The Connection between Non-Alcoholic Fatty-Liver Disease, Dietary Behavior, and Food Literacy in German Working Adults
Abstract
:1. Introduction
1.1. Introducing Food Literacy in Connection with the Food Choice Framework
1.2. Current State of Research on the Connections between Food Literacy, Dietary Behavior, and Indicators of Non-Alcoholic Fatty-Liver Disease
1.3. Aims of the Study
2. Materials and Methods
2.1. Study Design
2.2. Measures
2.2.1. Self-Report Measures
- The short food literacy questionnaire (SFLQ) developed by Gréa Krause et al. [26] was adapted for German subjects in order to analyze food literacy. The SFLQ consists of 12 items with responses on 4-, 5- and 6-point Likert scales ranging from very bad to very good, with total scores ranging from 7 to 52. It includes questions on functional, interactive, and critical literacy regarding dietary behavior (e.g., “How easy is it for you to evaluate if a specific food is relevant for a healthy diet?”). Higher scores indicate higher food literacy. With a Cronbach’s alpha of α = 0.82, the internal consistency was good [26].
- The working adults’ DB was evaluated by Winkler and Döring’s [45] food frequency list (FFL). The FFL examines an individual’s frequency of food intake in a total of 25 food groups (e.g., “How often do you eat the following foods? “cooked vegetables”) on a 6-point Likert scale (6 = nearly daily, 5 = several times per week, 4 = about once a week, 3 = several times per month, 2 = once a month, and 1 = never) [45,46]. In addition, the FFL provides a score for the individual’s DB based on an optimal intake of each food group derived from national DB recommendations [47], with total scores ranging from 0 to 30. The higher the total score on the FFL, the better the participant’s DB [47].
- Subjective health was determined as a control variable by using the Short Form 12 Version 2.0 (SF-12) in German, which has been validated in several studies, for example, in the German adult population [48,49]. The SF-12 captures the physical and mental components of an individual’s subjective health [48,50]. The SF-12 contains 12 questions, which aim to assess the following eight domains: general health, physical functioning, physical role, body pain, vitality, social functioning, emotional role, and mental health. Standardized component scores were calculated for both mental and physical health ranging from 0 to 100, with higher scores indicating better subjective health. This study combined the mental and the physical component scores to create an overall indicator of subjective health, as has been reported in previous studies [51].
- The Godin–Shepard Leisure-Time Physical Activity Questionnaire (GSLTPAQ) [52] examines individuals’ PA during leisure time at mild, moderate, and vigorous intensity (e.g., “Over the last 7 days (i.e., the last week), how many times on average did you do the following kinds of exercise for more than 30 min during your free time?”) as a control variable. This measure results in the cumulative weighted leisure score index (LSI), which displays the amount of leisure-time physical activity (PA), with high values indicating higher levels of leisure-time PA [53].
- The Alcohol Use Disorders Identification Test Consumption (AUDIT-C) was employed to control for alcohol consumption when testing the hypotheses of the present study [54]. AUDIT-C is a reliable and valid measure for assessing alcohol consumption in German working adults on a 5-point Likert scale (e. g. “How often do you have a drink containing alcohol?”) [55]. AUDIT-C scores range from 0 to 12, with higher scores indicating an increased probability of risky alcohol consumption.
