [Google Scholar] [CrossRef]
- de Paula, G.C.; Brunetta, H.S.; Engel, D.F.; Gaspar, J.M.; Velloso, L.A.; Engblom, D.; de Oliveira, J.; de Bem, A.F. Hippocampal Function Is Impaired by a Short-Term High-Fat Diet in Mice: Increased Blood–Brain Barrier Permeability and Neuroinflammation as Triggering Events. Front. Neurosci. 2021, 15, 734158. [Google Scholar] [CrossRef]
- He, F.J.; Li, J.; Macgregor, G.A. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. BMJ 2013, 346, f1325. [Google Scholar] [CrossRef]
- Gao, H.; Song, R.; Li, Y.; Zhang, W.; Wan, Z.; Wang, Y.; Zhang, H.; Han, S. Effects of Oat Fiber Intervention on Cognitive Behavior in LDLR(-/-) Mice Modeling Atherosclerosis by Targeting the Microbiome-Gut-Brain Axis. J. Agric. Food Chem. 2020, 68, 14480–14491. [Google Scholar] [CrossRef] [PubMed]
- Bourassa, M.W.; Alim, I.; Bultman, S.J.; Ratan, R.R. Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health? Neurosci. Lett. 2016, 625, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Benton, D.; Owens, D.S. Blood glucose and human memory. Psychopharmacology 1993, 113, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Flint, R.W., Jr.; Turek, C. Glucose effects on a continuous performance test of attention in adults. Behav. Brain Res. 2003, 142, 217–228. [Google Scholar] [CrossRef]
- Messier, C.; Whately, K.; Liang, J.; Du, L.; Puissant, D. The effects of a high-fat, high-fructose, and combination diet on learning, weight, and glucose regulation in C57BL/6 mice. Behav. Brain Res. 2007, 178, 139–145. [Google Scholar] [CrossRef]
- Miles, B.; Yang, W.; Dezsi, G.; Sokolenko, E.; Gomes, F.M.M.; Jupp, B.; Hill, R.; Hudson, M.; Jones, N.C. High sucrose diet does not impact spatial cognition in rats using advanced touchscreen technology. Behav. Brain Res. 2022, 418, 113665. [Google Scholar] [CrossRef]
- Ross, A.P.; Bartness, T.J.; Mielke, J.G.; Parent, M.B. A high fructose diet impairs spatial memory in male rats. Neurobiol. Learn. Mem. 2009, 92, 410–416. [Google Scholar] [CrossRef]
- Jacques, A.; Chaaya, N.; Beecher, K.; Ali, S.A.; Belmer, A.; Bartlett, S. The impact of sugar consumption on stress driven, emotional and addictive behaviors. Neurosci. Biobehav. Rev. 2019, 103, 178–199. [Google Scholar] [CrossRef]
- Mantantzis, K.; Schlaghecken, F.; Sünram-Lea, S.I.; Maylor, E.A. Sugar rush or sugar crash? A meta-analysis of carbohydrate effects on mood. Neurosci. Biobehav. Rev. 2019, 101, 45–67. [Google Scholar] [CrossRef]
- van de Rest, O.; van der Zwaluw, N.L.; de Groot, L. Effects of glucose and sucrose on mood: A systematic review of interventional studies. Nutr. Rev. 2018, 76, 108–116. [Google Scholar] [CrossRef]
- Reid, M.; Hammersley, R. Effects of carbohydrate intake on subsequent food intake and mood state. Physiol. Behav. 1995, 58, 421–427. [Google Scholar] [CrossRef]
- Sünram-Lea, S.I.; Owen, L.; Finnegan, Y.; Hu, H. Dose-response investigation into glucose facilitation of memory performance and mood in healthy young adults. J. Psychopharmacol. 2011, 25, 1076–1087. [Google Scholar] [CrossRef]
- Merbis, M.A.E.; Snoek, F.J.; Kanc, K.; Heine, R.J. Hypoglycaemia induces emotional disruption. Patient Educ. Couns. 1996, 29, 117–122. [Google Scholar] [CrossRef]
- Gold, A.E.; MacLeod, K.M.; Frier, B.M.; Deary, I.J. Changes in mood during acute hypoglycemia in healthy participants. J. Pers. Soc. Psychol. 1995, 68, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Knüppel, A.; Shipley, M.J.; Llewellyn, C.H.; Brunner, E.J. Sugar intake from sweet food and beverages, common mental disorder and depression: Prospective findings from the Whitehall II study. Sci. Rep. 2017, 7, 6287. [Google Scholar] [CrossRef]
- Westover, A.N.; Marangell, L.B. A cross-national relationship between sugar consumption and major depression? Depress. Anxiety 2002, 16, 118–120. [Google Scholar] [CrossRef]
- Shi, Z.; Taylor, A.W.; Wittert, G.; Goldney, R.; Gill, T.K. Soft drink consumption and mental health problems among adults in Australia. Public Health Nutr. 2010, 13, 1073–1079. [Google Scholar] [CrossRef]
- Aucoin, M.; LaChance, L.; Naidoo, U.; Remy, D.; Shekdar, T.; Sayar, N.; Cardozo, V.; Rawana, T.; Chan, I.; Cooley, K. Diet and Anxiety: A Scoping Review. Nutrients 2021, 13, 4418. [Google Scholar] [CrossRef]
- Molteni, R.; Barnard, R.J.; Ying, Z.; Roberts, C.K.; Gómez-Pinilla, F. A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience 2002, 112, 803–814. [Google Scholar] [CrossRef]
- Avena, N.M.; Rada, P.; Hoebel, B.G. Evidence for sugar addiction: Behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci. Biobehav. Rev. 2008, 32, 20–39. [Google Scholar] [CrossRef]
