Serum Fatty Acid Composition Balance by Fuzzy C-Means Method in Individuals with or without Metabolic Dysfunction-Associated Fatty Liver Disease
Abstract
:1. Introduction
2. Methods
2.1. Study Participants
2.2. Measurement of Serum Fatty Acids
2.3. Genotyping
2.4. Diagnosis of MAFLD
2.5. Data Collection
2.6. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Clustering Based on a Standardized Concentration of 10 Serum Fatty Acids
3.3. Multivariable Analysis of the Association between the MAFLD Prevalence and Clusters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wai-Sun Wong, V.; Dufour, J.F.; Schattenberg, J.M.; et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Eslam, M.; Sanyal, A.J.; George, J.; International Consensus Panel. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 2020, 158, 1999–2014.e1. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Lombardi, R.; Cattazzo, F.; Zusi, C.; Cappelli, D.; Dalbeni, A. MAFLD and CKD: An updated narrative review. Int. J. Mol. Sci. 2022, 23, 7007. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A. MAFLD vs NAFLD: Where are we? Dig. Liver Dis. 2021, 53, 1368–1372. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lee, Y.H.; Kim, S.U.; Kim, H.C. Metabolic dysfunction-associated fatty liver disease and incident cardiovascular disease risk: A nationwide cohort study. Clin. Gastroenterol. Hepatol. 2021, 19, 2138–2147.e2110. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.C.; Lyu, Z.Y.; Ma, B.; Li, L.M.; Wang, W.; Sheng, C.; Dai, H.J.; Huang, Y.B.; Song, F.F.; Song, F.J.; et al. A new risk stratification strategy for fatty liver disease by incorporating MAFLD and fibrosis score in a large US population. Hepatol. Int. 2022, 16, 835–845. [Google Scholar] [CrossRef]
- Mashek, D.G. Hepatic lipid droplets: A balancing act between energy storage and metabolic dysfunction in NAFLD. Mol. Metab. 2021, 50, 101115. [Google Scholar] [CrossRef]
- Hliwa, A.; Ramos-Molina, B.; Laski, D.; Mika, A.; Sledzinski, T. The role of fatty acids in non-alcoholic fatty liver disease progression: An update. Int. J. Mol. Sci. 2021, 22, 6900. [Google Scholar] [CrossRef] [PubMed]
- Sobczak, A.I.S.; Blindauer, C.A.; Stewart, A.J. Changes in plasma free fatty acids associated with type-2 diabetes. Nutrients 2019, 11, 2022. [Google Scholar] [CrossRef]
- Hodson, L.; Rosqvist, F.; Parry, S.A. The influence of dietary fatty acids on liver fat content and metabolism. Proc. Nutr. Soc. 2020, 79, 30–41. [Google Scholar] [CrossRef]
- Alberti, G.; Gana, J.C.; Santos, J.L. Fructose, omega 3 fatty acids, and vitamin E: Involvement in pediatric non-alcoholic fatty liver disease. Nutrients 2020, 12, 3531. [Google Scholar] [CrossRef]
- Willis, S.A.; Bawden, S.J.; Malaikah, S.; Sargeant, J.A.; Stensel, D.J.; Aithal, G.P.; King, J.A. The role of hepatic lipid composition in obesity-related metabolic disease. Liver Int. 2021, 41, 2819–2835. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, M.; Ntambi, J.M. Role of stearoyl-coenzyme A desaturase in lipid metabolism. Prostaglandins Leukot. Essent. Fat. Acids 2003, 68, 113–121. [Google Scholar] [CrossRef]