- Furthermore, the participants’ sociodemographic statuses were also assessed: gender, age, relationship status, educational status, type of occupation, medical history, and medication intake. For statistical analysis, educational status was classified into three categories according to the CASMIN Educational Classification for International Research [56]. Participants’ self-reports on prior diseases and medications, which might show an association with indicators of NAFLD or DB, were included as additional control variables. The number of self-reported diseases and medications was counted to obtain an estimate for participants’ medical histories and medications. The following diseases (a) and medications (b) were included based on reviewing the literature:
2.2.2. Objective Health Measures
2.3. Data Analysis
3. Results
3.1. Participant Characteristics
3.2. Bivariate Correlations
3.3. Multiple Linear Regression
3.4. Path Analysis
4. Discussion
4.1. Direct Positive Association between FL and DB
4.2. Direct Connection between FL and FLI
4.3. Indirect Association between FL and FLI Mediated by DB
4.4. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
with y = 0.953 ∗ loge(triglycerides) + 0.139 ∗ BMI + 0.718 ∗ loge(GGT) + 0.053 ∗ waistcircumference − 15.745
FLI = e(0.953 ∗ loge(triglycerides) + 0.139 ∗ BMI + 0.718 ∗ loge(GGT) + 0.053 ∗ waistcircumference − 15.745)/1 + e(0.953 ∗ loge(triglycerides) + 0.139 ∗ BMI + 0.718 ∗ loge(GGT) + 0.053 ∗ waistcircumference − 15.745) ∗ 100
Appendix B
M | SD | FL | FLI | HRQOL | AUDIT-C | ||
---|---|---|---|---|---|---|---|
1. | Red meat | 4.66 | 1.01 | −0.14 * | 0.24 * | 0.07 | 0.16 * |
2. | Poultry | 3.75 | 1.08 | 0.05 | 0.17 * | 0.04 | 0.03 |
3. | Processed meat | 4.48 | 1.29 | −0.22 * | 0.28 * | 0.03 | 0.22 * |
4. | Fish | 3.37 | 1.03 | 0.17 * | −0.06 | 0.11 * | 0.01 |
5. | Potatoes | 4.04 | 1.03 | −0.05 | 0.06 | 0.05 | 0.12 * |
6. | Baked goods | 4.13 | 0.95 | −0.09 | 0.01 | 0.04 | 0.06 |
7. | Rice | 3.45 | 1.04 | 0.07 | −0.01 | 0.08 | −0.01 |
8. | Salad | 4.86 | 1.10 | 0.25 * | −0.15 * | 0.10 | −0.06 |
9. | Vegetables | 4.67 | 0.98 | 0.20 * | −0.16 * | 0.18 * | −0.09 |
10. | Fruits | 4.82 | 1.35 | 0.27 * | −0.30 * | 0.06 | −0.13 * |
11. | Chocolate | 4.05 | 1.39 | 0.01 | −0.07 | −0.03 | −0.10 |
12. | Cake and pastry | 3.84 | 1.18 | 0.03 | −0.11 * | −0.01 | −0.16 * |
13. | Candy | 3.41 | 1.55 | −0.13 * | 0.08 | 0.05 | 0.01 |
14. | Salty snacks | 3.26 | 1.27 | −0.03 | 0.06 | −0.10 | 0.09 |
15. | White bread | 4.20 | 1.50 | −0.21 * | 0.11 * | −0.01 | 0.13 * |
16. | Whole-grain bread | 4.50 | 1.35 | 0.18 * | −0.10 | 0.05 | −0.02 |
17. | Oats and granola | 3.40 | 1.80 | 0.27 * | −0.28 * | 0.12 * | −0.19 * |
18. | Curd | 4.26 | 1.50 | 0.18 * | −0.14 * | 0.06 | −0.09 |
19. | Cheese | 4.75 | 1.22 | 0.05 | −0.09 | 0.03 | −0.07 |
20. | Eggs | 3.84 | 1.07 | 0.11 * | −0.00 | 0.07 | 0.03 |
21. | Milk | 4.26 | 1.81 | 0.03 | −0.06 | 0.09 | −0.08 |
22. | Juice | 3.44 | 1.63 | −0.10 * | 0.03 | 0.00 | −0.01 |
23. | Soda and lemonade | 2.52 | 1.53 | −0.31 * | 0.23 * | −0.01 | 0.09 |
24. | Water | 6.30 | 1.13 | 0.14 * | −0.05 | 0.08 | −0.08 |
25. | Diet drink | 1.93 | 1.62 | 0.02 | 0.23 * | −0.05 | −0.02 |
Appendix C
FL | DB | FLI | ||
---|---|---|---|---|
Age | ||||
β 95% CI | −0.02 (−0.12, 0.08) | 0.11 (0.02, 0.21) | −0.11 (−0.21, −0.01) | |
Gender (ref. = female) | ||||
male | β 95% CI | −0.49 (−0.72, −0.25) | −0.32 (−0.55, −0.10) | 0.36 (0.12, 0.59) |
Education (ref. = low) | ||||
medium | β 95% CI | 0.31 (−0.15, 0.77) | 0.01 (−0.46, 0.47) | −0.15 (−0.59, 0.30) |
high | β 95% CI | 0.31 (−0.19, 0.81) | 0.03 (−0.51, 0.46) | −0.28 (−0.77, 0.20) |
