Pathogen-Specific Benefits of Probiotic and Synbiotic Use in Childhood Acute Gastroenteritis: An Updated Review of the Literature
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Lactobacillus rhamnosus
Reference (Author, Year) | Type of Study | Population and Study Group Assignment | Type of Intervention | Main Outcome | Pathogen Specific Benefits | ||
---|---|---|---|---|---|---|---|
Intervention/Study Group | Control Group | Duration of Treatment/Dosage | |||||
Guandalini et al., 2000 [24] | Double-blind RCT | 287 children, with ages: 1 month–3 years 147 in intervention group 140 in placebo group | L. rhamnosus + ORS | ORS | Dosage: 1010 CFU/250 mL 2×/days; up to 7 days | Reduction in duration of diarrhea and hospitalization period in the intervention group |
|
Szymański et al., 2006 [25] | Double-blind RCT | 87 children with ages 2 months–6 years 49 in intervention group 44 in control group | Three L. rhamnosus strains. (573L/1, 573L/2, 573L/3) + ORS/IV rehydration | ORS/IV rehydration | Dosage: 1.2 × 1010 CFU 2×/days, 5 days | No influence upon duration of diarrhea, of parenteral rehydration, nor of weight gain within the entire intervention group | Rotavirus positive patients: significant reduction of diarrhea duration, especially within the first 72 h of treatment; overall reduction in duration of parenteral rehydration |
Guarino et al., 1997 [26] | Double-blind RCT | 100 children with ages: 3–36 months 52 in intervention group 48 in control group | L. rhamnosus + oral rehydration therapy | Oral rehydration therapy | Dosage: 3 × 109 CFU in 200 mL milk or formula, 2×/days, up to 5 days | Significant reduction in diarrhea duration in the intervention group versus control group | Rotavirus positive patients: slightly greater efficacy of L. rhamnosus in reducing diarrhea duration; significant reduction in viral excretion 6 days after the onset of diarrhea in the intervention group |
Fang et al., 2009 [28] | RCT | 23 patients with ages: 9–72 months 9 in the low-dose group, 8 in the high-dose group, 6 in control group | low-dose group and high-dose group—L. rhamnosus+ Simethicone | Simethicone 80 mg/day | Dosage: low-dose group—2 × 108 L. rhamnosus + Simethicone 80 mg/day high-dose group—6 × 108 L. rhamnosus + Simethicone 80 mg/day, 3 days |
| The study included only rotavirus positive patients |
Aggarwal et al., 2014 [28] | Open Label RCT | 200 children with ages: 6 months–5 years 100 in intervention group 100 control group | L. rhamnosus + Standard manage-ment (ORS/IV rehydration + zinc 20 mg/day for 14 days) | Standard management | Dosage: 1010 CFU once daily, 5 days | Significant reduction in duration of diarrhea and in time to improvement in stool consistency | Significant reduction in duration of diarrhea and in time to improvement in stool consistency independently of the presence/absence of Rotavirus fecal antigen |
Basu et al., 2007 [23] | Double-blind RCT | 235 children with ages: 2–6 years 117 in intervention group 118 control group | L. rhamnosus + ORS | ORS | Dosage: 60 million cells dissolved in ORS twice daily, at least 7 days/until diarrhea stopped | Significant reduction in duration of diarrhea and hospital stay | C. difficile positive patients: Significant reduction in duration of diarrhea |
Freedman et al., 2020 [21,22] | Double-blind RCT | 816 patients with ages: 3–48 months 408 in intervention group 408 control group | L. rhamnosus RO011 + L. helveticus RO052 (95:5 ratio) + standard therapy | Standard therapy | Dosage: 4 × 109 CFU L. rhamnosus RO011 + L. helveticus RO052(95:5 ratio) + standard therapy twice daily, 5 days | No significant changes in disease severity, assessed using the modified Vesicari score [32] | No significant reduction in stool viral and bacterial load |
Freedman et al., 2022 [22] | Two Double-blind RCT | 1565 patients with ages: 3–48 months 778 in intervention group 787 control group | US Group—370 with L. rhamnosus GG Canadian Group—408 L. rhamnosus RO011 + L. helveticus RO052 (95:5 ratio) + standard therapy | Standard therapy | Dosage: US Group—received only L. rhamnosus—1010 CFU, twice daily, 5 days Canadian Group—4 × 109 CFU L. rhamnosus RO011 + L. helveticus RO052 (95:5 ratio) + standard therapy twice daily, 5 days | No significant changes in disease severity, assessed using the modified Vesicari score [32] | No significant reduction in stool viral and bacterial load Adenovirus positive patients: significant decrease in number of diarrhea episodes in those supplemented with L. rhamnosus RO011 + L. helveticus RO052 |
Sindhu et al., 2014 [30] | Double-blind RCT | 124 children with ages: 6 months–5 years (82 with Rotavirus and 42 with Cryptosporidium Species) 65 in intervention group 59 in control group | L. rhamnosus GG + antibiotic treatment (in case of positive stool culture) | Placebo + antibiotic treatment (in case of positive stool culture) | Dosage: 1010 CFU once per daily for 4 weeks | No influence of the probiotic product upon diarrhea duration, severity, fever, frequency of vomiting episodes, dehydration status or hospital stay | Rotavirus positive patients: significant reduction in diarrhea episodes, augmentation of specific IgG antibody production against rotavirus Cryptosporidium positive patients: no influence upon diarrhea duration compared to placebo; no impact on specific antibody levels |
3.2. Saccharomyces boulardii
Reference (Author, Year) | Type of Study | Population and Study Group Assignment | Type of Intervention | Main Outcome | Pathogen Specific Benefits | ||
---|---|---|---|---|---|---|---|
Intervention/Study Group | Control Group | Duration of Treatment/Dosage | |||||
Gaón et al., 2003 [35] | Double-blind RCT | 89 children with ages: 6–24 months 29 in control group (group 1). 30 in S. boulardii (group 2) 30 in Lactobacilli group (group 3) | Group 2: S. boulardii Group 3: Pasteurized cow milk with L. casei and L. acidophilus | Group 1: Pasteurized cow milk + ORS | Dosage: S. boulardii group 1010 CFU/g twice daily for 5 days Group with: Pasteurized cow milk with L. casei and L. acidophilus: 1010–1012 CFU/g twice daily for 5 days | Similar significant reduction in vomiting, diarrhea duration and number of stools in both study groups | No specific benefits in relation to the presence/absence of rotavirus fecal antigen |
