Saturated Fatty Acids Consumed in Smoothies Increase Glucose and Metabolic Load Index in Young Adults Compared to Polyunsaturated Omega-3-Fatty Acids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Familiarization Session
2.2. Smoothie Composition
2.3. High-Fat Meal Challenges
3. Results
4. Discussion
4.1. Main Findings
4.2. Postprandial Responses among Smoothie Types
4.3. The Importance of Time Course in Evaluating Postprandial Outcomes
4.4. Postprandial Responses and Mechanisms of Action
Experimental Considerations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart disease and stroke statistics—2019 update: A report from the American heart association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef] [PubMed]
- Margioris, A.N. Fatty acids and postprandial inflammation. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Boniface, D.R.; Tefft, M.E. Dietary fats and 16-year coronary heart disease mortality in a cohort of men and women in Great Britain. Eur. J. Clin. Nutr. 2002, 56, 786–792. [Google Scholar] [CrossRef] [Green Version]
- Mann, J.I.; Appleby, P.N.; Key, T.J.; Thorogood, M. Dietary determinants of ischaemic heart disease in health conscious individuals. Heart 1997, 78, 450–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bansal, S.; Buring, J.E.; Rifai, N.; Mora, S.; Sacks, F.M.; Ridker, P.M. Fasting Compared with Nonfasting Triglycerides and Risk of Cardiovascular Events in Women. JAMA 2007, 298, 309–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolovou, G.D.; Mikhailidis, D.P.; Kovar, J.; Lairon, D.; Nordestgaard, B.G.; Chye Ooi, T.; Perez-Martinez, P.; Bilianou, H.; Anagnostopoulou, K.; Panotopoulos, G. Assessment and Clinical Relevance of Non-Fasting and Postprandial Triglycerides: An Expert Panel Statement. Curr. Vasc. Pharmacol. 2011, 9, 258–270. [Google Scholar] [CrossRef]
- Granér, M.; Kahri, J.; Nakano, T.; Sarna, S.J.; Nieminen, M.S.; Syvänne, M.; Taskinen, M.R. Impact of postprandial lipaemia on low-density lipoprotein (LDL) size and oxidized LDL in patients with coronary artery disease. Eur. J. Clin. Investig. 2006, 36, 764–770. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.M. Postprandial lipid metabolism: Effects of dietary fatty acids. Proc. Nutr. Soc. 1997, 56, 679–692. [Google Scholar] [CrossRef] [Green Version]
- Keirns, B.H.; Sciarrillo, C.M.; Poindexter, K.L.; Emerson, S.R. Daily Triglyceride Kinetics When Consuming a Realistic Western Diet in at-Risk Individuals across the Metabolic Spectrum: A Case Study. Obesities 2021, 1, 107–112. [Google Scholar] [CrossRef]
- Johnson, A.M.; Kurti, S.P.; Smith, J.R.; Rosenkranz, S.K.; Harms, C.A. Effects of an acute bout of moderate-intensity exercise on postprandial lipemia and airway inflammation. Appl. Physiol. Nutr. Metab. 2015, 41, 284–291. [Google Scholar] [CrossRef]