Relationship (ref. = no relationship) | ||||
relationship | β 95% CI | 0.07 (−0.20, 0.33) | −0.12 (−0.33, 0.12) | 0.12 (−0.13, 0.37) |
Type of occupation (ref = white-collar workers) | ||||
blue-collar workers | β 95% CI | −0.07 (−0.39, 0.24) | −0.39 (−0.69, −0.01) | 0.03 (−0.28, 0.33) |
HRQOL | ||||
β 95% CI | 0.05 (−0.06, 0.15) | 0.18 (0.08, 0.28) | −0.13 (−0.23, −0.03) | |
LSI | ||||
β 95% CI | 0.15 (0.05, 0.25) | 0.22 (0.12, 0.32) | −0.13 (−0.23, −0.03) | |
AUDIT-C | ||||
β 95% CI | −0.03 (−0.13, 0.08) | −0.07 (−0.17, 0.03) | 0.7 (0.06, 0.28) | |
Medication | ||||
β 95% CI | 0.12 (0.02, 0.22) | 0.06 (−0.04, 0.16) | −0.07 (−0.16, 0.03) | |
Diseases | ||||
β 95% CI | −0.02 (−0.12, 0.08) | −0.02 (−0.11, 0.08) | 0.06 (−0.04, 0.16) |
Appendix D
References
- Rinella, M.E.; Sanyal, A.J. NAFLD in 2014: Genetics, diagnostics and therapeutic advances in NAFLD. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 65–66. [Google Scholar] [CrossRef] [Green Version]
- Lazarus, J.V.; Mark, H.E.; Anstee, Q.M.; Arab, J.P.; Batterham, R.L.; Castera, L.; Cortez-Pinto, H.; Crespo, J.; Cusi, K.; Dirac, M.A.; et al. Advancing the global public health agenda for NAFLD: A consensus statement. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 60–78. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Hassani Zadeh, S.; Mansoori, A.; Hosseinzadeh, M. Relationship between dietary patterns and non-alcoholic fatty liver disease: A systematic review and meta-analysis. J. Gastroenterol. Hepatol. 2021, 36, 1470–1478. [Google Scholar] [CrossRef]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schattenberg, J.M. Die nicht-alkoholische Fettleber-Erkrankung. MMW Fortschr. Med. 2020, 162, 56–62. [Google Scholar] [CrossRef]
- Kasper, P.; Martin, A.; Lang, S.; Kütting, F.; Goeser, T.; Demir, M.; Steffen, H.-M. NAFLD and cardiovascular diseases: A clinical review. Clin. Res. Cardiol. 2021, 110, 921–937. [Google Scholar] [CrossRef]
- Lazarus, J.V.; Colombo, M.; Cortez-Pinto, H.; Huang, T.T.K.; Miller, V.; Ninburg, M.; Schattenberg, J.M.; Seim, L.; Wong, V.W.S.; Zelber-Sagi, S. NAFLD—Sounding the alarm on a silent epidemic. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 377–379. [Google Scholar] [CrossRef]
- Thakur, J.S.; Bains, P.; Kar, S.S.; Wadhwa, S.; Moirangthem, P.; Kumar, R.; Wadwalker, S.; Sharma, Y. Integrated healthy workplace model: An experience from North Indian industry. Indian J. Occup. Environ. Med. 2012, 16, 108–113. [Google Scholar] [CrossRef] [Green Version]
- Täuber, S.; Mulder, L.B.; Flint, S.W. The Impact of Workplace Health Promotion Programs Emphasizing Individual Responsibility on Weight Stigma and Discrimination. Front. Psychol. 2018, 9, 2206. [Google Scholar] [CrossRef] [Green Version]
- Tam, G.; Yeung, M.P.S. A systematic review of the long-term effectiveness of work-based lifestyle interventions to tackle overweight and obesity. Prev. Med. 2018, 107, 54–60. [Google Scholar] [CrossRef]
- Li, C.; Xing, J.J.; Shan, A.Q.; Leng, L.; Liu, J.C.; Yue, S.; Yu, H.; Chen, X.; Tian, F.S.; Tang, N.J. Increased risk of nonalcoholic fatty liver disease with occupational stress in Chinese policemen: A 4-year cohort study. Medicine 2016, 95, e5359. [Google Scholar] [CrossRef]
- Song, E.; Kim, J.A.; Roh, E.; Yu, J.H.; Kim, N.H.; Yoo, H.J.; Seo, J.A.; Kim, S.G.; Kim, N.H.; Baik, S.H.; et al. Long Working Hours and Risk of Nonalcoholic Fatty Liver Disease: Korea National Health and Nutrition Examination Survey VII. Front. Endocrinol. 2021, 12, 647459. [Google Scholar] [CrossRef]
- WHO. Global Action Plan for the Prevention and Control of Noncommunicable Diseases 2013–2020; World Health Organization: Geneva, Switzerland, 2013.
