Assessing the Highest Level of Evidence from Randomized Controlled Trials in Omega-3 Research
Abstract
:1. Introduction
2. Effects of n-3 PUFA on Major Chronic Diseases
2.1. Cardiovascular Disease
Author, Publication | Country | Follow-Up | Sample Size; (Test/Control), Description | Number of Women, % | Age (Range, Mean) | Doses of n-3PUFA vs. Placebo | Outcomes (Test/Control) | Results |
---|---|---|---|---|---|---|---|---|
Marchioli 2002—GISSI-P [21] | Italy | 3.5 years | 11,324; (5666/5658), pts with recent MI | 1665 (14.7%) | 59.3 years | 1 g EPA + DHA + 300 mg Vit E/d or placebo | Total CVD 556/621; MI 223/233; CVD mortality 310/370; CHD mortality 209/258; Stroke 92/77 | Significant reduction in Total CVD, RR 0.80 (95% CI 0.68–0.94), p < 0.01; CVD mortality, RR 0.70 (95% CI 0.56–0.86), p < 0.001; CHD mortality, RR 0.68 (95% CI 0.53–0.88), p < 0.01 |
Yokoyama 2007—JELIS [18] | Japan | 4.6 years | 18,645; (9326/9319) hypercholesterolemic patients on statin | 12,786 (68.6%) | 61 years | 1.8 g EPA + 5–10 mg statin/d or placebo (5–10 mg statin) | Total CHD (Major Coronary events) 262/324; MI 73/97; Stroke 166/162; CHD mortality 29/31; MI mortality 11/14 | Significant reduction in Total CHD, HR 0.81 (95% CI 0.69–0.95), p = 0.011 |
Tavazzi 2008—GISSI-HF [19] | Italy | 3.9 years | 7046; (3529/3517), pts with clinical evidence of heart failure | 1516 (20.5%) | 67 years | 0.85–0.882 g EPA + DHA or placebo (olive oil) | CVD mortality 712/765; MI 107/129; Stroke 122/103; MI mortality 307/325; Stroke mortality 50/44 | Significant reduction in CVD mortality, HR 0.92 (95% CI 0.83–1.02), p = 0.045 |
Galan 2010— SU.FOL.OM3 [22] | France | 4.7 years | 2501; (1253/1248), pts with a history of acute coronary or ischemic event 1 year before randomization |
509 (20.4%) | 60.6 years | 0.9 g EPA + DHA + 560 μg Folate + 3 mg vitamin B-6 + B-12 (20 μg) or placebo | Total CVD 81/76; MI 32/28; CHD 51/53; Stroke 40/43 | No effect on Total CVD, HR 1.08 (95% CI 0.79–1.47) |
Rauch 2010— OMEGA [23] | Germany | 1 year | 3818; (1925/1893), pts with MI |
977 (25.6%) | 64 years | 1 g EPA + DHA/d or placebo (olive oil) |
Total CVD 182/149; MI mortality 28/29 | No effect on Total CVD, OR 1.21 (95% CI 0.96–1.52) |
Kroumhout et al., 2010—Alpha Omega Trial [24] | The Netherlands | 3.3 years | 4837; (2404/2433), pts with MI and receiving antihypertensive, antithrombotic, and lipid-modifying therapy | 1054 (21.8%) | 69.1 years | 2 g ALA + 0.4 g EPA + DHA/d or placebo | CVD 170/185; CVD mortality 80/82; CHD mortality 67/71 | No effect on Total CVD, HR 0.92 (95% CI 0.75–1.13) and other CVD outcomes |
Bosch 2012—ORIGIN Trial [25] | 573 centers in 40 countries globally | 6.2 years | 12,537; (6281/6255) pts with impaired fasting glucose, impaired glucose tolerance or diabetes | 4386 (35%) | 63.5 years | 0.84 g EPA + DHA or placebo (olive oil). | Total CVD 1034/1017; CVD mortality 574/581; MI 344/316; Stroke 314/336 | No effect on Total CVD, HR 1.01 (95% CI 0.93–1.10), and other CVD outcomes |
Roncaglioni 2013—Risk & Prevention Study [26] | Italy | 5 years | 12,513; (6244/6269), pts with multiple CVD risk factors |
4818 (38.5%) | 64 years | 1 g EPA + DHA/d or placebo (olive oil) | Total CVD 733/745; CVD mortality 142/137; MI 310/324; MI mortality; 82/76 | No effect on Total CVD, HR 0.98 (95% CI 0.88–1.08) and other CVD outcomes |
Bonds 2014— AREDS2 [27] | USA | 4.8 years | 4203; (2056/2147), pts with retinal findings consistent with advanced age-related macular degeneration |
2387 (56.8%) | 74.3 years | 1 g EPA + DHA or placebo ± 10 mg lutein + 2 mg zeaxanthin | Total CVD 183/187 | No effect on Total CVD, HR 0.95 (95% CI 0.78–1.17) |
Andrieu et al., 2017— MAPT [28] | France and Monaco | 3 years | 1525; (755/770), community–dwelling and non demented pts over 70 |
978 (64%) | 75.3 years | 1.025 g EPA + DHA/d or placebo (paraffin oil) | Total CVD (cardiac and vascular disorders) 192/164; Stroke 1/2 | No effect on Total CVD and stroke |
Bowman 2018— ASCEND [29] | UK | 7.4 years | 15,480; (7740/7740), pts with diabetes but without evidence of atherosclerotic cardiovascular disease |
5796 (37.4%) | 63.3 years | 0.84 g EPA + DHA or placebo (olive oil) | CVD 689/712; MI 186/200; Stroke 217/214; CVD mortality 196/240; CHD mortality 100/127; Stroke mortality 35/37 | No effect on Total CVD, RR 0.97 (95% 0.87–1.08) and other CVD outcomes |
Bhatt 2019—REDUCE IT Trial [20] | Australia, Canada, New Zealand, South Africa, the Netherlands, and USA | 4.9 years | 8179; (4089/4090), pts with CVD or with diabetes and other risk factors, receiving statin therapy |
2357 (28.8%) | 64 years | 4 g EPA/d or placebo (mineral oil) | Total CVD 705/901; MI 355/250; CVD mortality 174/213; Stroke 98/134 | Significant reduction in Total CVD, HR 0.75 (0.95% CI 0.68–0.83), p < 0.001; MI, HR 0.69 (95% CI 0.58–0.81), p < 0.001; CVD mortality, HR 0.80 (95% CI 0.66–0.98), p = 0.03; Stroke, HR 0.72 (95% CI 0.55–0.93), p = 0.01 |
Manson 2019— VITAL [30] | USA | 5.3 years | 25,871; (12,933/12,938), healthy men and women (no previous history of CVD, MI, stroke) | 13,085 (50.6%) | 67.1 years | 0.84 g EPA + DHA+ 2000 IU Vit Ds/d or placebo (corn oil) | Total CVD 386/419; Total CHD 308/370; MI 145/200; Stroke 148/142; CVD mortality 142/148; CHD mortality 37/49; MI mortality 13/26; Stroke mortality 22/30 | No effect on Total CVD, HR 0.92 (95% CI 0.80–1.06) and other CVD outcomes |
