The Impact of Diet and Physical Activity on Psoriasis: A Narrative Review of the Current Evidence
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Psoriasis and Its Connection with Genes
3.2. Nutrients and Dietary Components in Psoriasis
3.3. Types of Diet and Nutritional Systems in the Treatment of Psoriasis
3.4. Application of Nutrigenetics in the Psoriasis Therapy
3.5. Benefits of Physical Activity with a Focus on Inflammation and Oxidative Stress
3.6. The Role of Physical Exercise in Psoriasis Prevention and Treatment
Study/Year/Country | Study Design/Number Participants | Time Period | Category of Physical Activity and Detection | Main Result: RR/HR/OR, 95%CI | Author’s Conclusion |
---|---|---|---|---|---|
Frankel et al. 2012, USA [87] | Cohort 86,655 female nurses | 1991–2005 | Self-reported average time/week of recreational activity: walking, jogging, running, bicycles, swimming, performing calisthenics, aerobic, playing tennis, and others, performed during the preceding year | Decreased adjusted for age RR of psoriasis in the most active quintile vs. least active quintile: RR = 0.72 (95%CI: 0.59–0.89). Adjusting for age, BMI, smoking, and alcohol intake in the analysis did not substantially change the summary risk estimates: RR = 0.73 (0.54–0.81) | Vigorous PA prevents against incident of psoriasis |
Balato et al. 2015, Italy [88] | Cross-sectional 400 cases, 498 controls | September 2012–June 2013 | Questionnaire identifying sport history: type of practiced sports, frequency, number of years regarding practice of sports | Mean duration of sport activity (years ± SD): psoriasis group 4.0 (10.3), control group 4.2 (9.3) Duration (hours/week): <3 h: cases 4.5% controls 4.2% 3–7 h: cases 3.5% controls 5.8% >7 h: cases 3.0%controls 4.4% | Regular vigorous PA may lower the risk of psoriasis |
Torres et al. 2014, Portugal [89] | Case-control 90 cases, 160 controls | NP | TA assessed using the International Physical Activity Questionnaire Short Form | Patients with severe psoriasis were 3.42 times less physically active compared to patients without psoriasis: OR = 3.42 (1.47–7.9). Low-intensity PA: cases 18.9%, controls 6.3% Moderate-intensity PA: cases 51.1%, controls 37.6% High-intensity PA: cases 48.9%, controls 62.4% | Patients with psoriasis undertake lower-intensity PA |
Do et al. 2015, USA [90] | Cohort 6549 158 cases, 6011 controls | 2003–2006 | Responses to survey questions on moderate-to-vigorous leisure-time PA (duration, intensity, frequency in the past 30 days). Standardized measure of intensity in MET-min/week | Participation in leisure moderate-to-vigorous PA: cases 65.5% controls 69.7%; the difference was statistically insignificant. MET-min/week engaging in moderate-to-vigorous PA was lower by 30% for patients having fewer or more cutaneous skin lesions than individuals who were never diagnosed with psoriasis | There is a need to develop an effective measure for severity of psoriasis to increase engaging in PA among psoriasis patients |
Goto et al. 2020, Japan [91] | Cohort 487,835 participants, 2793 cases | 2012–2018 | Self-reported PA (walking and exercise) | Exercise to sweat lightly for less than 1 h/week is associated with the risk of psoriasis: HR = 1.13 (1.05–1.22) | Dietary intervention and PA may reduce psoriasis outcomes and the risk related to systemic inflammation |