- Williamson, R.M.; Price, J.F.; Glancy, S.; Perry, E.; Nee, L.D.; Hayes, P.C.; Frier, B.M.; Van Look, L.A.F.; Johnston, G.I.; Reynolds, R.M.; et al. Prevalence of and Risk Factors for Hepatic Steatosis and Nonalcoholic Fatty Liver Disease in People With Type 2 Diabetes: The Edinburgh Type 2 Diabetes Study. Diabetes Care 2011, 34, 1139–1144. [Google Scholar] [CrossRef] [Green Version]
- Hall, J.N.; Moore, S.; Harper, S.B.; Lynch, J.W. Global variability in fruit and vegetable consumption. Am. J. Prev. Med. 2009, 36, 402–409.E5. [Google Scholar] [CrossRef]
- Mensink, G.B.M.; Schienkiewitz, A.; Haftenberger, M.; Lampert, T.; Ziese, T.; Scheidt-Nave, C. Übergewicht und Adipositas in Deutschland. Bundesgesundheitsblatt Gesundh. Gesundh. 2013, 56, 786–794. [Google Scholar] [CrossRef] [Green Version]
- Mensink, G.B.M.; Truthmann, J.; Rabenberg, M.; Heidemann, C.; Haftenberger, M.; Schienkiewitz, A.; Richter, A. Obst- und Gemüsekonsum in Deutschland. Bundesgesundheitsblatt Gesundh. Gesundh. 2013, 56, 779–785. [Google Scholar] [CrossRef] [Green Version]
- Houttu, V.; Csader, S.; Nieuwdorp, M.; Holleboom, A.G.; Schwab, U. Dietary Interventions in Patients With Non-alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Front. Nutr. 2021, 8, 716783. [Google Scholar] [CrossRef]
- Schliemann, D.; Woodside, J.V. The effectiveness of dietary workplace interventions: A systematic review of systematic reviews. Public Health Nutr. 2019, 22, 942–955. [Google Scholar] [CrossRef]
- Chen, P.-J.; Antonelli, M. Conceptual Models of Food Choice: Influential Factors Related to Foods, Individual Differences, and Society. Foods 2020, 9, 1898. [Google Scholar] [CrossRef]
- Spronk, I.; Kullen, C.; Burdon, C.; O’Connor, H. Relationship between nutrition knowledge and dietary intake. Br. J. Nutr. 2014, 111, 1713–1726. [Google Scholar] [CrossRef] [Green Version]
- Vamos, S.D.; Wacker, C.C.; Welter, V.D.E.; Schlüter, K. Health Literacy and Food Literacy for K-12 Schools in the COVID-19 Pandemic. J. Sch. Health 2021, 91, 650–659. [Google Scholar] [CrossRef] [PubMed]
- Velardo, S. The Nuances of Health Literacy, Nutrition Literacy, and Food Literacy. J. Nutr. Educ. Behav. 2015, 47, 385–389.E1. [Google Scholar] [CrossRef]
- CDC Food Literacy. Available online: https://www.cdc.gov/healthliteracy/researchevaluate/food-literacy.html (accessed on 20 May 2022).
- Gréa Krause, C.; Beer-Borst, S.; Sommerhalder, K.; Hayoz, S.; Abel, T. A short food literacy questionnaire (SFLQ) for adults: Findings from a Swiss validation study. Appetite 2018, 120, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Krause, C.; Sommerhalder, K.; Beer-Borst, S.; Abel, T. Just a subtle difference? Findings from a systematic review on definitions of nutrition literacy and food literacy. Health Promot. Int. 2016, 33, 378–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Truman, E.; Lane, D.; Elliott, C. Defining food literacy: A scoping review. Appetite 2017, 116, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Nutbeam, D. The evolving concept of health literacy. Soc. Sci. Med. 2008, 67, 2072–2078. [Google Scholar] [CrossRef]
- Azevedo Perry, E.; Thomas, H.; Samra, H.R.; Edmonstone, S.; Davidson, L.; Faulkner, A.; Petermann, L.; Manafò, E.; Kirkpatrick, S.I. Identifying attributes of food literacy: A scoping review. Public Health Nutr. 2017, 20, 2406–2415. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Kim, T.; Jung, H. The Relationships between Food Literacy, Health Promotion Literacy and Healthy Eating Habits among Young Adults in South Korea. Foods 2022, 11, 2467. [Google Scholar] [CrossRef]
- Cullen, T.; Hatch, J.; Martin, W.; Higgins, J.W.; Sheppard, R. Food Literacy: Definition and Framework for Action. Can. J. Diet Pract. Res. 2015, 76, 140–145. [Google Scholar] [CrossRef]
- Sponselee, H.C.S.; Kroeze, W.; Poelman, M.P.; Renders, C.M.; Ball, K.; Steenhuis, I.H.M. Food and health promotion literacy among employees with a low and medium level of education in the Netherlands. BMC Public Health 2021, 21, 1273. [Google Scholar] [CrossRef]