- Puri, P.; Wiest, M.M.; Cheung, O.; Mirshahi, F.; Sargeant, C.; Min, H.K.; Contos, M.J.; Sterling, R.K.; Fuchs, M.; Zhou, H.; et al. The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology 2009, 50, 1827–1838. [Google Scholar] [CrossRef] [PubMed]
- Ooi, G.J.; Meikle, P.J.; Huynh, K.; Earnest, A.; Roberts, S.K.; Kemp, W.; Parker, B.L.; Brown, W.; Burton, P.; Watt, M.J. Hepatic lipidomic remodeling in severe obesity manifests with steatosis and does not evolve with non-alcoholic steatohepatitis. J. Hepatol. 2021, 75, 524–535. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.-L. Analysis of parameter selections for fuzzy c-means. Pattern Recognit. 2012, 45, 407–415. [Google Scholar] [CrossRef]
- Zhou, K.; Fu, C.; Yang, S. Fuzziness parameter selection in fuzzy c-means: The perspective of cluster validation. Sci. China Inf. Sci. 2014, 57, 1–8. [Google Scholar] [CrossRef]
- Lankinen, M.; Uusitupa, M.; Schwab, U. Genes and dietary fatty acids in regulation of fatty acid composition of plasma and erythrocyte membranes. Nutrients 2018, 10, 1785. [Google Scholar] [CrossRef]
- Hodson, L.; Skeaff, C.M.; Fielding, B.A. Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog. Lipid Res. 2008, 47, 348–380. [Google Scholar] [CrossRef]
- Chen, G.Y.; Chiu, H.H.; Lin, S.W.; Tseng, Y.J.; Tsai, S.J.; Kuo, C.H. Development and application of a comparative fatty acid analysis method to investigate voriconazole-induced hepatotoxicity. Clin. Chim. Acta 2015, 438, 126–134. [Google Scholar] [CrossRef]
- Dongiovanni, P.; Paolini, E.; Corsini, A.; Sirtori, C.R.; Ruscica, M. Nonalcoholic fatty liver disease or metabolic dysfunction-associated fatty liver disease diagnoses and cardiovascular diseases: From epidemiology to drug approaches. Eur. J. Clin. Investig. 2021, 51, e13519. [Google Scholar] [CrossRef] [PubMed]
- Miyaaki, H.; Nakao, K. Significance of genetic polymorphisms in patients with nonalcoholic fatty liver disease. Clin. J. Gastroenterol. 2017, 10, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Jimba, S.; Nakagami, T.; Takahashi, M.; Wakamatsu, T.; Hirota, Y.; Iwamoto, Y.; Wasada, T. Prevalence of non-alcoholic fatty liver disease and its association with impaired glucose metabolism in Japanese adults. Diabet. Med. 2005, 22, 1141–1145. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.G.; Lydecker, A.; Murray, K.; Tetri, B.N.; Contos, M.J.; Sanyal, A.J. Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 2009, 7, 1104–1112. [Google Scholar] [CrossRef] [PubMed]
- Ketchen, D.J.; Shook, C.L. The application of cluster analysis in strategic management research: An analysis and critique. Strateg. Manag. J. 1996, 17, 441–458. [Google Scholar] [CrossRef]