Enos et al. USA 2022 [92] | Case-control 20 cases, 23 controls | NP | The self-efficacy questionnaire for exercise scale. Accelerometer—assessed PA and two 20 min bouts on a treadmill-measure | No statistically significant difference in duration of exercising between psoriasis patients and healthy controls (mean exercise time 26 (4) min vs. 27 (4)). Patients with psoriasis selected treadmill speeds that were 13–18% slower than controls. At the same time, they experienced more pruritus when exercising | Patients with extensive psoriasis and poorer self-efficacy for exercise take up less exercise and take fewer footsteps |
Nowowiejska et al. 2022 [93] | Case-control | NP | International Physical Activity Questionnaire PA: walking, moderate or vigorous, performed during the past 7 days (in MET-min/week) | Statistically significant difference in intensity of PA between cases and controls Median activity: cases 693 MET-min/week controls 2016 MET-min/week Levels of PA cases: 48.2% low, 32.1% moderate, 19.6% high controls: 19.4% low, 47.2% moderate, 33.3% high PA was not correlated with psoriasis area and severity | Individuals with psoriasis undertake lower-intensity PA |
4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Liu, Y.; Zhao, Z.; Qiu, J. Oxidative stress in the skin: Impact and related protection. Int. J. Cosmet. Sci. 2021, 43, 495–509. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Oxidative stress: A concept in redox biology and medicine. Redox Biol. 2015, 4, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Kurd, S.K.; Gelfand, J.M. The prevalence of previously diagnosed and undiagnosed psoriasis in US adults: Results from NHANES 2003–2004. J. Am. Acad. Dermatol. 2009, 60, 218–224. [Google Scholar] [CrossRef]
- Zheng, Q.; Sun, X.Y.; Miao, X.; Xu, R.; Ma, T.; Zhang, Y.N.; Li, H.J.; Li, B.; Li, X. Association between physical activity and risk of prevalent psoriasis: A MOOSE-compliant meta-analysis. Medicine 2018, 97, e11394. [Google Scholar] [CrossRef]
- Owczarczyk-Saczonek, A.; Purzycka-Bohdan, D.; Nedoszytko, B.; Reich, A.; Szczerkowska-Dobosz, A.; Bartosiñska, J.; Batycka-Baran, A.; Czajkowski, R.; Dobrucki, I.T.; Dobrucki, L.W.; et al. Pathogenesis of psoriasis in the “omic” era. Part III. Metabolic disorders, metabolomics, nutrigenomics in psoriasis. Postepy Dermatol. Alergol. 2020, 37, 452–467. [Google Scholar] [CrossRef] [PubMed]
- Rendon, A.; Schäkel, K. Psoriasis pathogenesis and treatment. Int. J. Mol. Sci. 2019, 20, 1475. [Google Scholar] [CrossRef]
- Pietrzak, D.; Pietrzak, A.; Krasowska, D.; Borzęcki, A.; Franciszkiewicz-Pietrzak, K.; Polkowska-Pruszyńska, B.; Baranowska, M.; Reich, K. Digestive system in psoriasis: An update. Arch. Dermatol. Res. 2017, 309, 679–693. [Google Scholar] [CrossRef]
- Wilson, P.B.; Bohjanen, K.A.; Ingraham, S.J.; Leon, A.S. Psoriasis and physical activity: A review. J. Eur. Acad. Dermatol. Venereol. 2012, 26, 1345–1353. [Google Scholar] [CrossRef]
- Sharma, P.; Dwivedi, S. Nutrigenomics and Nutrigenetics: New Insight in Disease Prevention and Cure. Indian J. Clin. Biochem. 2017, 32, 371–373. [Google Scholar] [CrossRef]
- Uthpala, T.G.G.; Fernando, H.N.; Thibbotuwawa, A.; Jaysinghe, M. Importance of nutrigenomics and nutrigenetics in food science. MOJ Food Process. Technol. 2020, 8, 114–119. Available online: https://medcraveonline.com/MOJFPT/MOJFPT-08-00250.pdf (accessed on 6 January 2023).