- Sørensen, K.; Van den Broucke, S.; Fullam, J.; Doyle, G.; Pelikan, J.; Slonska, Z.; Brand, H.; (HLS-EU) Consortium Health Literacy Project European. Health literacy and public health: A systematic review and integration of definitions and models. BMC Public Health 2012, 12, 80. [Google Scholar] [CrossRef] [Green Version]
- Vettori, V.; Lorini, C.; Milani, C.; Bonaccorsi, G. Towards the Implementation of a Conceptual Framework of Food and Nutrition Literacy: Providing Healthy Eating for the Population. Int. J. Environ. Res. Public Health 2019, 16, 5041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Begley, A.; Paynter, E.; Butcher, L.M.; Dhaliwal, S.S. Effectiveness of an Adult Food Literacy Program. Nutrients 2019, 11, 797. [Google Scholar] [CrossRef] [Green Version]
- Meyn, S.; Blaschke, S.; Mess, F. Food Literacy and Dietary Intake in German Office Workers: A Longitudinal Intervention Study. Int. J. Environ. Res. Public Health 2022, 19, 16534. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, R. Sustainability of Well-being through Literacy. The Effects of Food Literacy on Sustainability of Well-being. Agric. Agric. Sci. Procedia 2016, 8, 99–106. [Google Scholar] [CrossRef]
- Cheng, Y.-L.; Shu, J.-H.; Hsu, H.-C.; Liang, Y.; Chou, R.-H.; Hsu, P.-F.; Wang, Y.-J.; Ding, Y.-Z.; Liou, T.-L.; Wang, Y.-W.; et al. High health literacy is associated with less obesity and lower Framingham risk score: Sub-study of the VGH-HEALTHCARE trial. PLoS ONE 2018, 13, e0194813. [Google Scholar] [CrossRef]
- DeFilippis, A.P.; Blaha, M.J.; Martin, S.S.; Reed, R.M.; Jones, S.R.; Nasir, K.; Blumenthal, R.S.; Budoff, M.J. Nonalcoholic fatty liver disease and serum lipoproteins: The Multi-Ethnic Study of Atherosclerosis. Atherosclerosis 2013, 227, 429–436. [Google Scholar] [CrossRef] [Green Version]
- Mearns, G.J.; Chepulis, L.; Britnell, S.; Skinner, K. Health and Nutritional Literacy of New Zealand Nursing Students. J. Nurs. Educ. 2017, 56, 43–48. [Google Scholar] [CrossRef]
- Blaschke, S.; Carl, J.; Ellinger, J.; Birner, U.; Mess, F. The Role of Physical Activity-Related Health Competence and Leisure-Time Physical Activity for Physical Health and Metabolic Syndrome: A Structural Equation Modeling Approach for German Office Workers. Int. J. Environ. Res. Public Health 2021, 18, 10153. [Google Scholar] [CrossRef]
- Vanni, E.; Bugianesi, E.; Kotronen, A.; De Minicis, S.; Yki-Järvinen, H.; Svegliati-Baroni, G. From the metabolic syndrome to NAFLD or vice versa? Dig. Liver Dis. 2010, 42, 320–330. [Google Scholar] [CrossRef] [Green Version]
- Strauss, M.; Foshag, P.; Leischik, R. Prospective Evaluation of Cardiovascular, Cardiorespiratory, and Metabolic Risk of German Office Workers in Comparison to International Data. Int. J. Environ. Res. Public Health 2020, 17, 1590. [Google Scholar] [CrossRef] [Green Version]
- Winkler, G.; Döring, A. Validation of a short qualitative food frequency list used in several German large scale surveys. Z. Ernährungswissenschaft 1998, 37, 234–241. [Google Scholar] [CrossRef]
- Haftenberger, M.; Heuer, T.; Heidemann, C.; Kube, F.; Krems, C.; Mensink, G.B.M. Relative validation of a food frequency questionnaire for national health and nutrition monitoring. Nutr. J. 2010, 9, 36. [Google Scholar] [CrossRef] [Green Version]
- Winkler, G.; Döring, A. Kurzmethoden zur Charakterisierung des Ernährungsmusters: Einsatz und Auswertung eines Food-Frequency-Fragebogens. Ernährungs-Umsch. 1995, 42, 289–291. [Google Scholar]
- Drixler, M.S.K.; Morfeld, M.; Glaesmer, H.; Brähler, E.; Wirtz, M.A. Validierung der Messung gesundheitsbezogener Lebensqualität mittels des Short-Form-Health-Survey-12 (SF-12 Version 2.0) in einer deutschen Normstichprobe. Z. Psychosom. Med. Psychother. 2020, 66, 272–286. [Google Scholar] [CrossRef]