- Luukkonen, P.K.; Sädevirta, S.; Zhou, Y.; Kayser, B.; Ali, A.; Ahonen, L.; Lallukka, S.; Pelloux, V.; Gaggini, M.; Jian, C.; et al. Saturated fat is more metabolically harmful for the human liver than unsaturated fat or simple sugars. Diabetes Care 2018, 41, 1732–1739. [Google Scholar] [CrossRef]
- Rosqvist, F.; Iggman, D.; Kullberg, J.; Cedernaes, J.; Johansson, H.E.; Larsson, A.; Johansson, L.; Ahlström, H.; Arner, P.; Dahlman, I.; et al. Overfeeding polyunsaturated and saturated fat causes distinct effects on liver and visceral fat accumulation in humans. Diabetes 2014, 63, 2356–2368. [Google Scholar] [CrossRef]
- Bozzetto, L.; Prinster, A.; Annuzzi, G.; Costagliola, L.; Mangione, A.; Vitelli, A.; Mazzarella, R.; Longobardo, M.; Mancini, M.; Vigorito, C.; et al. Liver fat is reduced by an isoenergetic MUFA diet in a controlled randomized study in type 2 diabetic patients. Diabetes Care 2012, 35, 1429–1435. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.C.; Itsiopoulos, C.; Thodis, T.; Ward, G.; Trost, N.; Hofferberth, S.; O’Dea, K.; Desmond, P.V.; Johnson, N.A.; Wilson, A.M. The Mediterranean diet improves hepatic steatosis and insulin sensitivity in individuals with non-alcoholic fatty liver disease. J. Hepatol. 2013, 59, 138–143. [Google Scholar] [CrossRef]
- Errazuriz, I.; Dube, S.; Slama, M.; Visentin, R.; Nayar, S.; O’Connor, H.; Cobelli, C.; Das, S.K.; Basu, A.; Kremers, W.K.; et al. Randomized controlled trial of a MUFA or fiber-rich diet on hepatic fat in prediabetes. J. Clin. Endocrinol. Metab. 2017, 102, 1765–1774. [Google Scholar] [CrossRef] [Green Version]
- de Castro, G.S.; Calder, P.C. Non-alcoholic fatty liver disease and its treatment with n-3 polyunsaturated fatty acids. Clin. Nutr. 2018, 37, 37–55. [Google Scholar] [CrossRef]
- Jeyapal, S.; Kona, S.R.; Mullapudi, S.V.; Putcha, U.K.; Gurumurthy, P.; Ibrahim, A. Substitution of linoleic acid with α-linolenic acid or long chain n-3 polyunsaturated fatty acid prevents Western diet induced nonalcoholic steatohepatitis. Sci. Rep. 2018, 8, 10953. [Google Scholar] [CrossRef]
- Lottenberg, A.M.; Afonso Mda, S.; Lavrador, M.S.; Machado, R.M.; Nakandakare, E.R. The role of dietary fatty acids in the pathology of metabolic syndrome. J. Nutr. Biochem. 2012, 23, 1027–1040. [Google Scholar] [CrossRef]
- Park, H.; Hasegawa, G.; Shima, T.; Fukui, M.; Nakamura, N.; Yamaguchi, K.; Mitsuyoshi, H.; Minami, M.; Yasui, K.; Itoh, Y.; et al. The fatty acid composition of plasma cholesteryl esters and estimated desaturase activities in patients with nonalcoholic fatty liver disease and the effect of long-term ezetimibe therapy on these levels. Clin. Chim. Acta 2010, 411, 1735–1740. [Google Scholar] [CrossRef]
Non-MAFLD (n = 257) | MAFLD (n = 136) | p | |
---|---|---|---|
Women (%) | 93 (36.2) | 36 (26.5) | 0.055 a |
Age (years) | 68.6 ± 8.3 | 61.7 ± 11.3 | <0.001 |
BMI (kg/m2) | 22.4 ± 2.6 | 25.9 ± 2.9 | <0.001 |
WC (cm) | 82.3 ± 7.8 | 90.1 ± 6.6 | <0.001 |