Nicholls 2020— STRENGTH [31] | Asia, Australia, Europe, New Zealand, North America, South Africa, South America | 5 years | 13,078; (6539/6539), statin-treated participants with high CVD risk, hypertriglyceridemia, and low levels of HDL-C. |
4568 (34.9%) | 62.5 years | 4 g EPA + DHA/d or placebo (corn oil) | Total CVD 785/795; MI 218/226; Stroke 142/125; CVD mortality 228/211 | No effect on Total CVD, HR 0.99 (95% CI 0.90–1.09) and other CVD outcomes |
Kalstad 2020— OMEMI [32] | Norway | 2 years | 1027; (513/154), pts with recent acute myocardial infarction |
294 (28.6%) | 75 years | 1.6 g EPA + DHA or placebo (corn oil) | Total CVD 108/102; MI 39/35; Stroke 17/12 | No effect on Total CVD, HR 1.07 (95% CI 0.82–1.40) and other CVD outcomes |
2.2. Cancer
2.3. Type 2 Diabetes
2.4. Macular Degeneration
3. Conflicting Evidence in RCTs, “The Gold Standard”
4. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Flock, M.R.; Harris, W.S.; Kris-Etherton, P.M. Long-chain omega-3 fatty acids: Time to establish a dietary reference intake. Nutr. Rev. 2013, 71, 692–707. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Wu, J.H. Omega-3 fatty acids and cardiovascular disease: Effects on risk factors, molecular pathways, and clinical events. J. Am. Coll. Cardiol. 2011, 58, 2047–2067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weylandt, K.H.; Serini, S.; Chen, Y.Q.; Su, H.M.; Lim, K.; Cittadini, A.; Calviello, G. Omega-3 Polyunsaturated Fatty Acids: The Way Forward in Times of Mixed Evidence. Biomed. Res. Int. 2015, 2015, 143109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tur, J.A.; Bibiloni, M.M.; Sureda, A.; Pons, A. Dietary sources of omega 3 fatty acids: Public health risks and benefits. Br. J. Nutr. 2012, 107 (Suppl. S2), S23–S52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Racey, M.; MacFarlane, A.; Carlson, S.E.; Stark, K.D.; Plourde, M.; Field, C.J.; Yates, A.A.; Wells, G.; Grantham, A.; Bazinet, R.P.; et al. Dietary Reference Intakes based on chronic disease endpoints: Outcomes from a case study workshop for omega 3’s EPA and DHA. Appl. Physiol. Nutr. Metab. 2021, 46, 530–539. [Google Scholar] [CrossRef]
- Yusuf, S.; Reddy, S.; ÔUnpuu, S.; Anand, S. Global Burden of Cardiovascular Diseases. Circulation 2001, 104, 2855–2864. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.H.; Seong, H.J.; Kim, G.; Jeong, G.H.; Kim, J.Y.; Park, H.; Jung, E.; Kronbichler, A.; Eisenhut, M.; Stubbs, B.; et al. Consumption of Fish and ω-3 Fatty Acids and Cancer Risk: An Umbrella Review of Meta-Analyses of Observational Studies. Adv. Nutr. 2020, 11, 1134–1149. [Google Scholar] [CrossRef]
- Khan, S.U.; Lone, A.N.; Khan, M.S.; Virani, S.S.; Blumenthal, R.S.; Nasir, K.; Miller, M.; Michos, E.D.; Ballantyne, C.M.; Boden, W.E.; et al. Effect of omega-3 fatty acids on cardiovascular outcomes: A systematic review and meta-analysis. EClinicalMedicine 2021, 38, 100997. [Google Scholar] [CrossRef]
- Xie, L.; Zhen, P.; Wei, Q.; Yu, F.; Song, S.; Tong, J. Effects of omega-3 polyunsaturated fatty acids supplementation for patients with cardiovascular disease risks: A dose-response meta-analysis. Am. J. Transl. Res. 2021, 13, 8526–8539. [Google Scholar]
- Aung, T.; Halsey, J.; Kromhout, D.; Gerstein, H.C.; Marchioli, R.; Tavazzi, L.; Geleijnse, J.M.; Rauch, B.; Ness, A.; Galan, P.; et al. Associations of Omega-3 Fatty Acid Supplement Use With Cardiovascular Disease Risks: Meta-analysis of 10 Trials Involving 77 917 Individuals. JAMA Cardiol. 2018, 3, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Hu, F.B.; Manson, J.E. Marine Omega-3 Supplementation and Cardiovascular Disease: An Updated Meta-Analysis of 13 Randomized Controlled Trials Involving 127 477 Participants. J. Am. Heart Assoc. 2019, 8, e013543. [Google Scholar] [CrossRef] [PubMed]
- Hanson, S.; Thorpe, G.; Winstanley, L.; Abdelhamid, A.S.; Hooper, L. Omega-3, omega-6 and total dietary polyunsaturated fat on cancer incidence: Systematic review and meta-analysis of randomised trials. Br. J. Cancer 2020, 122, 1260–1270. [Google Scholar] [CrossRef] [PubMed]
- Kromhout, D.; Bosschieter, E.B.; de Lezenne Coulander, C. The inverse relation between fish consumption and 20-year mortality from coronary heart disease. N. Engl. J. Med. 1985, 312, 1205–1209. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Huang, T.; Yu, Y.; Hu, X.; Yang, B.; Li, D. Fish consumption and CHD mortality: An updated meta-analysis of seventeen cohort studies. Public Health Nutr. 2012, 15, 725–737. [Google Scholar] [CrossRef] [Green Version]
- Rochon, P.A.; Gurwitz, J.H.; Sykora, K.; Mamdani, M.; Streiner, D.L.; Garfinkel, S.; Normand, S.L.; Anderson, G.M. Reader’s guide to critical appraisal of cohort studies: 1. Role and design. BMJ 2005, 330, 895–897. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Gong, C.; Jin, K.; Zhou, L.; Xiao, Y.; Ma, L. Omega-3 Fatty Acid Supplementation and Coronary Heart Disease Risks: A Meta-Analysis of Randomized Controlled Clinical Trials. Front. Nutr. 2022, 9, 20. [Google Scholar] [CrossRef] [PubMed]
- Bernasconi, A.A.; Wiest, M.M.; Lavie, C.J.; Milani, R.V.; Laukkanen, J.A. Effect of Omega-3 Dosage on Cardiovascular Outcomes: An Updated Meta-Analysis and Meta-Regression of Interventional Trials. Mayo Clin. Proc. 2021, 96, 304–313. [Google Scholar] [CrossRef]