- Huo, T.; Guo, Y.; Shenkman, E.; Muller, K. Assessing the reliability of the short form 12 (SF-12) health survey in adults with mental health conditions: A report from the wellness incentive and navigation (WIN) study. Health Qual. Life Outcomes 2018, 16, 34. [Google Scholar] [CrossRef] [Green Version]
- Ware, J.E.; Kosinski, M.; Keller, S.D. A 12-Item Short-Form Health Survey: Construction of Scales and Preliminary Tests of Reliability and Validity. Med. Care 1996, 34, 220–233. [Google Scholar] [CrossRef] [Green Version]
- Carl, J.; Grüne, E.; Popp, J.; Pfeifer, K. Physical Activity Promotion for Apprentices in Nursing Care and Automotive Mechatronics-Competence Counts More than Volume. Int. J. Env. Res. Public Health 2020, 17, 793. [Google Scholar] [CrossRef] [Green Version]
- Godin, G.; Shephard, R.J. A simple method to assess exercise behavior in the community. Canadian journal of applied sport sciences. Can. J. Appl. Sport Sci. 1985, 10, 141–146. [Google Scholar]
- Amireault, S.; Godin, G. The Godin-Shephard leisure-time physical activity questionnaire: Validity evidence supporting its use for classifying healthy adults into active and insufficiently active categories. Percept. Mot. Ski. 2015, 120, 604–622. [Google Scholar] [CrossRef] [PubMed]
- Bradley, K.A.; DeBenedetti, A.F.; Volk, R.J.; Williams, E.C.; Frank, D.; Kivlahan, D.R. AUDIT-C as a brief screen for alcohol misuse in primary care. Alcohol. Clin. Exp. Res. 2007, 31, 1208–1217. [Google Scholar] [CrossRef] [PubMed]
- Rumpf, H.J.; Hapke, U.; Meyer, C.; John, U. Screening for alcohol use disorders and at-risk drinking in the general population: Psychometric performance of three questionnaires. Alcohol Alcohol. 2002, 37, 261–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brauns, H.; Scherer, S.; Steinmann, S. The CASMIN Educational Classification in International Comparative Research; Academic/Plenum Publishers: New York, NY, USA, 2003. [Google Scholar]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Diehl, A.M.; Brunt, E.M.; Cusi, K.; Charlton, M.; Sanyal, A.J. The diagnosis and management of non-alcoholic fatty liver disease: Practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology 2012, 55, 2005–2023. [Google Scholar] [CrossRef]
- Mundi, M.S.; Velapati, S.; Patel, J.; Kellogg, T.A.; Abu Dayyeh, B.K.; Hurt, R.T. Evolution of NAFLD and Its Management. Nutr. Clin. Pract. 2020, 35, 72–84. [Google Scholar] [CrossRef]
- Herold, G. Innere Medizin; Gerd Herold: Köln, Germany, 2016. [Google Scholar]
- Lind, L.; Johansson, L.; Ahlström, H.; Eriksson, J.W.; Larsson, A.; Risérus, U.; Kullberg, J.; Oscarsson, J. Comparison of four non-alcoholic fatty liver disease detection scores in a Caucasian population. World J. Hepatol. 2020, 12, 149–159. [Google Scholar] [CrossRef]
- Koehler, E.M.; Schouten, J.N.L.; Hansen, B.E.; Hofman, A.; Stricker, B.H.; Janssen, H.L.A. External Validation of the Fatty Liver Index for Identifying Nonalcoholic Fatty Liver Disease in a Population-based Study. Clin. Gastroenterol. Hepatol. 2013, 11, 1201–1204. [Google Scholar] [CrossRef]
- Meffert, P.J.; Baumeister, S.E.; Lerch, M.M.; Mayerle, J.; Kratzer, W.; Völzke, H. Development, external validation, and comparative assessment of a new diagnostic score for hepatic steatosis. Am. J. Gastroenterol. 2014, 109, 1404–1414. [Google Scholar] [CrossRef]
- Buuren, S.V. Flexible Imputation of Missing Data, 2nd ed.; Chapman and Hall/CRC: New York, NY, USA, 2018. [Google Scholar]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 6th ed.; Pearson Eduation Inc.: New Jersey, NJ, USA, 2013. [Google Scholar]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 4th ed.; Guilford Publications: New York, NY, USA, 2015. [Google Scholar]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. Linear Regression. In An Introduction to Statistical Learning: With Applications in R; James, G., Witten, D., Hastie, T., Tibshirani, R., Eds.; Springer: New York, NY, USA, 2013; pp. 59–126. [Google Scholar]