- Kurti, S.P.; Rosenkranz, S.K.; Chapes, S.K.; Teeman, C.S.; Cull, B.J.; Emerson, S.R.; Levitt, M.H.; Smith, J.R.; Harms, C.A. Does chronic physical activity level modify the airway inflammatory response to an acute bout of exercise in the postprandial period? Appl. Physiol. Nutr. Metab. 2017, 42, 173–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurti, S.P.; Frick, H.; Wisseman, W.S.; Malin, S.K.; Edwards, D.A.; Emerson, S.R.; Edwards, E.S. Acute exercise improves glucose and TAG metabolism in young and older adults following high-fat, high-carbohydrate meal intake. Br. J. Nutr. 2021, 127, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Emerson, S.R.; Haub, M.D.; Teeman, C.S.; Kurti, S.P.; Rosenkranz, S.K. Summation of blood glucose and TAG to characterise the “metabolic load index”. Br. J. Nutr. 2016, 116, 1553–1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurti, S.P.; Wisseman, W.S.; Miller, M.E.; Frick, H.L.; Malin, S.K.; Emerson, S.R.; Edwards, D.A.; Edwards, E.S. Acute Exercise and the Systemic and Airway Inflammatory Response to a High-Fat Meal in Young and Older Adults. Metabolites 2022, 12, 853. [Google Scholar] [CrossRef] [PubMed]
- Sciarrillo, C.M.; Koemel, N.A.; Tomko, P.M.; Bode, K.B.; Emerson, S.R. Postprandial Lipemic Responses to Various Sources of Saturated and Monounsaturated Fat in Adults. Nutrients 2019, 11, 1089. [Google Scholar] [CrossRef] [Green Version]
- Masson, C.J.; Mensink, R.P. Exchanging Saturated Fatty Acids for (n-6) Polyunsaturated Fatty Acids in a Mixed Meal May Decrease Postprandial Lipemia and Markers of Inflammation and Endothelial Activity in Overweight Men. J. Nutr. 2011, 141, 816–821. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.J.; Senanayake, V.K.; Pu, S.; Jenkins, D.J.; Connelly, P.W.; Lamarche, B.; Couture, P.; Charest, A.; Baril-Gravel, L.; West, S.G.; et al. DHA-enriched high–oleic acid canola oil improves lipid profile and lowers predicted cardiovascular disease risk in the canola oil multicenter randomized controlled trial. Am. J. Clin. Nutr. 2014, 100, 88–97. [Google Scholar] [CrossRef] [Green Version]
- Schwingshackl, L.; Hoffmann, G. Dietary fatty acids in the secondary prevention of coronary heart disease: A systematic review, meta-analysis and meta-regression. BMJ Open 2014, 4, e004487. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-Country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.; Stone, N.J.; Ballantyne, C.; Bittner, V.; Criqui, M.H.; Ginsberg, H.N.; Goldberg, A.C.; Howard, W.J.; Jacobson, M.S.; Kris-Etherton, P.M.; et al. Triglycerides and cardiovascular disease: A scientific statement from the American Heart Association. Circulation 2011, 123, 2292–2333. [Google Scholar] [CrossRef]
- Kolovou, G.D.; Watts, G.F.; Mikhailidis, D.P.; Pérez-Martínez, P.; Mora, S.; Bilianou, H.; Panotopoulos, G.; Katsiki, N.; Ooi, T.C.; Lopez-Miranda, J.; et al. Postprandial Hypertriglyceridaemia Revisited in the Era of Non-Fasting Lipid Profile Testing: A 2019 Expert Panel Statement, Main Text. Curr. Vasc. Pharmacol. 2019, 17, 498–514. [Google Scholar] [CrossRef]
- Teeman, C.S.; Kurti, S.P.; Cull, B.J.; Emerson, S.R.; Haub, M.D.; Rosenkranz, S.K. The effect of moderate intensity exercise in the postprandial period on the inflammatory response to a high-fat meal: An experimental study. Nutr. J. 2015, 15, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodows, R.G.; Campbell, R.G. Effect of Age on Post-Heparin Lipase. N. Engl. J. Med. 1972, 287, 969–970. [Google Scholar] [CrossRef] [PubMed]