- Prinz, J.C. Human Leukocyte Antigen-Class I Alleles and the Autoreactive T Cell Response in Psoriasis Pathogenesis. Front. Immunol. 2018, 9, 954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timis, T.L.; Orasan, R.I. Understanding psoriasis: Role of miRNAs. Biomed. Rep. 2018, 9, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Woo, Y.R.; Cho, D.H.; Park, H.J. Molecular Mechanisms and management of a cutaneous inflammatory disorder: Psoriasis. Int. J. Mol. Sci. 2017, 18, 2684. [Google Scholar] [CrossRef] [PubMed]
- Quintanilha, B.J.; Reis, B.Z.; Duarte, G.; Cozzolino, S.; Rogero, M.M. Nutrimiromics: Role of microRNAs and Nutrition in Modulating Inflammation and Chronic Diseases. Nutrients 2017, 9, 1168. [Google Scholar] [CrossRef]
- Sileno, S.; Beji, S.; D’Agostino, M.; Carassiti, A.; Melillo, G.; Magenta, A. microRNAs involved in psoriasis and cardiovascular diseases. Vasc. Biol. 2021, 3, R49–R68. [Google Scholar] [CrossRef]
- Katsimbri, P.; Korakas, E.; Kountouri, A.; Ikonomidis, I.; Tsougos, E.; Vlachos, D.; Papadavid, E.; Raptis, A.; Lambadiari, V. The Effect of Antioxidant and Anti-Inflammatory Capacity of Diet on Psoriasis and Psoriatic Arthritis Phenotype: Nutrition as Therapeutic Tool? Antioxidants 2021, 10, 157. [Google Scholar] [CrossRef]
- Mattavelli, E.; Catapano, A.L.; Baragetti, A. Molecular Immune-Inflammatory Connections between Dietary Fats and Atherosclerotic Cardiovascular Disease: Which Translation into Clinics? Nutrients 2021, 13, 3768. [Google Scholar] [CrossRef]
- Al-Dhubaibi, M.S. Association between Vitamin D deficiency and psoriasis: An exploratory study. Int. J. Health Sci. 2018, 12, 33–39. [Google Scholar]
- Simopoulos, A.P.; DiNicolantonio, J.J. The importance of a balanced ω-6 to ω-3 ratio in the prevention and management of obesity. Open Heart 2016, 3, e000385. [Google Scholar] [CrossRef]
- Michaelsen, K.F.; Dewey, K.G.; Perez-Exposito, A.B.; Nurhasan, M.; Lauritzen, L.; Roos, N. Food sources and intake of n-6 and n-3 fatty acids in low-income countries with emphasis on infants, young children (6-24 months), and pregnant and lactating women. Matern. Child Nutr. 2011, 7 (Suppl. S2), 124–140. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The omega-6/omega-3 fatty acid ratio: Health implications. OCL 2010, 17, 267–275. [Google Scholar] [CrossRef]
- Davinelli, S.; Intrieri, M.; Corbi, G.; Scapagnini, G. Metabolic indices of polyunsaturated fatty acids: Current evidence, research controversies, and clinical utility. Crit. Rev. Food Sci. Nutr. 2021, 61, 259–274. [Google Scholar] [CrossRef] [PubMed]
- Mazidi, M.; Shekoohi, N.; Katsiki, N.; Banach, M. Omega-6 fatty acids and the risk of cardiovascular disease: Insights from a systematic review and meta-analysis of randomized controlled trials and a Mendelian randomization study. Arch. Med. Sci. 2021, 18, 466–479. [Google Scholar] [CrossRef] [PubMed]
- Michalak, A.; Mosińska, P.; Fichna, J. Polyunsaturated Fatty Acids and Their Derivatives: Therapeutic Value for Inflammatory, Functional Gastrointestinal Disorders, and Colorectal Cancer. Front. Pharmacol. 2016, 7, 459. [Google Scholar] [CrossRef]
- Kanda, N.; Hoashi, T.; Saeki, H. Nutrition and Psoriasis. Int. J. Mol. Sci. 2020, 21, 5405. [Google Scholar] [CrossRef]
- Afifi, L.; Danesh, M.J.; Lee, K.M.; Beroukhim, K.; Farahnik, B.; Ahn, R.S.; Yan, D.; Singh, R.K.; Nakamura, M.; Koo, J.; et al. Dietary Behaviors in Psoriasis: Patient-Reported Outcomes from a U.S. National Survey. Dermatol. Ther. 2017, 7, 227–242. [Google Scholar] [CrossRef]