- Schermelleh-Engel, K.; Moosbrugger, H.; Müller, H. Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods Psychol. Res. Online 2003, 8, 23–74. [Google Scholar]
- Hu, L.-T.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. A Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: New York, NY, USA, 1988. [Google Scholar]
- Luta, X.; Hayoz, S.; Gréa Krause, C.; Sommerhalder, K.; Roos, E.; Strazzullo, P.; Beer-Borst, S. The relationship of health/food literacy and salt awareness to daily sodium and potassium intake among a workplace population in Switzerland. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Boslooper-Meulenbelt, K.; Boonstra, M.D.; van Vliet, I.M.Y.; Gomes-Neto, A.W.; Osté, M.C.J.; Poelman, M.P.; Bakker, S.J.L.; de Winter, A.F.; Navis, G.J. Food Literacy is Associated with Adherence to a Mediterranean-Style Diet in Kidney Transplant Recipients. J. Ren. Nutr. 2021, 31, 628–636. [Google Scholar] [CrossRef]
- Begley, A.; Butcher, L.M.; Bobongie, V.; Dhaliwal, S.S. Identifying Participants Who Would Benefit the Most from an Adult Food-literacy Program. Int. J. Environ. Res. Public Health 2019, 16, 1272. [Google Scholar] [CrossRef] [Green Version]
- Brach, C. The Journey to Become a Health Literate Organization: A Snapshot of Health System Improvement. Stud. Health Technol. Inf. 2017, 240, 203–237. [Google Scholar]
- Rachmah, Q.; Martiana, T.; Mulyono; Paskarini, I.; Dwiyanti, E.; Widajati, N.; Ernawati, M.; Ardyanto, Y.D.; Tualeka, A.R.; Haqi, D.N.; et al. The Effectiveness of Nutrition and Health Intervention in Workplace Setting: A Systematic Review. J. Public Health Res. 2022, 11, 2312. [Google Scholar] [CrossRef]
- Wong, B.K. Building a Health Literate Workplace. Workplace Health Saf. 2012, 60, 363–369. [Google Scholar] [CrossRef]
- Land, K.C. Principles of Path Analysis. Sociol. Methodol. 1969, 1, 3–37. [Google Scholar] [CrossRef]
- Schönfeld, M.S.; Pfisterer-Heise, S.; Bergelt, C. Self-reported health literacy and medication adherence in older adults: A systematic review. BMJ Open 2021, 11, e056307. [Google Scholar] [CrossRef]
- Lee, S.Y.; Tsai, T.I.; Tsai, Y.W. Accuracy in self-reported health literacy screening: A difference between men and women in Taiwan. BMJ Open 2013, 3, e002928. [Google Scholar] [CrossRef] [Green Version]
- Carl, J.; Grüne, E.; Pfeifer, K. What About the Environment? How the Physical Activity–Related Health Competence Model Can Benefit From Health Literacy Research. Front. Public Health 2021, 9, 635443. [Google Scholar] [CrossRef]
- Carl, J.; Sudeck, G.; Pfeifer, K. Competencies for a Healthy Physically Active Lifestyle-Reflections on the Model of Physical Activity-Related Health Competence. J. Phys. Act. Health 2020, 17, 688–697. [Google Scholar] [CrossRef] [PubMed]
- Truman, E.; Elliott, C. Barriers to Food Literacy: A Conceptual Model to Explore Factors Inhibiting Proficiency. J. Nutr. Educ. Behav. 2019, 51, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M.; Danks, N.P.; Ray, S. Mediation Analysis. In Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R: A Workbook; Hair, J.F., Jr., Hult, G.T.M., Ringle, C.M., Sarstedt, M., Danks, N.P., Ray, S., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 139–153. [Google Scholar]
- Micha, R.; Shulkin, M.L.; Peñalvo, J.L.; Khatibzadeh, S.; Singh, G.M.; Rao, M.; Fahimi, S.; Powles, J.; Mozaffarian, D. Etiologic effects and optimal intakes of foods and nutrients for risk of cardiovascular diseases and diabetes: Systematic reviews and meta-analyses from the Nutrition and Chronic Diseases Expert Group (NutriCoDE). PLoS ONE 2017, 12, e0175149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayr, H.L.; Kelly, J.T.; Macdonald, G.A.; Hickman, I.J. ‘Focus on diet quality’: A qualitative study of clinicians’ perspectives of use of the Mediterranean dietary pattern for non-alcoholic fatty liver disease. Br. J. Nutr. 2022, 128, 1220–1230. [Google Scholar] [CrossRef]