Das et al., 2016 [36] | Double-blind RCT | 60 children with ages: 3 months–5 years 30 in intervention group 30 in control group | S. boulardii | Placebo | Dosage: 250 mg 2×/day for 5 days | Significant reduction in diarrhea duration and hospitalization period No influence on fever and vomiting duration nor on proportion of children who required parenteral rehydration or presented diarrhea lasting for >7 days | The study included only rotavirus positive patients |
Dalgic et al., 2011 [37] | Single Blind RCT | 480 children with ages: 1–28 months, divided into 7 intervention groups and 1 control group (60 patients included in each group) | Group 1: S. boulardii Group 2: zinc (Zn) Group 3: lactose-free formula (LF) Group 4: S. boulardii + Zn Group 5: S. boulardii + LF Group 6: Zn + LF, Group 7: Zn + LF + S. boulardii + ORS and/or parenteral rehydration | Group 8 (control group): −ORS and/or parenteral rehydration | Dosage: S. boulardii—250 mg once daily 5 days Zn—10 mg 2×/day in infants < 6 months; 20 mg 2×/day in infants/children > 6 months | Statistically significant decrease in diarrhea duration and hospitalization time in groups 2 and 4 versus controls | The study included only rotavirus positive patients |
Grandy et al., 2010 [39] | Double-blind RCT | 64 hospitalized children with ages: 1–23 months divided in 3 groups Group GC (control): 20 children Group GB: 21 children Group GARLB: 23 children | Group GB: S. boulardii + ORS Group GARLB: combined probiotic product (L. acidophilus, L. rhamnosus, B. longum and S. boulardii) | Placebo | Dosage: For S. boulardii—4 × 1010 lyophilized cells/dose 2×/day for 5 days For combined probiotic product—(L. acidophilus 6.625 × 107 lyophilized cells/dose, L. rhamnosus 3.625 × 107 lyophilized cells/dose, B. longum 8.75 × 106 lyophilized cells/dose and S. boulardii) 1.375 × 107 lyophilized cells/dose) 2×/day for 5 days | Statistically significant reduction in diarrhea duration in both study groups versus control; S. boulardii alone performed better than the combined product in this regard Significant reduction in diarrhea and vomiting duration when comparing the merged intervention groups versus placebo | The study included only rotavirus positive patients |
Corrêa et al., 2011 [39] | Double-blind RCT | 176 patients with ages: 6–48 months 90 in intervention group 86 in control group | S. boulardii | Placebo—excipients | Dosage: 4 × 109 viable cells 2×/day for 5 days | Statistically significant decrease in frequency and duration of diarrhea if S. boulardii was administered during the first three days of gastroenteritis evolution | Rotavirus positive patients—statistically significant decrease in frequency of diarrhea after 3 days of intervention |
Mourey et al., 2020 [41] | Double-blind RCT | 100 children with ages: 3–36 months 49 in intervention group 51 in control group | S. boulardii + ORS + Zn | Placebo + ORS + Zn | Dosage: S. boulardii 5 × 109 living cells 2×/day for 5 days Zn—10 mg 1×/day in infants < 1 year; 20 mg 1×/day in children > 1 year | Significant increase in stool consistency starting from day three of intervention Significant decrease in time of recovery from diarrhea in the intervention group | Rotavirus positive patients: absence of fecal virus detection after 5 days of treatment in old patients belonging to the intervention group |
3.3. Lactobacillus acidophilus
3.4. Lactobacillus reuteri
3.5. Lactobacillus plantarum
Reference (Author, Year) | Type of Study | Population and Study Group Assignment | Type of Intervention | Main Outcome | Pathogen Specific Benefits | ||
---|---|---|---|---|---|---|---|
Intervention/Study Group | Control Group | Duration of Treatment/Dosage | |||||
Pinto et al., 2016, 2016 [44,47] | Retrospective cohort study | 290 children with ages: 6–60 months 65 in study group 225 in control group | L. acidophilus mixture (80% L. acidophilus, 10% L. bulgaricus, 5% B. bifidum, 5% S. thermophilus | Standard treatment | Dosage: 1 × 109 CFU/g 2×/day (no information regarding duration of treatment) | Significant decrease in diarrhea duration of IV rehydration among the study group No influence of the probiotic supplementation upon length of hospital stay | Patients with positive stool studies (positive stool culture, positive stool for C. difficile toxin, positive rotavirus antigen)—no benefits from probiotic use as opposed to those with negative stool studies |
Khanna et al., 2005 [46] | Double-blind RCT | 98 children with ages: 6 months–12 years 48 in intervention group 50 in control group | L. acidophilus + ORS | ORS | Dosage: 1.5 × 1010 tyndalized cells 1×/day for 3 days | No significant benefit of probiotic products in reducing mean diarrhea duration, mean ORS requirement, mean rehydration period and duration of hospital stay | Rotavirus positive patients—no beneficial effect in the intervention group |
Hong Chau et al., 2018 [46] | Double-blind RCT | 290 children with ages: 9–60 months 143 in intervention group 147 in control group | L. acidophilus + ORS + Zn + antimicrobials were needed | Placebo + ORS + Zn + antimicrobials were needed | Dosage: 1 × 108 CFU cells 2×/day for 5 days | No significant reduction in diarrhea and hospitalization duration, nor in stool frequency | Rotavirus/Norovirus positive patients—no significant decrease in stool load and no influence of intervention upon symptom duration |
Shornikova et al., 1997 [57] | Double-blind RCT | 40 children with ages: 6–36 months 19 in intervention group 21 in control group | L. reuteri + ORS | Placebo + ORS | Dosage: 1010–1011 CFU/g 1×/day for 5 days/hospitalization period (if shorter than 5 days) | Shorter mean duration of diarrhea during hospital stay in the intervention group No influence on dehydration correction and electrolyte levels of the probiotic supplementation Significant reduction in vomiting after the second day of treatment in the intervention group | No influence of the intervention treatment upon rotavirus IgA antibody production |
Shornikova et al., 1997 [58] | Double-blind RCT | 66 children with ages: 6–36 months 20 in group 1 21 in group 2 25 in control group | Group 1: L. reuteri—small dose + ORS Group 2: L. reuteri—large dose + ORS | Placebo + ORS | Dosage: Small dose: 2.5 × 106–5 × 106 CFU/mL 1×/day for a maximum of 5 days Large dose: 5 × 108–2.5 × 109 CFU/mL 1×/day for 5 days | Large dose of L. reuteri yielded a significant reduction in duration and frequency of diarrhea after 2 days of treatment Good restoration of enteral microbiota in both intervention groups | The study included only rotavirus positive patients No influence of L. reuteri upon rotavirus IgA and IgG antibody titers |