HbA1c (%) | 5.6 ± 0.7 | 6.0 ± 1.1 | 0.002 |
FBG (mg/dL) | 99 (92–107) | 101 (94–114) | 0.045 c |
HDL-C (mg/dL) | 68.0 ± 16.0 | 56.6 ± 14.5 | <0.001 |
LDL-C (mg/dL) | 117.9 ± 24.0 | 130.4 ± 27.4 | <0.001 |
TGs (mg/dL) | 84 (66–110) | 136 (101–187) | <0.001 c |
AST (IU/L) | 23.2 ± 7.1 | 29.3 ± 15.3 | <0.001 |
ALT (IU/L) | 20.2 ± 8.9 | 34.4 ± 20.8 | <0.001 |
GGT (IU/L) | 22 (16–35) | 33 (26–60) | <0.001 c |
FIB-4 index d | - | 1.51 (0.49–4.75) | |
Diabetes (%) | 64 (24.9) | 38 (27.9) | 0.546 a |
Alcohol intake (g/day) | 1.4 (0.0–90.0) | 3.2 (0.0–90.0) | 0.458 |
Smoking status | |||
Never | 142 (53.8) | 70 (51.5) | 0.033 a |
Ex | 103 (39.0) | 45 (33.1) | |
Current | 19 (7.2) | 21 (15.4) | |
PNPLA3 genotype | |||
C/C | 83 (32.3) | 25 (18.4) | 0.015 b |
C/G | 132 (51.4) | 83 (61.0) | |
G/G | 42 (16.3) | 28 (20.6) | |
C/C | 83 (32.3) | 25 (18.4) | 0.04 a |
C/G or G/G | 174 (67.7) | 112 (81.6) |
Fatty Acid | Cluster 1 (n = 112) | Cluster 2 (n = 108) | Cluster 3 (n = 92) | Cluster 4 (n = 88) | pa |
---|---|---|---|---|---|
Myristic acid (C14:0) | 0.58 (0.21–1.07) | 0.64 (0.22–1.33) | 0.70 (0.05–1.34) | 0.84 (0.52–1.51) | 0.001 |
Palmitic acid (C16:0) | 24.48 (15.89–28.58) | 25.09 (21.26–29.15) | 26.58 (22.95–31.58) | 27.70 (23.18–33.79) | 0.001 |
Stearic acid (C18:0) | 9.03 (5.73–11.28) | 8.79 (5.55–11.99) | 9.15 (7.54–11.88) | 8.67 (5.36–11.27) | 0.001 |
Palmitoleic acid (C16:1 omega-7) | 1.49 (0.55–2.96) | 1.73 (0.74–3.86) | 2.05 (1.07–3.81) | 2.66 (1.38–6.50) | <0.001 |
Oleic acid (C18:1 omega-9) | 19.45 (14.21–23.21) | 22.28 (18.00–29.25) | 21.39 (16.49–24.69) | 23.55 (16.50–29.74) | 0.001 |
Linoleic acid (C18:2 omega-6) | 32.51 (25.94–38.84) | 29.43 (27.66–32.11) | 26.52 (23.37–28.55) | 23.39 (15.87–26.98) | 0.001 |
Alpha- or gamma-linolenic acid (C18:3) | 0.71 (0.01–1.47) | 0.79 (0.07–1.78) | 0.66 (0.27–1.38) | 0.66 (0.19–1.28) | 0.002 |
Arachidonic acid (C20:4 omega-6) | 5.25 (2.53–8.55) | 5.19 (2.18–8.44) | 5.67 (2.57–8.90) | 5.17 (2.77–8.56) | 0.036 b |
Eicosapentaenoic acid (C20:5 omega-3) | 2.16 (0.47–7.44) | 1.84 (0.22–5.50) | 2.60 (0.97–7.61) | 2.20 (0.74–9.81) | <0.001 |
Docosahexaenoic acid (C22:6 omega-3) | 3.56 (2.00–6.66) | 3.49 (1.74–9.81) | 4.22 (2.19–8.75) | 3.81 (1.52–9.32) | <0.001 |
Total fatty acids (μg/mL) | 2270.3 (1160.8–3716.8) | 2424.5 (1453.8–4240.8) | 2391.4 (1130.8–3994.8) | 2609.5 (1571.3–6130.3) | <0.001 |
Cluster 1 (n = 112) | Cluster 2 (n = 108) | Cluster 3 (n = 92) | Cluster 4 (n = 88) | p | |
---|---|---|---|---|---|
Women (%) | 45 (40.2) | 37 (34.3) | 26 (28.3) | 22 (25.0) | 0.107 a |
Age (years) | 66.2 ± 8.6 | 66.0 ± 10.6 | 66.4 ± 9.7 | 65.3 ± 11.6 | 0.906 |
BMI (kg/m2) | 22.4 ± 2.8 | 23.5 ± 3.0 | 24.1 ± 3.4 | 24.7 ± 3.1 | <0.001 |
WC (cm) | 81.9 ± 7.9 | 84.8 ± 7.8 | 86.0 ± 8.6 | 87.5 ± 7.6 | <0.001 |
HbA1c (%) | 5.6 ± 0.7 | 5.7 ± 0.8 | 5.8 ± 0.9 | 6.0 ± 1.0 | 0.041d |
FBG (mg/dL) | 97 (78–196) | 100 (68–244) | 101 (81–206) | 101 (81–184) | 0.022 b,d |