- Kim, S.; Shou, J.; Abera, S.; Ziff, E.B. Sucrose withdrawal induces depression and anxiety-like behavior by Kir2.1 upregulation in the nucleus accumbens. Neuropharmacology 2018, 130, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Koob, G. Addiction is a Reward Deficit and Stress Surfeit Disorder. Front. Psychiatry 2013, 4, 72. [Google Scholar] [CrossRef] [PubMed]
- Bayassi-Jakowicka, M.; Lietzau, G.; Czuba, E.; Patrone, C.; Kowiański, P. More than Addiction-The Nucleus Accumbens Contribution to Development of Mental Disorders and Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 2618. [Google Scholar] [CrossRef] [PubMed]
- Wideman, C.H.; Nadzam, G.R.; Murphy, H.M. Implications of an animal model of sugar addiction, withdrawal and relapse for human health. Nutr. Neurosci. 2005, 8, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Payant, M.A.; Chee, M.J. Neural mechanisms underlying the role of fructose in overfeeding. Neurosci. Biobehav. Rev. 2021, 128, 346–357. [Google Scholar] [CrossRef]
- Machado, M.V.; Cortez-Pinto, H. Diet, Microbiota, Obesity, and NAFLD: A Dangerous Quartet. Int. J. Mol. Sci. 2016, 17, 481. [Google Scholar] [CrossRef]
- Malesza, I.J.; Malesza, M.; Walkowiak, J.; Mussin, N.; Walkowiak, D.; Aringazina, R.; Bartkowiak-Wieczorek, J.; Mądry, E. High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. Cells 2021, 10, 3164. [Google Scholar] [CrossRef]
- Klingbeil, E.; de La Serre, C.B. Microbiota modulation by eating patterns and diet composition: Impact on food intake. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 315, R1254–R1260. [Google Scholar] [CrossRef]
- Li, J.-M.; Yu, R.; Zhang, L.-P.; Wen, S.-Y.; Wang, S.-J.; Zhang, X.-Y.; Xu, Q.; Kong, L.-D. Dietary fructose-induced gut dysbiosis promotes mouse hippocampal neuroinflammation: A benefit of short-chain fatty acids. Microbiome 2019, 7, 98. [Google Scholar] [CrossRef]
- Lambertz, J.; Weiskirchen, S.; Landert, S.; Weiskirchen, R. Fructose: A Dietary Sugar in Crosstalk with Microbiota Contributing to the Development and Progression of Non-Alcoholic Liver Disease. Front. Immunol. 2017, 8, 1159. [Google Scholar] [CrossRef]
- Jones, R.B.; Alderete, T.L.; Kim, J.S.; Millstein, J.; Gilliland, F.D.; Goran, M.I. High intake of dietary fructose in overweight/obese teenagers associated with depletion of Eubacterium and Streptococcus in gut microbiome. Gut Microbes 2019, 10, 712–719. [Google Scholar] [CrossRef]
- Leigh, S.J.; Morris, M.J. Diet, inflammation and the gut microbiome: Mechanisms for obesity-associated cognitive impairment. Biochim. Biophys. Acta Mol. Basis. Dis. 2020, 1866, 165767. [Google Scholar] [CrossRef]
- Mohammad, S.; Thiemermann, C. Role of Metabolic Endotoxemia in Systemic Inflammation and Potential Interventions. Front. Immunol. 2020, 11, 594150. [Google Scholar] [CrossRef]
- Liu, G.; Yu, Q.; Tan, B.; Ke, X.; Zhang, C.; Li, H.; Zhang, T.; Lu, Y. Gut dysbiosis impairs hippocampal plasticity and behaviors by remodeling serum metabolome. Gut Microbes 2022, 14, 2104089. [Google Scholar] [CrossRef]
- Livingston, M.; Callinan, S. Underreporting in alcohol surveys: Whose drinking is underestimated? J. Stud. Alcohol. Drugs 2015, 76, 158–164. [Google Scholar] [CrossRef]
- Moynihan, P. Sugars and Dental Caries: Evidence for Setting a Recommended Threshold for Intake. Adv. Nutr. 2016, 7, 149–156. [Google Scholar] [CrossRef] [Green Version]
Condition | Relationship | Impact on Related Systems |
---|---|---|
CHD [14,15,16,17,18] | ↑ |
|
Stroke [25,26,27,28] | ↑ | |
T2DM [29,30,31,32,33,34,35,36,37,38] | ↑ | |
NAFLD [40] | ↑ | |
Metabolic Syndrome [41,42,43] | ↑ | |
Executive function [8,10,28,44,45,46,47,48,49,50,51,52,53,54,55,56] | ↓ | |
Obesity [21,37,43,63] | ↑ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gillespie, K.M.; Kemps, E.; White, M.J.; Bartlett, S.E. The Impact of Free Sugar on Human Health—A Narrative Review. Nutrients 2023, 15, 889. https://doi.org/10.3390/nu15040889
Gillespie KM, Kemps E, White MJ, Bartlett SE. The Impact of Free Sugar on Human Health—A Narrative Review. Nutrients. 2023; 15(4):889. https://doi.org/10.3390/nu15040889
Chicago/Turabian StyleGillespie, Kerri M., Eva Kemps, Melanie J. White, and Selena E. Bartlett. 2023. "The Impact of Free Sugar on Human Health—A Narrative Review" Nutrients 15, no. 4: 889. https://doi.org/10.3390/nu15040889
APA StyleGillespie, K. M., Kemps, E., White, M. J., & Bartlett, S. E. (2023). The Impact of Free Sugar on Human Health—A Narrative Review. Nutrients, 15(4), 889. https://doi.org/10.3390/nu15040889