Pernica et al., 2022 [59] | Multicentric double-blind RCT | 272 children with ages: 2–60 months 135 in intervention group 137 in control group | L. reuteri + ORS/parenteral IV rehydration + antibiotic treatment (were needed) | Placebo + ORS/parenteral IV rehydration + antibiotic treatment (were needed) | Dosage: 1 × 108 CFU/g 1×/day for 60 days | No significant impact of the probiotic strain upon recurrence of diarrhea, length of hospital stay, developmental of sepsis, 7-day and 60-day mortality rate during the follow-up period of 60 days | Patients with positive stool culture for Shigella, Campylobacter, enteropathogenic E. Coli or Cryptosporidium: no notable replication inhibition of the identified bacteria |
Szymański et al., 2019 [60] | Double-blind RCT | 91 children with ages: <5 years 44 in intervention group 47 in control group | L. reuteri + standard rehydration therapy | Placebo + standard rehydration therapy | Dosage: 2 × 108 CFU 1×/day for 5 days | Significant decrease in duration of hospitalization in the intervention group No influence of intervention therapy upon diarrhea duration, frequency and recurrence, duration of IV rehydration, nor upon improvement of Vesikari scale | Children not vaccinated against rotavirus—significant reduction in hospital stay in the intervention group; no influence of intervention therapy upon diarrhea duration Children vaccinated against rotavirus—similar primary and secondary outcome in both groups |
Shin et al., 2020 [63] | RCT | 50 children with ages: 1–69 months 15 in group 1 8 in group 2 27 in group 3 | Group I: L. plantarum LRCC5310 Group 3: Saccharomyces species | Group 2: Placebo + standard treatment | Dosage: not specified | Significant decrease in stool frequency and diarrhea duration between group I and placebo in day 3 of hospitalization Significant decrease in diarrhea duration and in changes of Vesikari scale when comparing merged intervention groups with placebo | The study included only rotavirus positive patients Significant reduction in rotavirus fecal titer in group 1 versus placebo |
3.6. Combinations of Multiple Probiotic Strains
3.7. Synbiotic Products
Reference (Author, Year) | Type of Study | Population and Study Group Assignment | Type of Intervention | Main Outcome | Pathogen Specific Benefits | ||
---|---|---|---|---|---|---|---|
Intervention/Study Group | Control Group | Duration of Treatment/Dosage | |||||
Lee et al., 2015 [64] | Double-blind RCT | 29 children with ages: 3 months–7 years 13 in intervention group 16 in control group | Combined product: B. longum, B. lactis, L. acidophilus, L. rhamnosus, L. plantarum and Pediococcus pentosaceus | Placebo | Dosage: 109 CFU/g (108 CFU/each strain) 1×/day for 1 week | Significant decrease in diarrhea duration after 7 days of treatment No significant difference in abdominal pain, vomiting, fever duration, nor in paraclinical data between the two groups at the end of treatment | Rotavirus positive patients—significant decrease in diarrhea and vomiting duration after 7 days of treatment; no significant difference in abdominal pain, fever duration, nor in paraclinical data between the two groups at the end of treatment |
Park et al., 2017 [65] | Double-blind RCT | 57 children with ages: 9–16 months 28 in intervention group 29 in control group | Combined product: B. longum, L. acidophilus | Placebo | Dosage: 2.2 × 109 CFU/g of probiotic mixture of B. longum 2 × 1010 CFU/g and L. acidophilus 2 × 109 CFU/g 2×/day for 3 days | Significant reduction in diarrhea duration in the intervention group No impact of the combined product upon fever duration, diarrhea and vomiting frequency | The study included only rotavirus positive patients |
Teran et al., 2009 [66] | Single-blind RCT | 75 children with ages: 28 days–24 months 25 in group 1 (nitazoxanide group) 25 in group 2 (probiotic group) 25 in control group | Group 1: Nitazoxanide Group 2: combined product—L. acidophilus, L. rhamnosus, B. longum and S. boulardii | Standard treatment | Dosage: Nitazoxanide—15 mg/kg/day divided into 2 doses for 3 days Combined product—1.25 × 108 CFU/g 2×/day for 5 days | Significant reduction in duration of diarrhea and hospitalization period in both intervention groups versus placebo | The study included only rotavirus positive patients |
Huang et al., 2014 [67] | Open Label RCT | 159 children with ages: 3 months–14 years 82 in intervention group 77 in control group | Combined product: E. faecalis, C. butyricum, B. mesentericus | Suportive treatment | Dosage: a tablet of the combined probiotic product contains: 3.48 × 108 CFU of a mixture of E. faecalis (3.17 × 108 CFU), C. butyricum (2 × 107 CFU) and B.mesentericus (1.1 × 107 CFU) children < 6 years—2 × 1 tabl/day children 6–12 years—2 × 2 tabl/day children > 12 years—2 × 3 tabl/day for 7 days | Significant reduction in diarrhea duration and Vesikari score in the intervention group No influence of intervention therapy upon mild stool frequency and hospitalization duration | Rotavirus positive patients: significant reduction in diarrhea severity after 3 days of probiotic treatment Salmonella positive patients: no significant reduction in diarrhea severity in patients belonging to intervention group |
Sobouti et al., 2016 [68] | Single-blind RCT | 60 patients with ages: 3 months–7 years 32 in intervention group 28 in control group | Combined product: L. casei, L. rhamnosus, S. termophilus, B. breve, L. acidophilus, L. bulgaricus, B. infantis + ORS/IV rehydration therapy | ORS/IV rehydration therapy | Dosage: 1 × 109 CFU/g 2×/day for 5 days | Significant decrease in hospitalization duration in the intervention group No association was found between probiotic treatment and degree of dehydration | The study included only rotavirus positive patients |
Dubey et al., 2008 [69] | Double-blind RCT | 224 children with ages: 6 months–2 years 113 in intervention group 111 in control group | Combined product: L. acidophilus, L. paracasei, L. bulgaricus, L. plantarum, B. breve, B. infantis, B. longum, S. thermophilus + ORS/IV rehydration therapy | Placebo + ORS/IV rehydration therapy | Dosage: each sachet of the combined probiotic product contains 9 × 1010 CFU/g children < 5 kg—2 sachets/day for 4 days children—5–10 kg—4 sachets/day for 4 days | Significant reduction in recovery time in the intervention group Significant decrease in stool frequency starting from the second day of treatment No significant difference between the two groups in term of volume of ORS/parenteral solutions administered | The study included only rotavirus positive patients |