- Kim, Y.; Chen, J.; Wirth, M.D.; Shivappa, N.; Hebert, J.R. Lower Dietary Inflammatory Index Scores Are Associated with Lower Glycemic Index Scores among College Students. Nutrients 2018, 10, 182. [Google Scholar] [CrossRef]
- Campanati, A.; Molinelli, E.; Ganzetti, G.; Giuliodori, K.; Minetti, I.; Taus, M.; Catani, M.; Martina, E.; Conocchiari, L.; Offidani, A. The effect of low-carbohydrates calorie-restricted diet on visceral adipose tissue and metabolic status in psoriasis patients receiving TNF-alpha inhibitors: Results of an open label controlled, prospective, clinical study. J. Dermatol. Treat. 2017, 28, 206–212. [Google Scholar] [CrossRef]
- Milajerdi, A.; Saneei, P.; Larijani, B.; Esmaillzadeh, A. The effect of dietary glycemic index and glycemic load on inflammatory biomarkers: A systematic review and meta-analysis of randomized clinical trials. Am. J. Clin. Nutr. 2018, 107, 593–606. [Google Scholar] [CrossRef]
- Kruk, J.; Aboul-Enein, B.H.; Duchnik, E.; Marchlewicz, M. Antioxidative properties of phenolic compounds and their effect on oxidative stress induced by severe physical exercise. J. Physiol. Sci. 2022, 72, 19. [Google Scholar] [CrossRef]
- Barrea, L.; Savanelli, M.C.; Di Somma, C.; Napolitano, M.; Megna, M.; Colao, A.; Savastano, S. Vitamin D and its role in psoriasis: An overview of the dermatologist and nutritionist. Rev. Endocr. Metab. Disord. 2017, 18, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Tang, Z.; Wang, Y.; Ding, X.; Rinaldi, G.; Rahmani, J.; Xing, F. Relationship between vitamin D level and mortality in adults with psoriasis: A retrospective cohort study of NHANES data. Clin. Ther. 2021, 43, e33–e38. [Google Scholar] [CrossRef]
- Benhadou, F.; Mintoff, D.; Schnebert, B.; Thio, H.B. Psoriasis and Microbiota: A Systematic Review. Diseases 2018, 6, 47. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, Y.; Xiang, S.; Ye, K.; Bao, X.; Zhu, X.; Ge, Y.; Shi, L.; Lin, M. Effect of xylitol on gut microbiota in an in vitro colonic simulation. Turk. J. Biochem. 2019, 44, 646–653. [Google Scholar] [CrossRef]
- Stawczyk-Macieja, M.; Szczerkowska-Dobosz, A.; Rębała, K.; Gabig-Cimińska, M.; Nowicki, R.J.; Haraś, A.; Cybulska, L.; Kapińska, E. ERAP1 and HLA-C*06 are strongly associated with the risk of psoriasis in the population of northern Poland. Postepy Dermatol. Alergol. 2018, 35, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Deng, Y.; Fang, Z.; Zhai, Q.; Cui, S.; Zhao, J.; Chen, W.; Zhang, H. Potential Role of Probiotics in Ameliorating Psoriasis by Modulating Gut Microbiota in Imiquimod-Induced Psoriasis-Like Mice. Nutrients 2021, 13, 2010. [Google Scholar] [CrossRef]
- Fu, Y.; Lee, C.H.; Chi, C.C. Association of Psoriasis With Inflammatory Bowel Disease: A Systematic Review and Meta-analysis. JAMA Dermatol. 2018, 154, 1417–1423. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, L.; Sun, T.; Guo, K.; Geng, S. Dysbiosis of gut microbiota and its correlation with dysregulation of cytokines in psoriasis patients. BMC Microbiol. 2021, 21, 78. [Google Scholar] [CrossRef]
- Chen, L.; Li, J.; Zhu, W.; Kuang, Y.; Liu, T.; Zhang, W.; Chen, X.; Peng, C. Skin and Gut Microbiome in Psoriasis: Gaining Insight Into the Pathophysiology of It and Finding Novel Therapeutic Strategies. Front. Microbiol. 2020, 11, 589726. [Google Scholar] [CrossRef]