- Yokoyama, M.; Origasa, H.; Matsuzaki, M.; Matsuzawa, Y.; Saito, Y.; Ishikawa, Y.; Oikawa, S.; Sasaki, J.; Hishida, H.; Itakura, H.; et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): A randomised open-label, blinded endpoint analysis. Lancet 2007, 369, 1090–1098. [Google Scholar] [CrossRef]
- Tavazzi, L.; Maggioni, A.P.; Marchioli, R.; Barlera, S.; Franzosi, M.G.; Latini, R.; Lucci, D.; Nicolosi, G.L.; Porcu, M.; Tognoni, G.; et al. Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): A randomised, double-blind, placebo-controlled trial. Lancet 2008, 372, 1223–1230. [Google Scholar] [CrossRef]
- Bhatt, D.L.; Steg, P.G.; Miller, M.; Brinton, E.A.; Jacobson, T.A.; Ketchum, S.B.; Doyle, R.T., Jr.; Juliano, R.A.; Jiao, L.; Granowitz, C.; et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N. Engl. J. Med. 2019, 380, 11–22. [Google Scholar] [CrossRef]
- Marchioli, R.; Barzi, F.; Bomba, E.; Chieffo, C.; Di Gregorio, D.; Di Mascio, R.; Franzosi, M.G.; Geraci, E.; Levantesi, G.; Maggioni, A.P.; et al. Early protection against sudden death by n-3 polyunsaturated fatty acids after myocardial infarction: Time-course analysis of the results of the Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico (GISSI)-Prevenzione. Circulation 2002, 105, 1897–1903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galan, P.; Kesse-Guyot, E.; Czernichow, S.; Briancon, S.; Blacher, J.; Hercberg, S. Effects of B vitamins and omega 3 fatty acids on cardiovascular diseases: A randomised placebo controlled trial. BMJ 2010, 341, c6273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauch, B.; Schiele, R.; Schneider, S.; Diller, F.; Victor, N.; Gohlke, H.; Gottwik, M.; Steinbeck, G.; Del Castillo, U.; Sack, R.; et al. OMEGA, a randomized, placebo-controlled trial to test the effect of highly purified omega-3 fatty acids on top of modern guideline-adjusted therapy after myocardial infarction. Circulation 2010, 122, 2152–2159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kromhout, D.; Giltay, E.J.; Geleijnse, J.M. n–3 Fatty Acids and Cardiovascular Events after Myocardial Infarction. N. Engl. J. Med. 2010, 363, 2015–2026. [Google Scholar] [CrossRef]
- Investigators, O.T.; Bosch, J.; Gerstein, H.C.; Dagenais, G.R.; Diaz, R.; Dyal, L.; Jung, H.; Maggiono, A.P.; Probstfield, J.; Ramachandran, A.; et al. n-3 fatty acids and cardiovascular outcomes in patients with dysglycemia. N. Engl. J. Med. 2012, 367, 309–318. [Google Scholar] [CrossRef] [Green Version]
- Risk; Prevention Study Collaborative, G.; Roncaglioni, M.C.; Tombesi, M.; Avanzini, F.; Barlera, S.; Caimi, V.; Longoni, P.; Marzona, I.; Milani, V.; et al. n-3 fatty acids in patients with multiple cardiovascular risk factors. N. Engl. J. Med. 2013, 368, 1800–1808. [Google Scholar] [CrossRef] [Green Version]
- Bonds, D.E.; Harrington, M.; Worrall, B.B.; Bertoni, A.G.; Eaton, C.B.; Hsia, J.; Robinson, J.; Clemons, T.E.; Fine, L.J.; Chew, E.Y. Effect of Long-Chain ω-3 Fatty Acids and Lutein + Zeaxanthin Supplements on Cardiovascular Outcomes. JAMA Intern. Med. 2014, 174, 763. [Google Scholar] [CrossRef]
- Andrieu, S.; Guyonnet, S.; Coley, N.; Cantet, C.; Bonnefoy, M.; Bordes, S.; Bories, L.; Cufi, M.-N.; Dantoine, T.; Dartigues, J.-F.; et al. Effect of long-term omega 3 polyunsaturated fatty acid supplementation with or without multidomain intervention on cognitive function in elderly adults with memory complaints (MAPT): A randomised, placebo-controlled trial. Lancet Neurol. 2017, 16, 377–389. [Google Scholar] [CrossRef]
- Group, A.S.C.; Bowman, L.; Mafham, M.; Wallendszus, K.; Stevens, W.; Buck, G.; Barton, J.; Murphy, K.; Aung, T.; Haynes, R.; et al. Effects of n-3 Fatty Acid Supplements in Diabetes Mellitus. N. Engl. J. Med. 2018, 379, 1540–1550. [Google Scholar] [CrossRef]
- Manson, J.E.; Cook, N.R.; Lee, I.M.; Christen, W.; Bassuk, S.S.; Mora, S.; Gibson, H.; Albert, C.M.; Gordon, D.; Copeland, T.; et al. Marine n-3 Fatty Acids and Prevention of Cardiovascular Disease and Cancer. N. Engl. J. Med. 2019, 380, 23–32. [Google Scholar] [CrossRef]
- Nicholls, S.J.; Lincoff, A.M.; Garcia, M.; Bash, D.; Ballantyne, C.M.; Barter, P.J.; Davidson, M.H.; Kastelein, J.J.P.; Koenig, W.; McGuire, D.K.; et al. Effect of High-Dose Omega-3 Fatty Acids vs Corn Oil on Major Adverse Cardiovascular Events in Patients at High Cardiovascular Risk: The STRENGTH Randomized Clinical Trial. JAMA 2020, 324, 2268–2280. [Google Scholar] [CrossRef] [PubMed]
- Kalstad, A.A.; Myhre, P.L.; Laake, K.; Tveit, S.H.; Schmidt, E.B.; Smith, P.; Nilsen, D.W.T.; Tveit, A.; Fagerland, M.W.; Solheim, S.; et al. Effects of n-3 Fatty Acid Supplements in Elderly Patients After Myocardial Infarction. Circulation 2021, 143, 528–539. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Diggle, C.P. In vitro studies on the relationship between polyunsaturated fatty acids and cancer: Tumour or tissue specific effects? Prog. Lipid Res. 2002, 41, 240–253. [Google Scholar] [CrossRef]
- Gleissman, H.; Johnsen, J.I.; Kogner, P. Omega-3 fatty acids in cancer, the protectors of good and the killers of evil? Exp. Cell Res. 2010, 316, 1365–1373. [Google Scholar] [CrossRef]
- Engeset, D.; Alsaker, E.; Lund, E.; Welch, A.; Khaw, K.-T.; Clavel-Chapelon, F.; Thiébaut, A.; Chajès, V.; Key, T.J.; Allen, N.E.; et al. Fish consumption and breast cancer risk. The European Prospective Investigation into Cancer and Nutrition (EPIC). Int. J. Cancer 2006, 119, 175–182. [Google Scholar] [CrossRef]