HDL-C (mg/dL) | 70.3 ± 16.7 | 63.0 ± 15.3 | 62.5 ± 15.8 | 58.6 ± 15.0 | <0.001 |
LDL-C (mg/dL) | 125.9 ± 23.2 | 123.8 ± 23.8 | 118.6 ± 28.2 | 120.0 ± 28.1 | 0.158 |
TGs (mg/dL) | 71.5 (30–270) | 103 (48–431) | 97 (35–230) | 137 (42–508) | <0.001 b |
AST (IU/L) | 23.1 ± 6.3 | 24.1 ± 8.7 | 25.4 ± 10.5 | 29.3 ± 16.4 | <0.001 |
ALT (IU/L) | 21.5 ± 10.6 | 23.8 ± 17.2 | 26.0 ± 15.7 | 30.2 ± 17.5 | <0.001 |
GGT (IU/L) | 21 (8–302) | 27 (6–185) | 27.5 (12–442) | 35.5 (15–657) | <0.001 b |
MAFLD (%) | 22 (19.6) | 34 (31.5) | 32 (34.8) | 48 (54.5) | <0.001 a <0.001 c |
Diabetes (%) | 22 (19.6) | 27 (25.0) | 21 (22.8) | 32 (36.4) | 0.057 a |
Alcohol intake (g/day) | 0.0 (0.0–30.0) | 0.7 (0.0–60.0) | 5.7 (0.0–60.0) | 10.7 (0.0–90.0) | <0.001 b |
Smoking status | |||||
Never | 71 (63.4) | 60 (55.6) | 44 (47.8) | 37 (37.5) | 0.025 a,d |
Ex | 34 (30.4) | 40 (37.0) | 39 (42.4) | 35 (39.8) | |
Current | 7 (6.3) | 8 (7.4) | 9 (9.8) | 16 (18.2) | |
PNPLA3 genotype | |||||
C/C | 34 (30.4) | 30 (27.8) | 23 (25.0) | 22 (25.0) | 0.037 a,d |
C/G | 55 (49.1) | 55 (50.9) | 50 (54.3) | 60 (68.2) | |
G/G | 23 (20.5) | 23 (21.3) | 19 (20.7) | 6 (6.8) | |
C/C | 34 (30.4) | 30 (27.8) | 23 (25.0) | 22 (25.0) | 0.802 |
C/G or G/G | 78 (69.6) | 78 (72.2) | 69 (75.0) | 66 (75.0) |
OR (95% CI) a | p | |
---|---|---|
Cluster 1 | 1 | |
Cluster 2 | 1.39 (0.70–2.77) | 0.345 |
Cluster 3 | 1.56 (0.70–3.44) | 0.274 |
Cluster 4 | 5.14 (2.03–13.04) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagase, Y.; Satoh, T.; Shigetome, K.; Tokumaru, N.; Matsumoto, E.; Yamada, K.D.; Imafuku, T.; Watanabe, H.; Maruyama, T.; Ogata, Y.; et al. Serum Fatty Acid Composition Balance by Fuzzy C-Means Method in Individuals with or without Metabolic Dysfunction-Associated Fatty Liver Disease. Nutrients 2023, 15, 809. https://doi.org/10.3390/nu15040809
Nagase Y, Satoh T, Shigetome K, Tokumaru N, Matsumoto E, Yamada KD, Imafuku T, Watanabe H, Maruyama T, Ogata Y, et al. Serum Fatty Acid Composition Balance by Fuzzy C-Means Method in Individuals with or without Metabolic Dysfunction-Associated Fatty Liver Disease. Nutrients. 2023; 15(4):809. https://doi.org/10.3390/nu15040809
Chicago/Turabian StyleNagase, Yuka, Takao Satoh, Keiichi Shigetome, Naoto Tokumaru, Erika Matsumoto, Kazunori D. Yamada, Tadashi Imafuku, Hiroshi Watanabe, Toru Maruyama, Yasuhiro Ogata, and et al. 2023. "Serum Fatty Acid Composition Balance by Fuzzy C-Means Method in Individuals with or without Metabolic Dysfunction-Associated Fatty Liver Disease" Nutrients 15, no. 4: 809. https://doi.org/10.3390/nu15040809
APA StyleNagase, Y., Satoh, T., Shigetome, K., Tokumaru, N., Matsumoto, E., Yamada, K. D., Imafuku, T., Watanabe, H., Maruyama, T., Ogata, Y., Yoshida, M., Saruwatari, J., & Oniki, K. (2023). Serum Fatty Acid Composition Balance by Fuzzy C-Means Method in Individuals with or without Metabolic Dysfunction-Associated Fatty Liver Disease. Nutrients, 15(4), 809. https://doi.org/10.3390/nu15040809