- Owczarczyk-Saczonek, A.; Lahuta, L.B.; Placek, W.; Górecki, R.J. The potential benefits of plant cyclitols in the treatment of psoriasis. Pol. Ann. Med. 2018, 25, 166–171. [Google Scholar] [CrossRef]
- Mahalak, K.K.; Firrman, J.; Tomasula, P.M.; Nuñez, A.; Lee, J.J.; Bittinger, K.; Rinaldi, W.; Liu, L.S. Impact of Steviol Glycosides and Erythritol on the Human and Cebus apella Gut Microbiome. J. Agric. Food Chem. 2020, 68, 13093–13101. [Google Scholar] [CrossRef] [PubMed]
- Boling, L.; Cuevas, D.A.; Grasis, J.A.; Kang, H.S.; Knowles, B.; Levi, K.; Maughan, H.; McNair, K.; Rojas, M.I.; Sanchez, S.E.; et al. Dietary prophage inducers and antimicrobials: Toward landscaping the human gut microbiome. Gut Microbes 2020, 11, 721–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, A.; Wei, J.; Lu, C.; Chen, H.; Zhong, X.; Lu, Y.; Li, L.; Huang, H.; Dai, Z.; Han, L. Genistein suppresses psoriasis-related inflammation through a STAT3-NF-κB-dependent mechanism in keratinocytes. Int. Immunopharmacol. 2019, 69, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Smolińska, E.; Węgrzyn, G.; Gabig-Cimińska, M. Genistein modulates gene activity in psoriatic patients. Acta Biochim. Pol. 2019, 66, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Duntas, L.H. Selenium and inflammation: Underlying anti-inflammatory mechanisms. Horm. Metab. Res. 2009, 41, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Ford, A.R.; Siegel, M.; Bagel, J.; Cordoro, K.M.; Garg, A.; Gottlieb, A.; Green, L.J.; Gudjonsson, J.E.; Koo, J.; Lebwohl, M.; et al. Dietary Recommendations for Adults With Psoriasis or Psoriatic Arthritis From the Medical Board of the National Psoriasis Foundation: A Systematic Review. JAMA Dermatol. 2018, 154, 934–950. [Google Scholar] [CrossRef]
- Svanström, C.; Lonne-Rahm, S.B.; Nordlind, K. Psoriasis and alcohol. Psoriasis 2019, 9, 75–79. [Google Scholar] [CrossRef]
- Wu, A.G.; Weinberg, J.M. The impact of diet on psoriasis. Cutis 2019, 104, 7–10. [Google Scholar]
- Tsigalou, C.; Konstantinidis, T.; Paraschaki, A.; Stavropoulou, E.; Voidarou, C.; Bezirtzoglou, E. Mediterranean diet as a tool to combat inflammation and chronic diseases. An overview. Biomedicines 2020, 8, 201. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, A.; Xie, K.; Yu, Y. Dietary supplementation with high fiber alleviates oxidative stress and inflammatory responses caused by severe sepsis in mice without altering microbiome diversity. Front. Physiol. 2019, 9, 1929. [Google Scholar] [CrossRef]
- Bohn, T. Carotenoids and Markers of Oxidative Stress in Human Observational Studies and Intervention Trials: Implications for Chronic Diseases. Antioxidants 2019, 8, 179. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.Y.; Chen, K.M.; Tsai, W.C. The Mediterranean Dietary Pattern and Inflammation in Older Adults: A Systematic Review and Meta-analysis. Adv. Nutr. 2021, 12, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Nappi, F.; Di Somma, C.; Savanelli, M.C.; Falco, A.; Balato, A.; Balato, N.; Savastano, S. Environmental Risk Factors in Psoriasis: The Point of View of the Nutritionist. Int. J. Environ. Res. Public Health 2016, 13, 743. [Google Scholar] [CrossRef] [Green Version]