Rosenfeldt et al., 2002 [70] | Double-blind RCT | 69 children with ages: 6–36 months 30 in intervention group 39 in control group | Combined product: L. rhamnosus, L. reuteri + ORS/IV rehydration therapy | Placebo + ORS/IV rehydration therapy | Dosage: 2.2 × 1010 CFU of a mixture of L. rhamnosus (1.7 × 1010 CFU), L. reuteri (0.5 × 1010 CFU) 2×/day for 5 days | Significant decrease in hospital stay duration, duration of diarrhea after start of treatment and in reduction of loose stool frequency on the 5th day of follow-up in intervention versus control group No significant difference between the two groups in term of fever duration | Significant reduction in fecal rotavirus antigen positivity rate on day 5 among the intervention group |
Dewi et al., 2015 [75] | Double-blind RCT | 69 children with ages: 6–59 months 34 in intervention group 35 in control group | Synbiotic product: L. casei, L. rhamnosus, S. thermophilus, B. breve, L. acidophilus, B. infantis, L. bulgaricus, FOS + ORS/IV rehydration therapy + Zn | Placebo + ORS/IV rehydration therapy + Zn | Dosage: a sachet of the synbiotic product contains 1 × 109 CFU/dose of a mixture of L. casei (4 × 108 CFU), L. rhamnosus (3.5 × 108 CFU), S. thermophilus (1 × 108 CFU), B. breve (5 × 107 CFU), L. acidophilus (5 × 107 CFU), B. infantis (4 × 107 CFU), L. bulgaricus (1 × 107 CFU) and FOS (990 mg) 1×/day for 5 days | Significant decrease in diarrhea recovery time No impact upon hospital stay | The study included only rotavirus positive patients |
Islek et al., 2014 [76] | Double-blind RCT | 156 children with ages: 2–60 months 79 in intervention group 77 in control group | Synbiotic product: B. lactis, inulin + standard treatments | Placebo + standard treatment | Dosage: a sachet of the synbiotic product contains a mixture of B. lactis (5 × 1010 CFU) and inulin (900 mg) 1×/day for 5 days | Significant decrease in diarrhea duration and stool frequency, especially in those who started the intervention treatment within the first 24 h of symptom onset No impact on vomiting nor on fever duration | Rotavirus positive patients: the shortest diarrhea duration among those patients belonging to the intervention group Adenovirus positive patients: no influence on symptom duration E. histolytica: no influence on symptom duration |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bernaola Aponte, G.; Bada Mancilla, C.A.; Carreazo, N.Y.; Rojas Galarza, R.A. Probiotics for Treating Persistent Diarrhoea in Children. Cochrane Database Syst. Rev. 2013, 2013, CD007401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, D.W.; Greer, F.R.; American Academy of Pediatrics Committee on Nutrition; American Academy of Pediatrics Section on Gastroenterology, Hepatology and Nutrition. Probiotics and Prebiotics in Pediatrics. Pediatrics 2010, 126, 1217–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kechagia, M.; Basoulis, D.; Konstantopoulou, S.; Dimitriadi, D.; Gyftopoulou, K.; Skarmoutsou, N.; Fakiri, E.M. Health Benefits of Probiotics: A Review. ISRN Nutr. 2013, 2013, 481651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tissier, H. Traitement des Infections Intestinales par la Méthode de Transformation de la Flore Bactérienne de l’Intestin. Compt. Rend. Soc. Biol. 1906, 60, 359–361. [Google Scholar]
- Salminen, S.J.; Gueimonde, M.; Isolauri, E. Probiotics That Modify Disease Risk. J. Nutr. 2005, 135, 1294–1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pineiro, M.; Stanton, C. Probiotic Bacteria: Legislative Framework—Requirements to Evidence Basis. J. Nutr. 2007, 137, 850S–853S. [Google Scholar] [CrossRef] [Green Version]
- Weng, M.; Walker, W.A. Bacterial Colonization, Probiotics, and Clinical Disease. J. Pediatr. 2006, 149, S107–S114. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert Consensus Document. The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [Green Version]
- Anirban, M.; Puneet, S. Probiotics for Diarrhea in Children. J. Med. Res. Innov. 2017, 1, AV5–AV12. [Google Scholar] [CrossRef] [Green Version]
- Castagliuolo, I.; Riegler, M.F.; Valenick, L.; LaMont, J.T.; Pothoulakis, C. Saccharomyces boulardii Protease Inhibits the Effects of Clostridium Difficile Toxins A and B in Human Colonic Mucosa. Infect. Immun. 1999, 67, 302–307. [Google Scholar] [CrossRef] [Green Version]
- De Vrese, M.; Stegelmann, A.; Richter, B.; Fenselau, S.; Laue, C.; Schrezenmeir, J. Probiotics—Compensation for Lactase Insufficiency. Am. J. Clin. Nutr. 2001, 73, 421S–429S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Do Carmo, M.S.; Santos, C.I.D.; Araújo, M.C.; Girón, J.A.; Fernandes, E.S.; Monteiro-Neto, V. Probiotics, Mechanisms of Action, and Clinical Perspectives for Diarrhea Management in Children. Food Funct. 2018, 9, 5074–5095. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Lu, P.; Li, M.-X.; Cai, X.-L.; Xiong, W.-Y.; Hou, H.-J.; Ha, X.-Q. A Meta-Analysis of the Effects of Probiotics and Synbiotics in Children with Acute Diarrhea. Medicine 2019, 98, e16618. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Zhao, T.; Wang, W.; Dai, Q.; Ma, X. Meta-Analysis of the Efficacy of Probiotics to Treat Diarrhea. Medicine 2022, 101, e30880. [Google Scholar] [CrossRef] [PubMed]
- Lanata, C.F.; Fischer-Walker, C.L.; Olascoaga, A.C.; Torres, C.X.; Aryee, M.J.; Black, R.E. Child Health Epidemiology Reference Group of the World Health Organization and UNICEF Global Causes of Diarrheal Disease Mortality in Children < 5 Years of Age: A Systematic Review. PLoS ONE 2013, 8, e72788. [Google Scholar] [CrossRef] [Green Version]
- Guarino, A.; Lo Vecchio, A.; Dias, J.A.; Berkley, J.A.; Boey, C.; Bruzzese, D.; Cohen, M.B.; Cruchet, S.; Liguoro, I.; Salazar-Lindo, E.; et al. Universal Recommendations for the Management of Acute Diarrhea in Nonmalnourished Children. J. Pediatr. Gastroenterol. Nutr. 2018, 67, 586–593. [Google Scholar] [CrossRef] [Green Version]
- Shane, A.L.; Mody, R.K.; Crump, J.A.; Tarr, P.I.; Steiner, T.S.; Kotloff, K.; Langley, J.M.; Wanke, C.; Warren, C.A.; Cheng, A.C.; et al. 2017 Infectious Diseases Society of America Clinical Practice Guidelines for the Diagnosis and Management of Infectious Diarrhea. Clin. Infect. Dis 2017, 65, 1963–1973. [Google Scholar] [CrossRef]
- Szajewska, H.; Guarino, A.; Hojsak, I.; Indrio, F.; Kolacek, S.; Orel, R.; Salvatore, S.; Shamir, R.; van Goudoever, J.B.; Vandenplas, Y.; et al. Use of Probiotics for the Management of Acute Gastroenteritis in Children: An Update. J. Pediatr. Gastroenterol. Nutr. 2020, 71, 261. [Google Scholar] [CrossRef]