- Nindrea, R.D.; Aryandono, T.; Lazuardi, L.; Dwiprahasto, I. Protective Effect of Omega-3 Fatty Acids in Fish Consumption Against Breast Cancer in Asian Patients: A Meta-Analysis. Asian Pac. J. Cancer Prev. 2019, 20, 327–332. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, R.G.; Hoover, R.N.; Pike, M.C.; Hildesheim, A.; Nomura, A.M.; West, D.W.; Wu-Williams, A.H.; Kolonel, L.N.; Horn-Ross, P.L.; Rosenthal, J.F.; et al. Migration patterns and breast cancer risk in Asian-American women. J. Natl. Cancer Inst. 1993, 85, 1819–1827. [Google Scholar] [CrossRef]
- Terry, P.D.; Rohan, T.E.; Wolk, A. Intakes of fish and marine fatty acids and the risks of cancers of the breast and prostate and of other hormone-related cancers: A review of the epidemiologic evidence. Am. J. Clin. Nutr. 2003, 77, 532–543. [Google Scholar] [CrossRef] [Green Version]
- Gago-Dominguez, M.; Yuan, J.M.; Sun, C.L.; Lee, H.P.; Yu, M.C. Opposing effects of dietary n-3 and n-6 fatty acids on mammary carcinogenesis: The Singapore Chinese Health Study. Br. J. Cancer 2003, 89, 1686–1692. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Ren, X.L.; Wang, Z.Y.; Wang, L.; Zhao, F.; Guo, X.J.; Li, D. Biomarker of long-chain n-3 fatty acid intake and breast cancer: Accumulative evidence from an updated meta-analysis of epidemiological studies. Crit. Rev. Food Sci. Nutr. 2019, 59, 3152–3164. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-F.; Gao, H.-F.; Hou, A.-J.; Zhou, Y.-H. Effect of omega-3 fatty acid supplementation on cancer incidence, non-vascular death, and total mortality: A meta-analysis of randomized controlled trials. BMC Public Health 2014, 14, 204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Lorgeril, M.; Salen, P.; Martin, J.L.; Monjaud, I.; Boucher, P.; Mamelle, N. Mediterranean dietary pattern in a randomized trial: Prolonged survival and possible reduced cancer rate. Arch. Intern. Med. 1998, 158, 1181–1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: Results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico. Lancet 1999, 354, 447–455.
- Bordeleau, L.; Yakubovich, N.; Dagenais, G.R.; Rosenstock, J.; Probstfield, J.; Chang Yu, P.; Ryden, L.E.; Pirags, V.; Spinas, G.A.; Birkeland, K.I.; et al. The Association of Basal Insulin Glargine and/or n-3 Fatty Acids With Incident Cancers in Patients With Dysglycemia. Diabetes Care 2014, 37, 1360–1366. [Google Scholar] [CrossRef] [Green Version]
- Andreeva, V.A.; Touvier, M.; Kesse-Guyot, E.; Julia, C.; Galan, P.; Hercberg, S. B Vitamin and/or ω-3 Fatty Acid Supplementation and Cancer. Arch. Intern. Med. 2012, 172, 540–547. [Google Scholar] [CrossRef] [Green Version]
- von Schacky, C.; Angerer, P.; Kothny, W.; Theisen, K.; Mudra, H. The effect of dietary omega-3 fatty acids on coronary atherosclerosis. A randomized, double-blind, placebo-controlled trial. Ann. Intern. Med. 1999, 130, 554–562. [Google Scholar] [CrossRef]
- Brouwer, I.A.; Zock, P.L.; Camm, A.J.; Bocker, D.; Hauer, R.N.; Wever, E.F.; Dullemeijer, C.; Ronden, J.E.; Katan, M.B.; Lubinski, A.; et al. Effect of fish oil on ventricular tachyarrhythmia and death in patients with implantable cardioverter defibrillators: The Study on Omega-3 Fatty Acids and Ventricular Arrhythmia (SOFA) randomized trial. JAMA 2006, 295, 2613–2619. [Google Scholar] [CrossRef] [Green Version]
- Raitt, M.H.; Connor, W.E.; Morris, C.; Kron, J.; Halperin, B.; Chugh, S.S.; McClelland, J.; Cook, J.; MacMurdy, K.; Swenson, R.; et al. Fish oil supplementation and risk of ventricular tachycardia and ventricular fibrillation in patients with implantable defibrillators: A randomized controlled trial. JAMA 2005, 293, 2884–2891. [Google Scholar] [CrossRef]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.; Liu, Y.; Gan, Y.; Bao, W.; Peng, X.; Xing, Q.; Gao, H.; Lai, J.; Liu, L.; Wang, Z.; et al. Effects of fish oil supplementation on glucose control and lipid levels among patients with type 2 diabetes mellitus: A Meta-analysis of randomized controlled trials. Lipids Health Dis. 2020, 19, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Delpino, F.M.; Figueiredo, L.M.; Da Silva, B.G.C.; Da Silva, T.G.; Mintem, G.C.; Bielemann, R.M.; Gigante, D.P. Omega-3 supplementation and diabetes: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2021, 62, 4435–4448. [Google Scholar] [CrossRef] [PubMed]
- Oh, P.C.; Koh, K.K.; Sakuma, I.; Lim, S.; Lee, Y.; Lee, S.; Lee, K.; Han, S.H.; Shin, E.K. Omega-3 fatty acid therapy dose-dependently and significantly decreased triglycerides and improved flow-mediated dilation, however, did not significantly improve insulin sensitivity in patients with hypertriglyceridemia. Int. J. Cardiol. 2014, 176, 696–702. [Google Scholar] [CrossRef]