- Castaldo, G.; Pagano, I.; Grimaldi, M.; Marino, C.; Molettieri, P.; Santoro, A.; Stillitano, I.; Romano, R.; Montoro, P.; D’Ursi, A.M.; et al. Effect of Very-Low-Calorie Ketogenic Diet on Psoriasis Patients: A Nuclear Magnetic Resonance-Based Metabolomic Study. J. Proteome Res. 2021, 20, 1509–1521. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Megna, M.; Cacciapuoti, S.; Frias-Toral, E.; Fabbrocini, G.; Savastano, S.; Colao, A.; Muscogiuri, G. Very low-calorie ketogenic diet (VLCKD) in patients with psoriasis and obesity: An update for dermatologists and nutritionists. Crit. Rev. Food Sci. Nutr. 2022, 62, 398–414. [Google Scholar] [CrossRef]
- Michaëlsson, G.; Gerdén, B.; Ottosson, M.; Parra, A.; Sjöberg, O.; Hjelmquist, G.; Lööf, L. Patients with psoriasis often have increased serum levels of IgA antibodies to gliadin. Br. J. Dermatol. 1993, 129, 667–673. [Google Scholar] [CrossRef]
- Kolchak, N.A.; Tetarnikova, M.K.; Theodoropoulou, M.S.; Michalopoulou, A.P.; Theodoropoulos, D.S. Prevalence of antigliadin IgA antibodies in psoriasis vulgaris and response of seropositive patients to a gluten-free diet. J. Multidiscip. Healthc. 2017, 11, 13–19. [Google Scholar] [CrossRef]
- Salina, A.; Brandt, S.L.; Klopfenstein, N.; Blackman, A.; Bazzano, J.; Sá-Nunes, A.; Byers-Glosson, N.; Brodskyn, C.; Tavares, N.M.; Da Silva, I.B.S.; et al. Leukotriene B4 licenses inflammasome activation to enhance skin host defense. Proc. Natl. Acad. Sci. USA 2020, 117, 30619–30627. [Google Scholar] [CrossRef]
- Winiarska-Mieczan, A.; Mieczan, T.; Wójcik, G. Importance of Redox Equilibrium in the Pathogenesis of Psoriasis—Impact of Antioxidant-Rich Diet. Nutrients 2020, 12, 1841. [Google Scholar] [CrossRef]
- Nasri, H.; Baradaran, A.; Shirzad, H.; Rafieian-Kopaei, M. New concepts in nutraceuticals as alternative for pharmaceuticals. Int. J. Prev. Med. 2014, 5, 1487–1499. [Google Scholar]
- Jaros, J.; Katta, R.; Shi, V.Y. Dermatonutrigenomics: Past, Present, and Future. Dermatology 2019, 235, 164–166. [Google Scholar] [CrossRef]
- Subbiah, M.T.R. Application of Nutrigenomics in Skin Health: Nutraceutical or Cosmeceutical? J. Clin. Aesthet. Dermatol. 2010, 3, 44–46. [Google Scholar]
- Li, S.J.; Perez-Chada, L.M.; Merola, J.F. TNF Inhibitor-Induced Psoriasis: Proposed Algorithm for Treatment and Management. J. Psoriasis Psoriatic Arthritis 2019, 4, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Nan, X.; Cross, S.; Bird, A. Gene silencing by methyl-CpG-binding proteins. Novartis Found. Symp. 1998, 214, 6–16; discussion 16–21, 46–50. [Google Scholar] [CrossRef]
- Alehagen, U.; Johansson, P.; Aaseth, J.; Alexander, J.; Wågsäter, D. Significant changes in circulating microRNA by dietary supplementation of selenium and coenzyme Q10 in healthy elderly males. A subgroup analysis of a prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens. PLoS ONE 2017, 12, e0174880. [Google Scholar] [CrossRef] [Green Version]
- Kocic, H.; Damiani, G.; Stamenkovic, B.; Tirant, M.; Jovic, A.; Tiodorovic, D.; Peris, K. Dietary compounds as potential modulators of microRNA expression in psoriasis. Ther. Adv. Chronic Dis. 2019, 10, 2040622319864805. [Google Scholar] [CrossRef]
- Zanoaga, O.; Braicu, C.; Chiroi, P.; Andreea, N.; Hajjar, N.A.; Mărgărit, S.; Korban, S.S.; Berindan-Neagoe, I. The Role of miR-155 in Nutrition: Modulating Cancer-Associated Inflammation. Nutrients 2021, 13, 2245. [Google Scholar] [CrossRef]
- McCubrey, J.A.; Lertpiriyapong, K.; Steelman, L.S.; Abrams, S.L.; Yang, L.V.; Murata, R.M.; Rosalen, P.L.; Scalisi, A.; Neri, L.M.; Cocco, L.; et al. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging 2017, 9, 1477–1536. [Google Scholar] [CrossRef]