- Raynor, H.A.; Champagne, C.M. Position of the Academy of Nutrition and Dietetics: Interventions for the Treatment of Overweight and Obesity in Adults. J. Acad. Nutr. Diet. 2016, 116, 129–147. [Google Scholar] [CrossRef]
- Prietl, I.; Nöhammer, E. Gesundheitskompetenz im Betrieb im Kontext der betrieblichen Gesundheitsförderung. Prävention Gesundh. 2021, 16, 328–333. [Google Scholar] [CrossRef]
- Kreienbrock, L.; Pigeot, I.; Ahrens, W. Epidemiologische Studien. In Epidemiologische Methoden; Kreienbrock, L., Pigeot, I., Ahrens, W., Eds.; Spektrum Akademischer Verlag: Heidelberg, Germany, 2012; pp. 53–119. [Google Scholar]
Total (N = 372) | Men (n = 230) | Women (n = 142) | |
---|---|---|---|
Age, M (SD) | 50.8 (6.3) | 50.7 (6.7) | 50.7 (6.1) |
Education | |||
Low, n (%) | 27 (7.3) | 11 (3.0) | 16 (4.3) |
Medium, n (%) | 155 (41.7) | 78 (21.0) | 77 (20.7) |
High, n (%) | 190 (51.3) | 141 (38.2) | 49 (13.2) |
Relationship | |||
Single, n (%) | 102 (27.4) | 52 (14.0) | 50 (13.4) |
In a relationship, n (%) | 270 (72.9) | 178 (48.1) | 92 (24.7) |
Type of occupation | |||
White-collar workers, n (%) | 310 (83.3) | 195 (84.8) | 115 (81.0) |
Blue-collar workers, n (%) | 62 (16.7) | 35 (15.2) | 27 (19.0) |
Medication intake | |||
No medication, n (%) | 342 (92.2) | 222 (60.0) | 120 (32.3) |
One medication, n (%) | 30 (8.1) | 8 (2.2) | 22 (5.9)) |
Existing diseases | |||
No disease, n (%) | 123 (33.2) | 84 (22.6) | 39 (10.5) |
One disease, n (%) | 130 (35.0) | 82 (22.3) | 47 (12.6) |
Two diseases, n (%) | 87 (23.4) | 44 (11.8) | 43 (11.6) |
Three diseases, n (%) | 31 (8.3) | 19 (5.1) | 12 (32) |
Four diseases, n (%) | 2 (0.5) | 1 (0.3) | 1 (0.3) |
M | SD | FL | DB | FLI | HRQOL | LSI | ||
---|---|---|---|---|---|---|---|---|
1. | FL | 32.7 | 6.1 | |||||
2. | DB | 13.4 | 3.5 | 0.32 * | ||||
3. | FLI | 58.1 | 29.5 | −0.16 * | −0.27 * | |||
4. | HRQOL | 47.2 | 6.3 | 0.05 | 0.20 * | −0.14 * | ||
5. | LSI | 18.5 | 16.2 | 0.14 * | 0.15 * | −0.16 * | 0.18 * | |
6. | AUDIT-C | 3.55 | 1.97 | 0.11 | −0.07 * | 0.24 * | −0.05 | −0.07 |
Predictor | β | SE | 95% CI |
---|---|---|---|
Criterion: FL | |||
Gender | −0.21 * | 0.05 | (−0.31, −0.10) |
LSI | 0.16 * | 0.06 | (0.05, 0.26) |
Medication | 0.11 * | 0.05 | (0.02, 0.21) |
R2 = 0.08 | |||
Criterion: DB | |||
FL | 0.25 * | 0.05 | (0.15, 0.35) |
Age | 0.12 * | 0.05 | (0.02, 0.21) |
Gender | −0.12 * | 0.05 | (−0.22, −0.02) |
HRQOL | 0.15 * | 0.05 | (0.05, 0.24) |
LSI | 0.20 * | 0.05 | (0.11, 0.29) |
Type of occupation | −0.14 * | 0.05 | (−0.23, −0.04) |
R2 = 0.20 | |||
Criterion: FLI | |||
FL | −0.05 | 0.05 | (−0.15, 0.06) |
DB | −0.14 * | 0.05 | (−0.24, −0.03) |
Age | −0.09 * | 0.05 | (−0.18, 0.01) |
Gender | 0.12 * | 0.05 | (0.02, 0.23) |
HRQOL | −0.08 | 0.06 | (−0.18, 0.02) |
LSI | −0.12 * | 0.05 | (−0.21, −0.02) |
Alcohol consumption | 0.19 * | 0.05 | (0.10, 0.28) |
R2 = 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blaschke, S.; Schad, N.; Schnitzius, M.; Pelster, K.; Mess, F. The Connection between Non-Alcoholic Fatty-Liver Disease, Dietary Behavior, and Food Literacy in German Working Adults. Nutrients 2023, 15, 648. https://doi.org/10.3390/nu15030648
Blaschke S, Schad N, Schnitzius M, Pelster K, Mess F. The Connection between Non-Alcoholic Fatty-Liver Disease, Dietary Behavior, and Food Literacy in German Working Adults. Nutrients. 2023; 15(3):648. https://doi.org/10.3390/nu15030648
Chicago/Turabian StyleBlaschke, Simon, Nele Schad, Melina Schnitzius, Klaus Pelster, and Filip Mess. 2023. "The Connection between Non-Alcoholic Fatty-Liver Disease, Dietary Behavior, and Food Literacy in German Working Adults" Nutrients 15, no. 3: 648. https://doi.org/10.3390/nu15030648
APA StyleBlaschke, S., Schad, N., Schnitzius, M., Pelster, K., & Mess, F. (2023). The Connection between Non-Alcoholic Fatty-Liver Disease, Dietary Behavior, and Food Literacy in German Working Adults. Nutrients, 15(3), 648. https://doi.org/10.3390/nu15030648