- Sirtori, C.R.; Paoletti, R.; Mancini, M.; Crepaldi, G.; Manzato, E.; Rivellese, A.; Pamparana, F.; Stragliotto, E. N-3 fatty acids do not lead to an increased diabetic risk in patients with hyperlipidemia and abnormal glucose tolerance. Italian Fish Oil Multicenter Study. Am. J. Clin. Nutr. 1997, 65, 1874–1881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manning, P.J.; Sutherland, W.H.; Williams, S.M.; Walker, R.J.; Berry, E.A.; De Jong, S.A.; Ryalls, A.R. The effect of lipoic acid and vitamin E therapies in individuals with the metabolic syndrome. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Clark, L.F.; Thivierge, M.C.; Kidd, C.A.; McGeoch, S.C.; Abraham, P.; Pearson, D.W.M.; Horgan, G.W.; Holtrop, G.; Thies, F.; Lobley, G.E. Fish oil supplemented for 9 months does not improve glycaemic control or insulin sensitivity in subjects with impaired glucose regulation: A parallel randomised controlled trial. Br. J. Nutr. 2016, 115, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Sawada, T.; Tsubata, H.; Hashimoto, N.; Takabe, M.; Miyata, T.; Aoki, K.; Yamashita, S.; Oishi, S.; Osue, T.; Yokoi, K.; et al. Effects of 6-month eicosapentaenoic acid treatment on postprandial hyperglycemia, hyperlipidemia, insulin secretion ability, and concomitant endothelial dysfunction among newly-diagnosed impaired glucose metabolism patients with coronary artery disease. An open label, single blinded, prospective randomized controlled trial. Cardiovasc. Diabetol. 2016, 15, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Javidi, A.; Mozaffari-Khosravi, H.; Nadjarzadeh, A.; Dehghani, A.; Eftekhari, M.H. The effect of flaxseed powder on insulin resistance indices and blood pressure in prediabetic individuals: A randomized controlled clinical trial. J. Res. Med. Sci. 2016, 21, 70. [Google Scholar] [CrossRef]
- Derosa, G.; Cicero, A.F.G.; Fogari, E.; D’Angelo, A.; Bonaventura, A.; Maffioli, P. Effects of n-3 PUFA on insulin resistance after an oral fat load. Eur. J. Lipid Sci. Technol. 2011, 113, 950–960. [Google Scholar] [CrossRef]
- Derosa, G.; Cicero, A.F.; D’Angelo, A.; Borghi, C.; Maffioli, P. Effects of n-3 pufas on fasting plasma glucose and insulin resistance in patients with impaired fasting glucose or impaired glucose tolerance. Biofactors 2016, 42, 316–322. [Google Scholar] [CrossRef]
- Wang, J.F.; Zhang, H.M.; Li, Y.Y.; Xia, S.; Wei, Y.; Yang, L.; Wang, D.; Ye, J.J.; Li, H.X.; Yuan, J.; et al. A combination of omega-3 and plant sterols regulate glucose and lipid metabolism in individuals with impaired glucose regulation: A randomized and controlled clinical trial. Lipids Health Dis. 2019, 18, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajabi-Naeeni, M.; Dolatian, M.; Qorbani, M.; Vaezi, A.A. The effect of omega-3 and vitamin D co-supplementation on glycemic control and lipid profiles in reproductive-aged women with pre-diabetes and hypovitaminosis D: A randomized controlled trial. Diabetol. Metab. Syndr. 2020, 12, 41. [Google Scholar] [CrossRef]
- Diaz-Rizzolo, D.A.; Serra, A.; Colungo, C.; Sala-Vila, A.; Siso-Almirall, A.; Gomis, R. Type 2 diabetes preventive effects with a 12-months sardine-enriched diet in elderly population with prediabetes: An interventional, randomized and controlled trial. Clin. Nutr. 2021, 40, 2587–2598. [Google Scholar] [CrossRef] [PubMed]
- Barham, A.; Mohammad, B.; Hasoun, L.; Awwad, S.; Mosleh, I.; Aljaberi, A.; Abu-Samak, M. The combination of omega-3 fatty acids with high doses of vitamin D3 elevate A1c levels: A randomized Clinical Trial in people with vitamin D deficiency. Int. J. Clin. Pract. 2021, 75, e14779. [Google Scholar] [CrossRef]
- Rafraf, M.; Mohammadi, E.; Asghari-Jafarabadi, M.; Farzadi, L. Omega-3 Fatty Acids Improve Glucose Metabolism without Effects on Obesity Values and Serum Visfatin Levels in Women with Polycystic Ovary Syndrome. J. Am. Coll. Nutr. 2012, 31, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Hutchins, A.M.; Brown, B.D.; Cunnane, S.C.; Domitrovich, S.G.; Adams, E.R.; Bobowiec, C.E. Daily flaxseed consumption improves glycemic control in obese men and women with pre-diabetes: A randomized study. Nutr. Res. 2013, 33, 367–375. [Google Scholar] [CrossRef]
- Soares de Oliveira Carvalho, A.P.; Kimi Uehara, S.; Nogueria Netto, J.F.; Rosa, G. Hypocaloric diet associated with the consumption of jam enriched with microencapsulated fish oil decreases insulin resistance. Nutr. Hosp. 2014, 29, 1103–1108. [Google Scholar] [CrossRef]
- Qin, Y.; Zhou, Y.; Chen, S.H.; Zhao, X.L.; Ran, L.; Zeng, X.L.; Wu, Y.; Chen, J.L.; Kang, C.; Shu, F.R.; et al. Fish Oil Supplements Lower Serum Lipids and Glucose in Correlation with a Reduction in Plasma Fibroblast Growth Factor 21 and Prostaglandin E2 in Nonalcoholic Fatty Liver Disease Associated with Hyperlipidemia: A Randomized Clinical Trial. PLoS ONE 2015, 10, e0133496. [Google Scholar] [CrossRef]
- Freire, T.O.; Boulhosa, R.S.S.B.; Oliveira, L.P.M.; De Jesus, R.P.; Cavalcante, L.N.; Lemaire, D.C.; Toralles, M.B.P.; Lyra, L.G.C.; Lyra, A.C. n-3 polyunsaturated fatty acid supplementation reduces insulin resistance in hepatitis C virus infected patients: A randomised controlled trial. J. Hum. Nutr. Diet. 2016, 29, 345–353. [Google Scholar] [CrossRef]
- Abbott, K.A.; Burrows, T.L.; Acharya, S.; Thota, R.N.; Garg, M.L. DHA-enriched fish oil reduces insulin resistance in overweight and obese adults. Prostaglandins Leukot Essent Fat. Acids 2020, 159, 102154. [Google Scholar] [CrossRef]