- Hojsak, I.; Fabiano, V.; Pop, T.L.; Goulet, O.; Zuccotti, G.V.; Çokuğraş, F.C.; Pettoello-Mantovani, M.; Kolaček, S. Guidance on the Use of Probiotics in Clinical Practice in Children with Selected Clinical Conditions and in Specific Vulnerable Groups. Acta Paediatr. 2018, 107, 927–937. [Google Scholar] [CrossRef]
- Meliț, L.E.; Mărginean, C.O.; Săsăran, M.O. The Challenges of Eradicating Pediatric Helicobacter Pylori Infection in the Era of Probiotics. Children 2022, 9, 795. [Google Scholar] [CrossRef]
- Freedman, S.B.; Xie, J.; Nettel-Aguirre, A.; Pang, X.-L.; Chui, L.; Williamson-Urquhart, S.; Schnadower, D.; Schuh, S.; Sherman, P.M.; Lee, B.E.; et al. A Randomized Trial Evaluating Virus-Specific Effects of a Combination Probiotic in Children with Acute Gastroenteritis. Nat. Commun. 2020, 11, 2533. [Google Scholar] [CrossRef] [PubMed]
- Freedman, S.B.; Finkelstein, Y.; Pang, X.L.; Chui, L.; Tarr, P.I.; VanBuren, J.M.; Olsen, C.; Lee, B.E.; Hall-Moore, C.A.; Sapien, R.; et al. Pathogen-Specific Effects of Probiotics in Children with Acute Gastroenteritis Seeking Emergency Care: A Randomized Trial. Clin. Infect. Dis. 2022, 75, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Basu, S.; Chatterjee, M.; Ganguly, S.; Chandra, P.K. Effect of Lactobacillus rhamnosus GG in Persistent Diarrhea in Indian Children: A Randomized Controlled Trial. J. Clin. Gastroenterol. 2007, 41, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Guandalini, S.; Pensabene, L.; Zikri, M.A.; Dias, J.A.; Casali, L.G.; Hoekstra, H.; Kolacek, S.; Massar, K.; Micetic-Turk, D.; Papadopoulou, A.; et al. Lactobacillus GG Administered in Oral Rehydration Solution to Children with Acute Diarrhea: A Multicenter European Trial. J. Pediatr. Gastroenterol. Nutr. 2000, 30, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Szymański, H.; Pejcz, J.; Jawień, M.; Chmielarczyk, A.; Strus, M.; Heczko, P.B. Treatment of Acute Infectious Diarrhoea in Infants and Children with a Mixture of Three Lactobacillus rhamnosus Strains—A Randomized, Double-Blind, Placebo-Controlled Trial. Aliment. Pharm. 2006, 23, 247–253. [Google Scholar] [CrossRef]
- Guarino, A.; Canani, R.B.; Spagnuolo, M.I.; Albano, F.; Di Benedetto, L. Oral Bacterial Therapy Reduces the Duration of Symptoms and of Viral Excretion in Children with Mild Diarrhea. J. Pediatr. Gastroenterol. Nutr. 1997, 25, 516–519. [Google Scholar] [CrossRef]
- Fang, S.-B.; Lee, H.-C.; Hu, J.-J.; Hou, S.-Y.; Liu, H.-L.; Fang, H.-W. Dose-Dependent Effect of Lactobacillus rhamnosus on Quantitative Reduction of Faecal Rotavirus Shedding in Children. J. Trop. Pediatr. 2009, 55, 297–301. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, S.; Upadhyay, A.; Shah, D.; Teotia, N.; Agarwal, A.; Jaiswal, V. Lactobacillus GG for Treatment of Acute Childhood Diarrhoea: An Open Labelled, Randomized Controlled Trial. Indian J. Med. Res. 2014, 139, 379–385. [Google Scholar]
- Lo Vecchio, A.; Nunziata, F.; Bruzzese, D.; Conelli, M.L.; Guarino, A. Rotavirus Immunisation Status Affects the Efficacy of Lacticaseibacillus Rhamnosus GG for the Treatment of Children with Acute Diarrhoea: A Meta-Analysis. Benef. Microbes 2022, 13, 283–294. [Google Scholar] [CrossRef]
- Sindhu, K.N.C.; Sowmyanarayanan, T.V.; Paul, A.; Babji, S.; Ajjampur, S.S.R.; Priyadarshini, S.; Sarkar, R.; Balasubramanian, K.A.; Wanke, C.A.; Ward, H.D.; et al. Immune Response and Intestinal Permeability in Children with Acute Gastroenteritis Treated with Lactobacillus rhamnosus GG: A Randomized, Double-Blind, Placebo-Controlled Trial. Clin. Infect. Dis. 2014, 58, 1107–1115. [Google Scholar] [CrossRef]
- Grenov, B.; Namusoke, H.; Lanyero, B.; Nabukeera-Barungi, N.; Ritz, C.; Mølgaard, C.; Friis, H.; Michaelsen, K.F. Effect of Probiotics on Diarrhea in Children with Severe Acute Malnutrition: A Randomized Controlled Study in Uganda. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Schnadower, D.; Tarr, P.I.; Gorelick, M.H.; O’Connell, K.; Roskind, C.G.; Powell, E.C.; Rao, J.; Bhatt, S.; Freedman, S.B. Validation of the Modified Vesikari Score in Children with Gastroenteritis in 5 US Emergency Departments. J. Pediatr. Gastroenterol. Nutr. 2013, 57, 514–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Zhu, G.; Li, C.; Lai, H.; Liu, X.; Zhang, L. Which Probiotic Is the Most Effective for Treating Acute Diarrhea in Children? A Bayesian Network Meta-Analysis of Randomized Controlled Trials. Nutrients 2021, 13, 4319. [Google Scholar] [CrossRef] [PubMed]
- Vineeth, S.; Saireddy, S.; Keerthi, T.; Mantada, P.K. Efficacy of Bacillus Clausii and Saccharomyces boulardii in Treatment of Acute Rotaviral Diarrhea in Pediatric Patients. Indones. J. Clin. Pharm. 2017, 6, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Gaón, D.; García, H.; Winter, L.; Rodríguez, N.; Quintás, R.; González, S.N.; Oliver, G. Effect of Lactobacillus Strains and Saccharomyces boulardii on Persistent Diarrhea in Children. Medicina 2003, 63, 293–298. [Google Scholar]
- Das, S.; Gupta, P.K.; Das, R.R. Efficacy and Safety of Saccharomyces boulardii in Acute Rotavirus Diarrhea: Double Blind Randomized Controlled Trial from a Developing Country. J. Trop. Pediatr. 2016, 62, 464–470. [Google Scholar] [CrossRef] [Green Version]
- Dalgic, N.; Sancar, M.; Bayraktar, B.; Pullu, M.; Hasim, O. Probiotic, Zinc and Lactose-Free Formula in Children with Rotavirus Diarrhea: Are They Effective? Pediatr. Int. 2011, 53, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Grandy, G.; Medina, M.; Soria, R.; Terán, C.G.; Araya, M. Probiotics in the Treatment of Acute Rotavirus Diarrhoea. A Randomized, Double-Blind, Controlled Trial Using Two Different Probiotic Preparations in Bolivian Children. BMC Infect. Dis. 2010, 10, 253. [Google Scholar] [CrossRef] [Green Version]
- Corrêa, N.B.O.; Penna, F.J.; Lima, F.M.L.S.; Nicoli, J.R.; Filho, L.A.P. Treatment of Acute Diarrhea with Saccharomyces boulardii in Infants. J. Pediatr. Gastroenterol. Nutr. 2011, 53, 497–501. [Google Scholar] [CrossRef]
- Bennett, A.; Pollock, L.; Jere, K.C.; Pitzer, V.E.; Lopman, B.; Bar-Zeev, N.; Iturriza-Gomara, M.; Cunliffe, N.A. Duration and Density of Fecal Rotavirus Shedding in Vaccinated Malawian Children with Rotavirus Gastroenteritis. J. Infect. Dis. 2019, 222, 2035–2040. [Google Scholar] [CrossRef]