- Cione, E.; La Torre, C.; Cannataro, R.; Caroleo, M.C.; Plastina, P.; Gallelli, L. Quercetin, Epigallocatechin Gallate, Curcumin, and Resveratrol: From Dietary Sources to Human MicroRNA Modulation. Molecules 2019, 25, 63. [Google Scholar] [CrossRef]
- Bilia, A.R.; Bergonzi, M.C.; Isacchi, B.; Antiga, E.; Caproni, M. Curcumin nanoparticles potentiate therapeutic effectiveness of acitrein in moderate-to-severe psoriasis patients and control serum cholesterol levels. J. Pharm. Pharmacol. 2018, 70, 919–928. [Google Scholar] [CrossRef]
- Karkeni, E.; Bonnet, L.; Marcotorchino, J.; Tourniaire, F.; Astier, J.; Ye, J.; Landrier, J.F. Vitamin D limits inflammation-linked microRNA expression in adipocytes in vitro and in vivo: A new mechanism for the regulation of inflammation by vitamin D. Epigenetics 2018, 13, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Kempinska-Podhorodecka, A.; Milkiewicz, M.; Wasik, U.; Ligocka, J.; Zawadzki, M.; Krawczyk, M.; Milkiewicz, P. Decreased Expression of Vitamin D Receptor Affects an Immune Response in Primary Biliary Cholangitis via the VDR-miRNA155-SOCS1 Pathway. Int. J. Mol. Sci. 2017, 18, 289. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.Y.; Meng, X.; Li, S.; Gan, R.Y.; Li, Y.; Li, H.B. Bioactivity, Health Benefits, and Related Molecular Mechanisms of Curcumin: Current Progress, Challenges, and Perspectives. Nutrients 2018, 10, 1553. [Google Scholar] [CrossRef] [PubMed]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Yeroushalmi, S.; Hakimi, M.; Chung, M.; Bartholomew, E.; Bhutani, T.; Liao, W. Psoriasis and Exercise: A Review. Psoriasis 2022, 12, 189–197. [Google Scholar] [CrossRef]
- Zatterale, F.; Longo, M.; Naderi, J.; Raciti, G.A.; Desiderio, A.; Miele, C.; Beguinot, F. Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Front. Physiol. 2020, 10, 1607. [Google Scholar] [CrossRef]
- de Lemos, E.T.; Oliveira, J.; Pinheiro, J.P.; Reis, F. Regular physical exercise as a strategy to improve antioxidant and anti-inflammatory status: Benefits in type 2 diabetes mellitus. Oxid. Med. Cell. Longev. 2012, 2012, 741545. [Google Scholar] [CrossRef]
- Di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxid. Med. Cell. Longev. 2016, 2016, 1245049. [Google Scholar] [CrossRef]
- Gomez-Cabrera, M.C.; Domenech, E.; Viña, J. Moderate exercise is an antioxidant: Upregulation of antioxidant genes by training. Free Radic. Biol. Med. 2008, 44, 126–131. [Google Scholar] [CrossRef]
- Gondim, O.S.; de Camargo, V.T.; Gutierrez, F.A.; Martins, P.F.; Passos, M.E.; Momesso, C.M.; Santos, V.C.; Gorjão, R.; Pithon-Curi, T.C.; Cury-Boaventura, M.F. Benefits of Regular Exercise on Inflammatory and Cardiovascular Risk Markers in Normal Weight, Overweight and Obese Adults. PLoS ONE 2015, 10, e0140596. [Google Scholar] [CrossRef]
- Simioni, C.; Zauli, G.; Martelli, A.M.; Vitale, M.; Sacchetti, G.; Gonelli, A.; Neri, L.M. Oxidative stress: Role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget 2018, 9, 17181–17198. [Google Scholar] [CrossRef] [PubMed]
- Kruk, J. Physical exercise and oxidative stress. Med. Sport. 2011, 15, 30–40. [Google Scholar] [CrossRef]
- Pedersen, B.K. The physiology of optimizing health with a focus on exercise as medicine. Annu. Rev. Physiol. 2019, 81, 607–627. [Google Scholar] [CrossRef]
- Odynets, T.; Briskin, Y.; Todorova, V.; Bondarenko, O. Impact of different exercise interventions on anxiety and depression in breast cancer patients. Physiother. Q. 2019, 27, 31–36. [Google Scholar] [CrossRef]