- Wong, W.L.; Su, X.; Li, X.; Cheung, C.M.G.; Klein, R.; Cheng, C.-Y.; Wong, T.Y. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob. Health 2014, 2, e106–e116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akuffo, K.O.; Beatty, S.; Stack, J.; Dennison, J.; O’Regan, S.; Meagher, K.A.; Peto, T.; Nolan, J. Central Retinal Enrichment Supplementation Trials (CREST): Design and methodology of the CREST randomized controlled trials. Ophthalmic Epidemiol. 2014, 21, 111–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parekh, N.; Chappell, R.J.; Millen, A.E.; Albert, D.M.; Mares, J.A. Association between vitamin D and age-related macular degeneration in the Third National Health and Nutrition Examination Survey, 1988 through 1994. Arch. Ophthalmol. 2007, 125, 661–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, W.; Mitchell, P.; Leeder, S.R. Dietary fat and fish intake and age-related maculopathy. Arch. Ophthalmol. 2000, 118, 401–404. [Google Scholar] [CrossRef] [PubMed]
- Seddon, J.M.; Rosner, B.; Sperduto, R.D.; Yannuzzi, L.; Haller, J.A.; Blair, N.P.; Willett, W. Dietary fat and risk for advanced age-related macular degeneration. Arch. Ophthalmol. 2001, 119, 1191–1199. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Wang, K.; Jiang, L.; Wang, J.; Zhang, X.; Xu, J.; Yao, K. Dietary fatty acid intake, plasma fatty acid levels, and the risk of age-related macular degeneration (AMD): A dose-response meta-analysis of prospective cohort studies. Eur. J. Nutr. 2021, 60, 3013–3027. [Google Scholar] [CrossRef] [PubMed]
- Lawrenson, J.G.; Evans, J.R. Omega 3 fatty acids for preventing or slowing the progression of age-related macular degeneration. Cochrane Database Syst. Rev. 2015, 2015, CD010015. [Google Scholar] [CrossRef]
- Age-Related Eye Disease Study 2 Research, G. Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: The Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial. JAMA 2013, 309, 2005–2015. [Google Scholar] [CrossRef] [Green Version]
- Christen, W.G.; Cook, N.R.; Manson, J.E.; Buring, J.E.; Chasman, D.I.; Lee, I.M.; Bubes, V.; Li, C.; Haubourg, M.; Schaumberg, D.A.; et al. Effect of Vitamin D and omega-3 Fatty Acid Supplementation on Risk of Age-Related Macular Degeneration: An Ancillary Study of the VITAL Randomized Clinical Trial. JAMA Ophthalmol. 2020, 138, 1280–1289. [Google Scholar] [CrossRef]
- Lichtenstein, A.H.; Petersen, K.; Barger, K.; Hansen, K.E.; Anderson, C.A.M.; Baer, D.J.; Lampe, J.W.; Rasmussen, H.; Matthan, N.R. Perspective: Design and Conduct of Human Nutrition Randomized Controlled Trials. Adv. Nutr. 2021, 12, 4–20. [Google Scholar] [CrossRef]
- Musa-Veloso, K.; Racey, M.; MacFarlane, A.; Bier, D.; Lamarche, B.; Trumbo, P.; House, J. Challenges in the design, interpretation, and reporting of randomized controlled clinical studies on the health effects of whole foods. Appl. Physiol. Nutr. Metab. 2021, 46, 1152–1158. [Google Scholar] [CrossRef] [PubMed]
- Musazadeh, V.; Dehghan, P.; Saleh-Ghadimi, S.; Abbasalizad Farhangi, M. Omega 3-rich Camelina sativa oil in the context of a weight loss program improves glucose homeostasis, inflammation and oxidative stress in patients with NAFLD: A randomised placebo-controlled clinical trial. Int. J. Clin. Pract. 2021, 75, e14744. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Eicosapentaenoic and docosahexaenoic acid derived specialised pro-resolving mediators: Concentrations in humans and the effects of age, sex, disease and increased omega-3 fatty acid intake. Biochimie 2020, 178, 105–123. [Google Scholar] [CrossRef] [PubMed]
- Hariton, E.; Locascio, J.J. Randomised controlled trials—The gold standard for effectiveness research. BJOG Int. J. Obstet. Gynaecol. 2018, 125, 1716. [Google Scholar] [CrossRef] [Green Version]
- Princen, H.M.; van Duyvenvoorde, W.; Buytenhek, R.; van der Laarse, A.; van Poppel, G.; Gevers Leuven, J.A.; van Hinsbergh, V.W. Supplementation with low doses of vitamin E protects LDL from lipid peroxidation in men and women. Arter. Thromb. Vasc. Biol. 1995, 15, 325–333. [Google Scholar] [CrossRef]
- de Waart, F.G.; Moser, U.; Kok, F.J. Vitamin E supplementation in elderly lowers the oxidation rate of linoleic acid in LDL. Atherosclerosis 1997, 133, 255–263. [Google Scholar] [CrossRef]
- Nakamura, T.; Azuma, A.; Kuribayashi, T.; Sugihara, H.; Okuda, S.; Nakagawa, M. Serum fatty acid levels, dietary style and coronary heart disease in three neighbouring areas in Japan: The Kumihama study. Br. J. Nutr. 2003, 89, 267–272. [Google Scholar] [CrossRef]
- Matsuzaki, M.; Kita, T.; Mabuchi, H.; Matsuzawa, Y.; Nakaya, N.; Oikawa, S.; Saito, Y.; Sasaki, J.; Shimamoto, K.; Itakura, H. Large scale cohort study of the relationship between serum cholesterol concentration and coronary events with low-dose simvastatin therapy in Japanese patients with hypercholesterolemia. Circ. J. 2002, 66, 1087–1095. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, H.; Arakawa, K.; Itakura, H.; Kitabatake, A.; Goto, Y.; Toyota, T.; Nakaya, N.; Nishimoto, S.; Muranaka, M.; Yamamoto, A.; et al. Primary prevention of cardiovascular disease with pravastatin in Japan (MEGA Study): A prospective randomised controlled trial. Lancet 2006, 368, 1155–1163. [Google Scholar] [CrossRef]
- Bhatt, D.L.; Steg, P.G.; Miller, M.; Brinton, E.A.; Jacobson, T.A.; Ketchum, S.B.; Doyle, R.T.; Juliano, R.A.; Jiao, L.; Granowitz, C.; et al. Effects of Icosapent Ethyl on Total Ischemic Events. J. Am. Coll. Cardiol. 2019, 73, 2791–2802. [Google Scholar] [CrossRef]
- Food And Drug Administration. FDA Briefing Document: Endocrine and Metabolic Drug Advisory Committee Meeting; Food and Drug Administration: Prince George’s County, MD, USA, 2016.