- Mourey, F.; Sureja, V.; Kheni, D.; Shah, P.; Parikh, D.; Upadhyay, U.; Satia, M.; Shah, D.; Troise, C.; Decherf, A. A Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial of Saccharomyces boulardii in Infants and Children with Acute Diarrhea. Pediatr. Infect. Dis. J. 2020, 39, e347–e351. [Google Scholar] [CrossRef]
- Coconnier, M.H.; Bernet, M.F.; Kernéis, S.; Chauvière, G.; Fourniat, J.; Servin, A.L. Inhibition of Adhesion of Enteroinvasive Pathogens to Human Intestinal Caco2 Cells by Lactobacillus acidophilus Strain LB Decreases Bacterial Invasion. FEMS Microbiol. Lett. 1993, 110, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Coconnier, M.H.; Liévin, V.; Bernet-Camard, M.F.; Hudault, S.; Servin, A.L. Antibacterial Effect of the Adhering Human Lactobacillus acidophilus Strain LB. Antimicrob. Agents Chemother. 1997, 41, 1046–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinto, J.M.; Petrova, A. Lactobacillus acidophilus Mixture in Treatment of Children Hospitalized with Acute Diarrhea. Clin. Pediatr. 2016, 55, 1202–1209. [Google Scholar] [CrossRef]
- Cheng, H.; Ma, Y.; Liu, X.; Tian, C.; Zhong, X.; Zhao, L. A Systematic Review and Meta-Analysis: Lactobacillus acidophilus for Treating Acute Gastroenteritis in Children. Nutrients 2022, 14, 682. [Google Scholar] [CrossRef] [PubMed]
- Hong Chau, T.T.; Minh Chau, N.N.; Hoang Le, N.T.; Chung The, H.; Voong Vinh, P.; Nguyen To, N.T.; Ngoc, N.M.; Tuan, H.M.; Chau Ngoc, T.L.; Kolader, M.-E.; et al. A Double-Blind, Randomized, Placebo-Controlled Trial of Lactobacillus acidophilus for the Treatment of Acute Watery Diarrhea in Vietnamese Children. Pediatr. Infect. Dis. J. 2018, 37, 35–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khanna, V.; Alam, S.; Malik, A.; Malik, A. Efficacy of Tyndalized Lactobacillus acidophilus in Acute Diarrhea. Indian J. Pediatr. 2005, 72, 935–938. [Google Scholar] [CrossRef] [PubMed]
- Liévin-Le Moal, V.; Sarrazin-Davila, L.E.; Servin, A.L. An Experimental Study and a Randomized, Double-Blind, Placebo-Controlled Clinical Trial to Evaluate the Antisecretory Activity of Lactobacillus acidophilus Strain LB against Nonrotavirus Diarrhea. Pediatrics 2007, 120, e795–e803. [Google Scholar] [CrossRef]
- Salazar-Lindo, E.; Figueroa-Quintanilla, D.; Caciano, M.I.; Reto-Valiente, V.; Chauviere, G.; Colin, P. Lacteol Study Group Effectiveness and Safety of Lactobacillus LB in the Treatment of Mild Acute Diarrhea in Children. J. Pediatr. Gastroenterol. Nutr. 2007, 44, 571–576. [Google Scholar] [CrossRef]
- Szajewska, H.; Ruszczyński, M.; Kolaček, S. Meta-Analysis Shows Limited Evidence for Using Lactobacillus acidophilus LB to Treat Acute Gastroenteritis in Children. Acta Paediatr. 2014, 103, 249–255. [Google Scholar] [CrossRef]
- Liu, Y.; Fatheree, N.Y.; Mangalat, N.; Rhoads, J.M. Human-Derived Probiotic Lactobacillus reuteri Strains Differentially Reduce Intestinal Inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 299, G1087–G1096. [Google Scholar] [CrossRef] [Green Version]
- Ragan, M.V.; Wala, S.J.; Goodman, S.D.; Bailey, M.T.; Besner, G.E. Next-Generation Probiotic Therapy to Protect the Intestines From Injury. Front. Cell Infect. Microbiol. 2022, 12, 863949. [Google Scholar] [CrossRef] [PubMed]
- Fijan, S.; Šulc, D.; Steyer, A. Study of the in vitro Antagonistic Activity of Various Single-Strain and Multi-Strain Probiotics against Escherichia Coli. Int. J. Env. Res. Public Health 2018, 15, 1539. [Google Scholar] [CrossRef] [Green Version]
- Kiššová, Z.; Tkáčiková, Ľ.; Mudroňová, D.; Bhide, M.R. Immunomodulatory Effect of Lactobacillus reuteri (Limosilactobacillus Reuteri) and Its Exopolysaccharides Investigated on Epithelial Cell Line IPEC-J2 Challenged with Salmonella Typhimurium. Life 2022, 12, 1955. [Google Scholar] [CrossRef] [PubMed]
- Preidis, G.A.; Saulnier, D.M.; Blutt, S.E.; Mistretta, T.-A.; Riehle, K.P.; Major, A.M.; Venable, S.F.; Barrish, J.P.; Finegold, M.J.; Petrosino, J.F.; et al. Host Response to Probiotics Determined by Nutritional Status of Rotavirus-Infected Neonatal Mice. J. Pediatr. Gastroenterol. Nutr. 2012, 55, 299–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutierrez-Castrellon, P.; Lopez-Velazquez, G.; Diaz-Garcia, L.; Jimenez-Gutierrez, C.; Mancilla-Ramirez, J.; Estevez-Jimenez, J.; Parra, M. Diarrhea in Preschool Children and Lactobacillus reuteri: A Randomized Controlled Trial. Pediatrics 2014, 133, e904–e909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shornikova, A.V.; Casas, I.A.; Isolauri, E.; Mykkänen, H.; Vesikari, T. Lactobacillus reuteri as a Therapeutic Agent in Acute Diarrhea in Young Children. J. Pediatr. Gastroenterol. Nutr. 1997, 24, 399–404. [Google Scholar] [CrossRef]
- Shornikova, A.V.; Casas, I.A.; Mykkänen, H.; Salo, E.; Vesikari, T. Bacteriotherapy with Lactobacillus reuteri in Rotavirus Gastroenteritis. Pediatr. Infect. Dis. J. 1997, 16, 1103–1107. [Google Scholar] [CrossRef]
- Pernica, J.M.; Arscott-Mills, T.; Steenhoff, A.P.; Mokomane, M.; Moorad, B.; Bapabi, M.; Lechiile, K.; Mangwegape, O.; Batisani, B.; Mawoko, N.; et al. Optimising the Management of Childhood Acute Diarrhoeal Disease Using a Rapid Test-and- Treat Strategy and/or Lactobacillus reuteri DSM 17938: A Multicentre, Randomised, Controlled, Factorial Trial in Botswana. BMJ Glob. Health 2022, 7, e007826. [Google Scholar] [CrossRef]
- Szymański, H.; Szajewska, H. Lack of Efficacy of Lactobacillus reuteri DSM 17938 for the Treatment of Acute Gastroenteritis: A Randomized Controlled Trial. Pediatr. Infect. Dis. J. 2019, 38, e237–e242. [Google Scholar] [CrossRef]
- Maragkoudakis, P.A.; Chingwaru, W.; Gradisnik, L.; Tsakalidou, E.; Cencic, A. Lactic Acid Bacteria Efficiently Protect Human and Animal Intestinal Epithelial and Immune Cells from Enteric Virus Infection. Int. J. Food Microbiol. 2010, 141, S91–S97. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Lee, G.; Thanh, H.D.; Kim, J.-H.; Konkit, M.; Yoon, S.; Park, M.; Yang, S.; Park, E.; Kim, W. Exopolysaccharide from Lactobacillus plantarum LRCC5310 Offers Protection against Rotavirus-Induced Diarrhea and Regulates Inflammatory Response. J. Dairy Sci. 2018, 101, 5702–5712. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.Y.; Yi, D.Y.; Jo, S.; Lee, Y.M.; Kim, J.-H.; Kim, W.; Park, M.r.; Yoon, S.m.; Kim, Y.; Yang, S.; et al. Effect of a New Lactobacillus plantarum Product, LRCC5310, on Clinical Symptoms and Virus Reduction in Children with Rotaviral Enteritis. Medicine 2020, 99, e22192. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.K.; Park, J.E.; Kim, M.J.; Seo, J.G.; Lee, J.H.; Ha, N.J. Probiotic Bacteria, B. longum and L. acidophilus Inhibit Infection by Rotavirus in vitro and Decrease the Duration of Diarrhea in Pediatric Patients. Clin. Res. Hepatol. Gastroenterol. 2015, 39, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Park, M.S.; Kwon, B.; Ku, S.; Ji, G.E. The Efficacy of Bifidobacterium Longum BORI and Lactobacillus acidophilus AD031 Probiotic Treatment in Infants with Rotavirus Infection. Nutrients 2017, 9, 887. [Google Scholar] [CrossRef] [Green Version]