- Cree-Green, M.; Newcomer, B.R.; Katsanos, C.S.; Sheffield-Moore, M.; Chinkes, D.; Aarsland, A.; Urban, R.; Wolfe, R.R. Intramuscular and Liver Triglycerides Are Increased in the Elderly. J. Clin. Endocrinol. Metab. 2004, 89, 3864–3871. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira Otto, M.C.; Mozaffarian, D.; Kromhout, D.; Bertoni, A.G.; Sibley, C.T.; Jacobs, D.R.; Nettleton, J.A. Dietary intake of saturated fat by food source and incident cardiovascular disease: The multi-ethnic study of atherosclerosis. Am. J. Clin. Nutr. 2012, 96, 397–404. [Google Scholar] [CrossRef] [Green Version]
- Otvos, J.D.; Jeyarajah, E.J.; Cromwell, W.C. Measurement issues related to lipoprotein heterogeneity. Am. J. Cardiol. 2002, 90, 22–29. [Google Scholar] [CrossRef]
- Emerson, S.R.; Kurti, S.P.; Emerson, E.M.; Cull, B.J.; Casey, K.; Haub, M.D.; Rosenkranz, S.K. Postprandial Metabolic Responses Differ by Age Group and Physical Activity Level. J. Nutr. Health Aging 2018, 22, 145–153. [Google Scholar] [CrossRef]
- Decewicz, D.J.; Neatrour, D.M.; Burke, A.; Haberkorn, M.J.; Patney, H.L.; Vernalis, M.N.; Ellsworth, D.L. Effects of cardiovascular lifestyle change on lipoprotein subclass profiles defined by nuclear magnetic resonance spectroscopy. Lipids Health Dis. 2009, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Cohn, J.S. Postprandial Lipemia and Remnant Lipoproteins. Clin. Lab. Med. 2006, 26, 773–786. [Google Scholar] [CrossRef]
- Wojczynski, M.K.; Glasser, S.P.; Oberman, A.; Kabagambe, E.K.; Hopkins, P.N.; Tsai, M.Y.; Straka, R.J.; Ordovas, J.M.; Arnett, D.K. High-fat meal effect on LDL, HDL, and VLDL particle size and number in the Genetics of Lipid-Lowering drugs and diet network (GOLDN): An interventional study. Lipids Health Dis. 2011, 10, 181. [Google Scholar] [CrossRef]
- Cromwell, W.C.; Otvos, J.D.; Keyes, M.J.; Pencina, M.J.; Sullivan, L.; Vasan, R.S.; Wilson, P.W.; D’Agostino, R.B. LDL particle number and risk of future cardiovascular disease in the Framingham Offspring Study—Implications for LDL management. J. Clin. Lipidol. 2007, 1, 583–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esser, D.; van Dijk, S.J.; Oosterink, E.; Müller, M.; Afman, L.A. A High-Fat SFA, MUFA, or n3 PUFA Challenge Affects the Vascular Response and Initiates an Activated State of Cellular Adherence in Lean and Obese Middle-Aged Men. J. Nutr. 2013, 143, 843–851. [Google Scholar] [CrossRef] [Green Version]
- Monfort-Pires, M.; Delgado-Lista, J.; Gomez-Delgado, F.; Lopez-Miranda, J.; Perez-Martinez, P.; Ferreira, S.R.G. Impact of the Content of Fatty Acids of Oral Fat Tolerance Tests on Postprandial Triglyceridemia: Systematic Review and Meta-Analysis. Nutrients 2016, 8, 580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sciarrillo, C.M.; Koemel, N.A.; Kurti, S.P.; Emerson, S.R. Validity of an Abbreviated, Clinically Feasible Test for Postprandial Lipemia in Healthy Adults: A Randomized Cross-Over Study. Nutrients 2019, 11, 180. [Google Scholar] [CrossRef] [Green Version]
- Mekki, N.; Charbonnier, M.; Borel, P.; Leonardi, J.; Juhel, C.; Portugal, H.; Lairon, D. Butter Differs from Olive Oil and Sunflower Oil in Its Effects on Postprandial Lipemia and Triacylglycerol-Rich Lipoproteins after Single Mixed Meals in Healthy Young Men. J. Nutr. 2002, 132, 3642–3649. [Google Scholar] [CrossRef] [Green Version]