- Diaba-Nuhoho, P.; Ofori, E.K.; Asare-Anane, H.; Oppong, S.Y.; Boamah, I.; Blackhurst, D. Impact of exercise intensity on oxidative stress and selected metabolic markers in young adults in Ghana. BMC Res. Notes 2018, 11, 634. [Google Scholar] [CrossRef] [PubMed]
- Merzel Šabović, E.K.; Starbek Zorko, M.; Janić, M. Killing Two Birds with One Stone: Potential Therapies Targeting Psoriasis and Atherosclerosis at the Same Time. Int. J. Mol. Sci. 2022, 23, 6648. [Google Scholar] [CrossRef]
- Frankel, H.C.; Han, J.; Li, T.; Qureshi, A.A. The association between physical activity and the risk of incident psoriasis. Arch. Dermatol. 2012, 148, 918–924. [Google Scholar] [CrossRef]
- Balato, N.; Megna, M.; Palmisano, F.; Patruno, C.; Napolitano, M.; Scalvenzi, M.; Ayala, F. Psoriasis and sport: A new ally? J. Eur. Acad. Dermatol. Venereol. 2015, 29, 515–520. [Google Scholar] [CrossRef]
- Torres, T.; Alexandre, J.M.; Mendonça, D.; Vasconcelos, C.; Silva, B.M.; Selores, M. Levels of physical activity in patients with severe psoriasis: A cross-sectional questionnaire study. Am. J. Clin. Dermatol. 2014, 15, 129–135. [Google Scholar] [CrossRef]
- Do, Y.K.; Lakhani, N.; Malhotra, R.; Halstater, B.; Theng, C.; Østbye, T. Association between psoriasis and leisure-time physical activity: Findings from the National Health and Nutrition Examination Survey. J. Dermatol. 2015, 42, 148–153. [Google Scholar] [CrossRef]
- Goto, H.; Nakatani, E.; Yagi, H.; Moriki, M.; Sano, Y.; Miyachi, Y. Late-onset development of psoriasis in Japan: A population-based cohort study. JAAD Int. 2020, 2, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Enos, C.; Algrni, K.; Van Voorhees, A.; Wilson, P. Physical activity engagement and responses to exercise in plaque psoriasis: A multifactorial investigation of influential factors. J. Dermatol. Treat. 2022, 33, 805–811. [Google Scholar] [CrossRef] [PubMed]
- Nowowiejska, J.; Baran, A.; Grabowska, P.; Lewoc, M.; Kaminski, T.W.; Flisiak, I. Assessment of Life Quality, Stress and Physical Activity Among Patients with Psoriasis. Dermatol. Ther. 2022, 12, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Elmets, C.A.; Leonardi, C.L.; Davis, D.M.R.; Gelfand, J.M.; Lichten, J.; Mehta, N.N.; Armstrong, A.W.; Connor, C.; Cordoro, K.M.; Elewski, B.E.; et al. Joint AAD-NPF guidelines of care for the management and treatment of psoriasis with awareness and attention to comorbidities. J. Am. Acad. Dermatol. 2019, 80, 1073–1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duchnik, E.; Kruk, J.; Tuchowska, A.; Marchlewicz, M. The Impact of Diet and Physical Activity on Psoriasis: A Narrative Review of the Current Evidence. Nutrients 2023, 15, 840. https://doi.org/10.3390/nu15040840
Duchnik E, Kruk J, Tuchowska A, Marchlewicz M. The Impact of Diet and Physical Activity on Psoriasis: A Narrative Review of the Current Evidence. Nutrients. 2023; 15(4):840. https://doi.org/10.3390/nu15040840
Chicago/Turabian StyleDuchnik, Ewa, Joanna Kruk, Aleksandra Tuchowska, and Mariola Marchlewicz. 2023. "The Impact of Diet and Physical Activity on Psoriasis: A Narrative Review of the Current Evidence" Nutrients 15, no. 4: 840. https://doi.org/10.3390/nu15040840
APA StyleDuchnik, E., Kruk, J., Tuchowska, A., & Marchlewicz, M. (2023). The Impact of Diet and Physical Activity on Psoriasis: A Narrative Review of the Current Evidence. Nutrients, 15(4), 840. https://doi.org/10.3390/nu15040840