- Teran, C.G.; Teran-Escalera, C.N.; Villarroel, P. Nitazoxanide vs. Probiotics for the Treatment of Acute Rotavirus Diarrhea in Children: A Randomized, Single-Blind, Controlled Trial in Bolivian Children. Int. J. Infect. Dis. 2009, 13, 518–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.-F.; Liu, P.-Y.; Chen, Y.-Y.; Nong, B.-R.; Huang, I.-F.; Hsieh, K.-S.; Chen, K.-T. Three-Combination Probiotics Therapy in Children with Salmonella and Rotavirus Gastroenteritis. J. Clin. Gastroenterol. 2014, 48, 37–42. [Google Scholar] [CrossRef]
- Sobouti, B.; Noorbakhsh, S.; Ashraf, H.; Ashraf -Talesh, S. Use of Probiotic for the Treatment of Acute Rotavirus Diarrhea in Children: A Randomized Single-Blind Controlled Trial. Int. J. Child. Adolesc. 2016, 2, 5–9. [Google Scholar]
- Dubey, A.P.; Rajeshwari, K.; Chakravarty, A.; Famularo, G. Use of VSL[Sharp]3 in the Treatment of Rotavirus Diarrhea in Children: Preliminary Results. J. Clin. Gastroenterol. 2008, 42, S126–S129. [Google Scholar] [CrossRef]
- Rosenfeldt, V.; Michaelsen, K.F.; Jakobsen, M.; Larsen, C.N.; Møller, P.L.; Pedersen, P.; Tvede, M.; Weyrehter, H.; Valerius, N.H.; Paerregaard, A. Effect of Probiotic Lactobacillus Strains in Young Children Hospitalized with Acute Diarrhea. Pediatr. Infect. Dis. J. 2002, 21, 411–416. [Google Scholar] [CrossRef]
- Rigo-Adrover, M.; Pérez-Berezo, T.; Ramos-Romero, S.; van Limpt, K.; Knipping, K.; Garssen, J.; Knol, J.; Franch, À.; Castell, M.; Pérez-Cano, F.J. A Fermented Milk Concentrate and a Combination of Short-Chain Galacto-Oligosaccharides/Long-Chain Fructo-Oligosaccharides/Pectin-Derived Acidic Oligosaccharides Protect Suckling Rats from Rotavirus Gastroenteritis. Br. J. Nutr. 2017, 117, 209–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rigo-Adrover, M.; Saldaña-Ruíz, S.; van Limpt, K.; Knipping, K.; Garssen, J.; Knol, J.; Franch, A.; Castell, M.; Pérez-Cano, F.J. A Combination of ScGOS/LcFOS with Bifidobacterium Breve M-16V Protects Suckling Rats from Rotavirus Gastroenteritis. Eur. J. Nutr. 2017, 56, 1657–1670. [Google Scholar] [CrossRef] [PubMed]
- Ishizuka, T.; Kanmani, P.; Kobayashi, H.; Miyazaki, A.; Soma, J.; Suda, Y.; Aso, H.; Nochi, T.; Iwabuchi, N.; Xiao, J.; et al. Immunobiotic Bifidobacteria Strains Modulate Rotavirus Immune Response in Porcine Intestinal Epitheliocytes via Pattern Recognition Receptor Signaling. PLoS ONE 2016, 11, e0152416. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Ochoa, G.; Flores-Mendoza, L.K.; Icedo-Garcia, R.; Gomez-Flores, R.; Tamez-Guerra, P. Modulation of Rotavirus Severe Gastroenteritis by the Combination of Probiotics and Prebiotics. Arch. Microbiol. 2017, 199, 953–961. [Google Scholar] [CrossRef] [Green Version]
- Dewi, M.R.; Soenarto, Y.; Karyana, I.P.G. Efficacy of Synbiotic Treatment in Children with Acute Rotavirus Diarrhea. Paediatr. Indones. 2015, 55, 74–78. [Google Scholar] [CrossRef]
- Islek, A.; Sayar, E.; Yılmaz, A.; Baysan, B.; Mutlu, D.; Artan, R. The Role of Bifidobacterium Lactis B94 plus Inulin in the Treatment of Acute Infectious Diarrhea in Children. Turk. J. Gastroenterol. J. Turk. Soc. Gastroenterol. 2014, 25, 628–633. [Google Scholar] [CrossRef]
- Kluijfhout, S.; Trieu, T.-V.; Vandenplas, Y. Efficacy of the Probiotic Probiotical Confirmed in Acute Gastroenteritis. Pediatr. Gastroenterol. Hepatol. Nutr. 2020, 23, 464–471. [Google Scholar] [CrossRef]
- Yazar, A.S.; Güven, Ş.; Dinleyici, E.Ç. Effects of Zinc or Synbiotic on the Duration of Diarrhea in Children with Acute Infectious Diarrhea. Turk. J. Gastroenterol. 2016, 27, 537–540. [Google Scholar] [CrossRef]
- Vandenplas, Y.; De Hert, S.G.; PROBIOTICAL–Study Group. Randomised Clinical Trial: The Synbiotic Food Supplement Probiotical vs. Placebo for Acute Gastroenteritis in Children. Aliment. Pharm. 2011, 34, 862–867. [Google Scholar] [CrossRef]
- Passariello, A.; Terrin, G.; Cecere, G.; Micillo, M.; De Marco, G.; Di Costanzo, M.; Cosenza, L.; Leone, L.; Nocerino, R.; Canani, R.B. Randomised Clinical Trial: Efficacy of a New Synbiotic Formulation Containing Lactobacillus paracasei B21060 plus Arabinogalactan and Xilooligosaccharides in Children with Acute Diarrhoea. Aliment. Pharm. 2012, 35, 782–788. [Google Scholar] [CrossRef]
- Szajewska, H.; Canani, R.B.; Domellöf, M.; Guarino, A.; Hojsak, I.; Indrio, F.; Lo Vecchio, A.; Mihatsch, W.A.; Mosca, A.; Orel, R.; et al. Probiotics for the Management of Pediatric Gastrointestinal Disorders: Position Paper of the ESPGHAN Special Interest Group on Gut Microbiota and Modifications. J. Pediatr. Gastroenterol. Nutr. 2022. [Google Scholar] [CrossRef] [PubMed]
- Steyer, A.; Mičetić-Turk, D.; Fijan, S. The Efficacy of Probiotics as Antiviral Agents for the Treatment of Rotavirus Gastrointestinal Infections in Children: An Updated Overview of Literature. Microorganisms 2022, 10, 2392. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, E.; Alizadeh-Navaei, R.; Rezai, M.S. Efficacy of Probiotic Use in Acute Rotavirus Diarrhea in Children: A Systematic Review and Meta-Analysis. Casp. J. Intern. Med. 2015, 6, 187–195. [Google Scholar]
- Burnett, E.; Parashar, U.D.; Tate, J.E. Rotavirus Infection, Illness, and Vaccine Performance in Malnourished Children: A Review of the Literature. Pediatr. Infect. Dis. J. 2021, 40, 930–936. [Google Scholar] [CrossRef]
- Colbère-Garapin, F.; Martin-Latil, S.; Blondel, B.; Mousson, L.; Pelletier, I.; Autret, A.; François, A.; Niborski, V.; Grompone, G.; Catonnet, G.; et al. Prevention and Treatment of Enteric Viral Infections: Possible Benefits of Probiotic Bacteria. Microbes Infect. 2007, 9, 1623–1631. [Google Scholar] [CrossRef]
- Payne, D.C.; Vinjé, J.; Szilagyi, P.G.; Edwards, K.M.; Staat, M.A.; Weinberg, G.A.; Hall, C.B.; Chappell, J.; Bernstein, D.I.; Curns, A.T.; et al. Norovirus and Medically Attended Gastroenteritis in U.S. Children. N. Engl. J. Med. 2013, 368, 1121–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McFarland, L.V.; Srinivasan, R.; Setty, R.P.; Ganapathy, S.; Bavdekar, A.; Mitra, M.; Raju, B.; Mohan, N. Specific Probiotics for the Treatment of Pediatric Acute Gastroenteritis in India: A Systematic Review and Meta-Analysis. JPGN Rep. 2021, 2, e079. [Google Scholar] [CrossRef]