- Kruse, M.; von Loeffelholz, C.; Hoffmann, D.; Pohlmann, A.; Seltmann, A.-C.; Osterhoff, M.; Hornemann, S.; Pivovarova, O.; Rohn, S.; Jahreis, G.; et al. Dietary rapeseed/canola-oil supplementation reduces serum lipids and liver enzymes and alters postprandial inflammatory responses in adipose tissue compared to olive-oil supplementation in obese men. Mol. Nutr. Food Res. 2014, 59, 507–519. [Google Scholar] [CrossRef]
- Zheng, T.; Zhao, J.; Wang, Y.; Liu, W.; Wang, Z.; Shang, Y.; Zhang, W.; Zhang, Y.; Zhong, M. The limited effect of omega-3 polyunsaturated fatty acids on cardiovascular risk in patients with impaired glucose metabolism: A meta-analysis. Clin. Biochem. 2014, 47, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Yanai, H.; Masui, Y.; Katsuyama, H.; Adachi, H.; Kawaguchi, A.; Hakoshima, M.; Waragai, Y.; Harigae, T.; Sako, A. An Improvement of Cardiovascular Risk Factors by Omega-3 Polyunsaturated Fatty Acids. J. Clin. Med. Res. 2018, 10, 281–289. [Google Scholar] [CrossRef] [Green Version]
- Manco, M.; Calvani, M.; Mingrone, G. Effects of dietary fatty acids on insulin sensitivity and secretion. Diabetes Obes. Metab. 2004, 6, 402–413. [Google Scholar] [CrossRef]
- Wang, B.; Smyl, C.; Chen, C.-Y.; Li, X.-Y.; Huang, W.; Zhang, H.-M.; Pai, V.J.; Kang, J.X. Suppression of Postprandial Blood Glucose Fluctuations by a Low-Carbohydrate, High-Protein, and High-Omega-3 Diet via Inhibition of Gluconeogenesis. Int. J. Mol. Sci. 2018, 19, 1823. [Google Scholar] [CrossRef]
O3FA-HFM | O6FA-HFM | SF-HFM | |
---|---|---|---|
Kcal (g/kg) | 12.01 | 12.02 | 12.10 |
Total fat (g/kg) | 0.83 | 0.83 | 0.82 |
Sat fat (g/kg) | 0.11 | 0.11 | 0.51 |
Omega-6 (g/kg) | 0.06 | 0.56 | 0.02 |
Omega-3 (g/kg) | 0.40 | 0.00 | 0.01 |
Total carbohydrate (g/kg) | 1.07 | 1.07 | 1.06 |
Sugar (g/kg) | 1.02 | 0.98 | 1.02 |
Protein (g/kg) | 0.07 | 0.07 | 0.07 |
Sat Fat (% of Total Fat) | 14.07 | 12.50 | 61.28 |
n = 15 (M = 6, F = 9) | |
---|---|
Mean ± SD | |
Age (years) | 21.9 ± 1.5 |
Height (in) | 67.9 ± 3.7 |
Weight (kg) | 74.7 ± 14 |
Waist Circumference (cm) | 78.6 ± 10.4 |
Body Mass Index (kg/m2) | 25.3 ± 5.6 |
Body Fat (%) | 25.8 ± 10.8 |
Time in MVPA (hours/week) | 6.6 ± 2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurti, S.P.; Wisseman, B.L.; Akers, J.D.; Edwards, E.S. Saturated Fatty Acids Consumed in Smoothies Increase Glucose and Metabolic Load Index in Young Adults Compared to Polyunsaturated Omega-3-Fatty Acids. Nutrients 2023, 15, 642. https://doi.org/10.3390/nu15030642
Kurti SP, Wisseman BL, Akers JD, Edwards ES. Saturated Fatty Acids Consumed in Smoothies Increase Glucose and Metabolic Load Index in Young Adults Compared to Polyunsaturated Omega-3-Fatty Acids. Nutrients. 2023; 15(3):642. https://doi.org/10.3390/nu15030642
Chicago/Turabian StyleKurti, Stephanie P., Breanna L. Wisseman, Jeremy D. Akers, and Elizabeth S. Edwards. 2023. "Saturated Fatty Acids Consumed in Smoothies Increase Glucose and Metabolic Load Index in Young Adults Compared to Polyunsaturated Omega-3-Fatty Acids" Nutrients 15, no. 3: 642. https://doi.org/10.3390/nu15030642
APA StyleKurti, S. P., Wisseman, B. L., Akers, J. D., & Edwards, E. S. (2023). Saturated Fatty Acids Consumed in Smoothies Increase Glucose and Metabolic Load Index in Young Adults Compared to Polyunsaturated Omega-3-Fatty Acids. Nutrients, 15(3), 642. https://doi.org/10.3390/nu15030642