- Ballantyne, C.M.; Bays, H.E.; Kastelein, J.J.; Stein, E.; Isaacsohn, J.L.; Braeckman, R.A.; Soni, P.N. Efficacy and safety of eicosapentaenoic acid ethyl ester (AMR101) therapy in statin-treated patients with persistent high triglycerides (from the ANCHOR study). Am. J. Cardiol. 2012, 110, 984–992. [Google Scholar] [CrossRef]
- Bays, H.E.; Braeckman, R.A.; Ballantyne, C.M.; Kastelein, J.J.; Otvos, J.D.; Stirtan, W.G.; Soni, P.N. Icosapent ethyl, a pure EPA omega-3 fatty acid: Effects on lipoprotein particle concentration and size in patients with very high triglyceride levels (the MARINE study). J. Clin. Lipidol. 2012, 6, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Davidson, M.H.; Stein, E.A.; Bays, H.E.; Maki, K.C.; Doyle, R.T.; Shalwitz, R.A.; Ballantyne, C.M.; Ginsberg, H.N.; COMBination of prescription Omega-3 with Simvastatin (COMBOS) Investigators. Efficacy and tolerability of adding prescription omega-3 fatty acids 4 g/d to simvastatin 40 mg/d in hypertriglyceridemic patients: An 8-week, randomized, double-blind, placebo-controlled study. Clin. Ther. 2007, 29, 1354–1367. [Google Scholar] [CrossRef] [PubMed]
- Gerber, M. Omega-3 fatty acids and cancers: A systematic update review of epidemiological studies. Br. J. Nutr. 2012, 107 (Suppl. S2), S228–S239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Cancer Institute. What Is Cancer? Available online: https://www.cancer.gov/about-cancer/understanding/what-is-cancer (accessed on 31 August 2021).
Author, Publication | Country | Follow-Up | Sample Size; (Test/Control), Description | Number of Women, % | Age (Range, Mean) | Doses of n-3 PUFA vs. Placebo | Outcomes (Test/Control) | Results |
---|---|---|---|---|---|---|---|---|
De Lorgeril 1998—Lyon Diet Heart Study [43] | France | 4 years | 605; (302/303), survivors of a first MI | 185 (36.6%) | <70 years | Mediterranean diet with margarine high in n-3 PUFA (16.4%) + advice from cardiologist and dietitian vs. placebo (regular diet) | Total cancer 7/17 | Significant reduction in Total cancer by 61%, RR 0.39 (95% CI 0.15–1.01), p = 0.05 |
GISSI-P trial 1999 [44] | Italy | 3.5 years | 11,324; (5666/5658), pts with recent MI | 1665, (14.7%) | 59.3 years | 1 g EPA + DHA + 300 mg vitamin E/d or placebo | Total cancer 142/134 | No effect on Total cancer |
von Shacky 1999—SCIMO Trial [47] | Germany | 2 years | 223; (112/111), pts with stenosis > 20% in one vessel | 44 (19.7%) | 58.4 years | 3–6 g EPA + DHA (6 g for the 1st 3 mos) and 3 g EPA + DHA (for 21 mos) or placebo (fatty acids reflecting European diet) | Stomach cancer 1/0 Bronchial carcinoma 0/1 | No effect on stomach cancer and bronchial carcinoma |
Raitt 2005 [49] | USA | ~2 years | 200; (100/100) pts with an implanted cardioverter defibrillator after a recent ventricular fibrillation | 28 (14%) | 62.5 years | 1.8 g EPA + DHA or placebo (olive oil) | Total cancer 3/4 | No effect on Total cancer |
Brouwer 2006—SOFA Trial [48] | Austria, Belgium, Czech Republic, Germany, the Netherlands, Poland, Switzerland and United Kingdom | 1 year | 546; (273/273), pts experiencing at least one confirmed ventricular fibrillation | 85 (15.6%) | 61.5 years | 2 g EPA + DHA + other n-3 PUFA/d or placebo (high oleic acid sunflower oil) | Total cancer 4/1 | No effect on Total cancer |
Yokoyama 2007—JELIS [18] | Japan | 5 years | 18,645; (9326/9319) (hypercholesterolemic patients on statin) | 12,786 (68.6%) | 61 years | 1.8 g EPA + 5–10 mg statin/d or placebo (5–10 mg statin) | Total cancer 242/218; Breast 16/21; Colorectal 26/29; Lung 32/37; Stomach 53/37 | No effect on Total cancer and other cancer outcomes |
Andreeva 2012— SU.FOL.OM3 [46] | France | 4.7 years | 2501; (1253/ 1248) pts with a history of acute coronary or ischemic event 1 year before randomization | 514 (20.6%) | 60.7 years | 0.6 g EPA + DHA + 560 μg folate + 3 mg vitamin B-6 + B-12 (20 μg) or placebo | Total cancer 93/81 | No effect on Total cancer, HR 1.17 (95% CI 0.87–1.58) |
Bordeleau 2014—ORIGIN Trial [45] | 573 centers in 40 countries globally | 6.2 years | 12,536; (6281/6255), pts with impaired fasting glucose, impaired glucose tolerance or diabetes | 4386 (35%) | 64 years | 0.84 g EPA + DHA or placebo (olive oil) | Total cancer 463/489; mortality 177/213; Lung cancer 76/70; Colorectal 71/75; Breast 29/27; Prostate 87/90; Melanoma 18/14; Other cancers 224/253; Any skin cancers 107/111 | No effect on Total cancer, HR 0.94 (95% CI 0.83–1.07) and other cancer outcomes |
Bowman 2018—ASCEND [29] | UK | 7.4 years | 15,480; (7740/7740), pts with diabetes but without evidence of atherosclerotic cardiovascular disease | 5796 (37.4%) | 63.3 years | 0.84 g EPA + DHA or placebo (olive oil) | Total cancer 894/890; mortality 305/319; GI 226/251; Respiratory 104/100; Genitourinary 323/303; Hematological 94/80; Breast 103/90; Melanoma skin 55/54 | No effect on Total cancer, RR 1.00 (95% CI 0.91–1.01) and other cancer outcomes |
Manson 2019—VITAL [30] | USA | 5.3 years | 25,871; (12,933/12,938), healthy men & women (no previous history of CVD, MI, stroke) | 13,085 (50.6%) | 67.1 years | 0.84 g EPA + DHA + 2000 IU vitamin D/d or placebo (corn oil) | Total cancer 820/797; mortality 168/173; Breast 117/129; Prostate 219/192; Colorectal 54/44 | No effect on Total cancer, HR 1.03 (95% CI 0.93–1.13), p = 0.56 and other cancer outcomes |
Author, Publication | Country | Follow-Up | Sample Size; (Test/Control), Description | Number of Women, % | Age (Range, Mean) | Doses of n-3 PUFA vs. Placebo | Results |
---|---|---|---|---|---|---|---|