- Narayanappa, D. Randomized Double Blinded Controlled Trial to Evaluate the Efficacy and Safety of Bifilac in Patients with Acute Viral Diarrhea. Indian J. Pediatr. 2008, 75, 709–713. [Google Scholar] [CrossRef]
- Ali, S.I.; Naqvi, S.B.S.; Yousuf, R.I. Antidiarrheal Potential of Lactobacillus Strains Isolated from Pharmaceutical Formulations for the Treatment of Pediatric Diarrhea. Pak. J. Pharm. Sci. 2020, 33, 1073–1078. [Google Scholar]
- Quraishi, F.; Fatima, G.; Shaheen, S.; Memon, Z.; Kainat, S.; Agha, F. In-Vitro Comparison of Antimicrobial Actions of Probiotics (Lactobacilli Species and Saccharomyces boulardii) with Standard Antibiotics for the Treatment of Diarrhea in Pediatric Population. Int. J. Clin. Med. 2018, 09, 827–840. [Google Scholar] [CrossRef] [Green Version]
- Maragkoudaki, M.; Chouliaras, G.; Moutafi, A.; Thomas, A.; Orfanakou, A.; Papadopoulou, A. Efficacy of an Oral Rehydration Solution Enriched with Lactobacillus reuteri DSM 17938 and Zinc in the Management of Acute Diarrhoea in Infants: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2018, 10, 1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinleyici, E.C.; Dalgic, N.; Guven, S.; Metin, O.; Yasa, O.; Kurugol, Z.; Turel, O.; Tanir, G.; Yazar, A.S.; Arica, V.; et al. Lactobacillus reuteri DSM 17938 Shortens Acute Infectious Diarrhea in a Pediatric Outpatient Setting. J. Pediatr. 2015, 91, 392–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.; Xin, J.; Zhang, G.; Xie, H.; Luo, L.; Yuan, S.; Bu, Y.; Yang, X.; Ge, Y.; Liu, C. A Combination of Three Probiotic Strains for Treatment of Acute Diarrhoea in Hospitalised Children: An Open Label, Randomised Controlled Trial. Benef. Microbes 2020, 11, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Riaz, M.; Alam, S.; Malik, A.; Ali, S.M. Efficacy and Safety of Saccharomyces boulardii in Acute Childhood Diarrhea: A Double Blind Randomised Controlled Trial. Indian J. Pediatr. 2012, 79, 478–482. [Google Scholar] [CrossRef]
- Dinleyici, E.C.; Dalgic, N.; Guven, S.; Ozen, M.; Kara, A.; Arica, V.; Metin-Timur, O.; Sancar, M.; Kurugol, Z.; Tanir, G.; et al. The Effect of a Multispecies Synbiotic Mixture on the Duration of Diarrhea and Length of Hospital Stay in Children with Acute Diarrhea in Turkey: Single Blinded Randomized Study. Eur. J. Pediatr. 2013, 172, 459–464. [Google Scholar] [CrossRef]
- Gundogdu, Z. Effect of a Synbiotic on Infantile Acute Gastroenteritis. Benef. Microbes 2013, 4, 231–235. [Google Scholar] [CrossRef]
- Collinson, S.; Deans, A.; Padua-Zamora, A.; Gregorio, G.V.; Li, C.; Dans, L.F.; Allen, S.J. Probiotics for Treating Acute Infectious Diarrhoea. Cochrane Database Syst. Rev. 2020, 12, CD003048. [Google Scholar] [CrossRef]
- Vandenplas, Y. Probiotics and Prebiotics in Infectious Gastroenteritis. Best Pr. Res. Clin. Gastroenterol. 2016, 30, 49–53. [Google Scholar] [CrossRef]
- Martins, F.S.; Vieira, A.T.; Elian, S.D.A.; Arantes, R.M.E.; Tiago, F.C.P.; Sousa, L.P.; Araújo, H.R.C.; Pimenta, P.F.; Bonjardim, C.A.; Nicoli, J.R.; et al. Inhibition of Tissue Inflammation and Bacterial Translocation as One of the Protective Mechanisms of Saccharomyces boulardii against Salmonella Infection in Mice. Microbes Infect. 2013, 15, 270–279. [Google Scholar] [CrossRef]
- Mahzounieh, M.; Karimi, I.; Zahraei Salehi, T.; Marjanian, R. The Preventive Effect of Sacharomyces boulardii in Pathogenesis of Salmonella Typhimurium in Experimentally Infected Rats. Pak. J. Biol. Sci. 2006, 9, 632–635. [Google Scholar] [CrossRef]
- Szajewska, H.; Wanke, M.; Patro, B. Meta-Analysis: The Effects of Lactobacillus rhamnosus GG Supplementation for the Prevention of Healthcare-Associated Diarrhoea in Children. Aliment. Pharm. 2011, 34, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Phuapradit, P.; Varavithya, W.; Vathanophas, K.; Sangchai, R.; Podhipak, A.; Suthutvoravut, U.; Nopchinda, S.; Chantraruksa, V.; Haschke, F. Reduction of Rotavirus Infection in Children Receiving Bifidobacteria-Supplemented Formula. J. Med. Assoc. Thai. 1999, 82, S43–S48. [Google Scholar] [PubMed]
- Di, J.-B.; Gai, Z.-T. Protective Efficacy of Probiotics on the Treatment of Acute Rotavirus Diarrhea in Children: An Updated Meta-Analysis. Eur. Rev. Med. Pharm. Sci. 2020, 24, 9675–9683. [Google Scholar] [CrossRef]
- Urbańska, M.; Szajewska, H. The Efficacy of Lactobacillus reuteri DSM 17938 in Infants and Children: A Review of the Current Evidence. Eur. J. Pediatr. 2014, 173, 1327–1337. [Google Scholar] [CrossRef] [PubMed]
- Karimi, S.; Jonsson, H.; Lundh, T.; Roos, S. Lactobacillus reuteri Strains Protect Epithelial Barrier Integrity of IPEC-J2 Monolayers from the Detrimental Effect of Enterotoxigenic Escherichia Coli. Physiol. Rep. 2018, 6, e13514. [Google Scholar] [CrossRef] [Green Version]
- Michail, S.; Abernathy, F. Lactobacillus plantarum Reduces the in vitro Secretory Response of Intestinal Epithelial Cells to Enteropathogenic Escherichia Coli Infection. J. Pediatr. Gastroenterol. Nutr. 2002, 35, 350–355. [Google Scholar] [CrossRef]
- Depoorter, L.; Vandenplas, Y. Probiotics in Pediatrics. A Review and Practical Guide. Nutrients 2021, 13, 2176. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Săsăran, M.O.; Mărginean, C.O.; Adumitrăchioaiei, H.; Meliț, L.E. Pathogen-Specific Benefits of Probiotic and Synbiotic Use in Childhood Acute Gastroenteritis: An Updated Review of the Literature. Nutrients 2023, 15, 643. https://doi.org/10.3390/nu15030643
Săsăran MO, Mărginean CO, Adumitrăchioaiei H, Meliț LE. Pathogen-Specific Benefits of Probiotic and Synbiotic Use in Childhood Acute Gastroenteritis: An Updated Review of the Literature. Nutrients. 2023; 15(3):643. https://doi.org/10.3390/nu15030643
Chicago/Turabian StyleSăsăran, Maria Oana, Cristina Oana Mărginean, Heidrun Adumitrăchioaiei, and Lorena Elena Meliț. 2023. "Pathogen-Specific Benefits of Probiotic and Synbiotic Use in Childhood Acute Gastroenteritis: An Updated Review of the Literature" Nutrients 15, no. 3: 643. https://doi.org/10.3390/nu15030643
APA StyleSăsăran, M. O., Mărginean, C. O., Adumitrăchioaiei, H., & Meliț, L. E. (2023). Pathogen-Specific Benefits of Probiotic and Synbiotic Use in Childhood Acute Gastroenteritis: An Updated Review of the Literature. Nutrients, 15(3), 643. https://doi.org/10.3390/nu15030643