Sirtori 1997 [54] | Italy | 6 mos | 935; (470/465), pts with impaired glucose tolerance | 352 (37.6%) | 58.5 years | 1.02–1.530 g EPA + 0.7–1.05 g DHA/d or placebo (olive oil) | No effect on fasting glucose and HbA1c |
Derosa 2011 [59] | Italy | 6 mos | 167; (78/79), pts with dyslipidemia | 87 (52.1%) | 54.5 years | 3 g EPA + DHA/d or placebo (capsule containing sucrose, mannitol, and mineral salts) ± diet counseling | Significant reduction in fasting blood glucose, p < 0.05 |
Rafraf 2012 [65] | Iran | 8 wks | 61; (30/31), women with polycystic ovary syndrome | 61 (100%) | 27.5 years | 1.2 g EPA + DHA or placebo (paraffin oil) | Significant reduction in glucose levels (by 11.4%, p < 0.001) |
Manning 2013 [55] | New Zealand | 1 year | 151; (75/76), pts with metabolic syndrome | 95 (62.9%) | 55.8 years | 0.6 g ALA ± 100 IU vitamin E or placebo | No effect on glucose levels or insulin sensitivity |
Hutchins 2013 [66] | USA | 12 wks | 41; obese/overweight pts with impaired fasting glucose | 14 (34.1%) | 58.6 years | 13 g or 26 g flaxseed/d or placebo (no flaxseed supplementation) | 13 g flaxseed significantly reduced insulin sensitivity and glucose levels |
Soares de Oliveira 2014 [67] | Brazil | 12 wks | 30; (15/15), women with metabolic syndrome | 30 (100%) | 40.1 years | 0.41 g EPA + DHA/d or placebo | Significant reduction in blood glucose, p < 0.05 |
Qin 2015 [68] | China | 12 wks | 70; (36/34), pts with NAFLD | 19 (27.1%) | 45.2 years | 1.24 g EPA + DHA/d or placebo (corn oil) | Significant decrease in fasting glucose, p < 0.05 |
Clark 2016 [56] | UK | 9 mos | 33; (16/17), patients with impaired fasting glucose | 13 (39.4%) | 60 years | 6 g fish oil (EPA, DHA, DPA, ALA)/d or placebo (maize oil) | No effect on total glucose and insulin sensitivity |
Derosa 2016 [60] | Italy | 18 mos | 281; (138/143), overweight patients with impaired fasting glucose | Not reported | 53.4 years | 3 g EPA + DHA/d or placebo (capsule containing sucrose, mannitol, and mineral salts) | Significant decrease in glycemia and insulin resistance |
Freire 2016 [69] | Brazil | 12 wks | 52; (25/27), pts with hepatitis C | 30 (57.7%) | ≥18 years | 1.8 g EPA + DHA/d or placebo (soybean oil) ± diet counseling | Significant reduction in insulin resistance, p = 0.015 |
Javidi 2016 [58] | Iran | 12 wks | 99; (66/33), prediabetic pts | 52 (52.5%) | 51.9 years | 20 g or 40 g flaxseed powder/d or placebo (no flaxseed supplementation) | No significant reduction in insulin resistance and fasting serum glucose |
Sawada 2016 [57] | Japan | 6 mos | 107; (53/54), pts with impaired fasting glucose | 20 (18.7%) | 68.4 years | 1.8 g EPA/d or placebo | No significant changes in HbA1c and fasting plasma glucose levels |
Wang 2019 [61] | China | 12 wks | 134; (76/58), pts with impaired fasting glucose | 69 (51%) | 56.8 years | 1.4 g EPA + DHA ± 1.7 g plant sterols or placebo (soybean powder) ± 1.7 g plant sterols | Significant reduction in fasting plasma glucose, p < 0.01; insulin resistance, p < 0.01 and HbA1c, p ≤ 0.05 |
Abbott 2020 [70] | Australia | 12 wks | 68; (36/32), pts with abdominal obesity | 43 (63.7%) | 50.9 years | 0.98 g DHA + EPA/d or placebo (corn oil) | Significant reduction in insulin resistance by −0.40 units, (95%CI: −0.78, −0.02, p = 0.038) |
Raja-Naeeni 2020 [62] | Iran | 8 wks | 168; (84/84), prediabetic women with hypovitaminosis D | 168 (100%) | 41 years | 2 g n-3 PUFAs/d ± 25,000 IU vitamin D/wk or placebo | Significant reduction in fasting glucose and insulin, p < 0.05 |
Barham 2021 [64] | Jordan | 8 wks | 146; (83/63), pts with vitamin D deficiency | 88 (60.3%) | 36.2 years | 0.3 g n-3 PUFAs/d ± 50,000 IU vitamin D/wk or placebo | Significant increase in HbA1c, (5.79 ± 0.34 vs. 5.41 ± 0.33, p < 0.001) in n-3 PUFA group |
Diaz-Rizzolo 2021 [63] | Spain | 1 year | 152; (75/77), pts with impaired fasting blood glucose | 67 (44.1%) | 71.2 years | 200 g sardines/wk or placebo (nutritional education based on ADA) | Significant reduction in insulin resistance, p < 0.035 |
Author, Publication | Country | Follow-Up | Sample Size; (Test/Control), Description | Number of Women, % | Age (Range, Mean) | Doses of n-3 PUFA vs. Placebo | Outcomes (Test/Control) | Results |
---|---|---|---|---|---|---|---|---|
AREDS2 2013 [78] | USA | 5 years | 4203; (2147/2056), pts with retinal findings consistent with advanced AMD | 2388 (57%) | 73.1 years | 1 g EPA + DHA + (10 mg lutein + 2 mg zeaxanthin) or placebo (AREDS supplements) | 979/961 (Advanced AMD events) | No reduction in risk of progression to advanced AMD |
Christen 2020—VITAL [79] | USA | 5.3 years | 25,871; (12,933/12,938), healthy men and women (no previous history of CVD, MI, stroke) | 13,085 (50.6%) | 67.1 years | 840 mg EPA + DHA + 2000 IU vitamin D/d or placebo (corn oil) | 157/167 | No overall effect on AMD incidence or progression |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahye-Pudaruth, S.; Ma, D.W.L. Assessing the Highest Level of Evidence from Randomized Controlled Trials in Omega-3 Research. Nutrients 2023, 15, 1001. https://doi.org/10.3390/nu15041001
Sahye-Pudaruth S, Ma DWL. Assessing the Highest Level of Evidence from Randomized Controlled Trials in Omega-3 Research. Nutrients. 2023; 15(4):1001. https://doi.org/10.3390/nu15041001
Chicago/Turabian StyleSahye-Pudaruth, Sandhya, and David W. L. Ma. 2023. "Assessing the Highest Level of Evidence from Randomized Controlled Trials in Omega-3 Research" Nutrients 15, no. 4: 1001. https://doi.org/10.3390/nu15041001
APA StyleSahye-Pudaruth, S., & Ma, D. W. L. (2023). Assessing the Highest Level of Evidence from Randomized Controlled Trials in Omega-3 Research. Nutrients, 15(4), 1001. https://doi.org/10.3390/nu15041001