Prognostic Utility of Nutritional Risk Index in Patients with Head and Neck Soft Tissue Sarcoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cohort
2.2. Data Collection
2.3. Follow Up
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. The Association between NRI and Clinical Characteristics
3.3. Factors Predicting OS and PFS Outcomes
3.4. Nomogram Development and Validation
3.5. Subgroup Analysis of Common Clinical Variables According to NRI Groups
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HNSTS | head and neck soft tissue sarcoma |
STS | soft tissue sarcoma |
NRI | nutritional risk index |
BMI | body mass index |
ALB | serum albumin |
OS | overall survival |
PFS | progression-free survival |
SYSUCC | Sun Yat-sen University Cancer Center |
AJCC | American Joint Committee on Cancer |
FNCLCC | French Federation of Cancer Centers Sarcoma Group |
MRI | magnetic resonance imaging |
IQR | interquartile range |
SD | standard deviation |
C-index | concordance index |
AUC | area under the curve |
ROC | receiver operating characteristic |
CONUT | controlling nutritional status |
GPS | Glasgow prognostic score |
PNI | prognostic nutritional index |
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Peng, K.A.; Grogan, T.; Wang, M.B. Head and neck sarcomas: Analysis of the SEER database. Otolaryngol. Head Neck. Surg. 2014, 151, 627–633. [Google Scholar] [CrossRef] [Green Version]
- Zagars, G.K.; Ballo, M.T.; Pisters, P.W.; Pollock, R.E.; Patel, S.R.; Benjamin, R.S.; Evans, H.L. Prognostic factors for patients with localized soft-tissue sarcoma treated with conservation surgery and radiation therapy: An analysis of 1225 patients. Cancer 2003, 97, 2530–2543. [Google Scholar] [CrossRef]
- Fletcher, C.D. The evolving classification of soft tissue tumours—An update based on the new 2013 WHO classification. Histopathology 2014, 64, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Mattavelli, D.; Miceli, R.; Radaelli, S.; Mattavelli, F.; Cantu, G.; Barisella, M.; Quattrone, P.; Stacchiotti, S.; Sangalli, C.; Casali, P.G.; et al. Head and neck soft tissue sarcomas: Prognostic factors and outcome in a series of patients treated at a single institution. Ann. Oncol. 2013, 24, 2181–2189. [Google Scholar] [CrossRef] [PubMed]
- Galy-Bernadoy, C.; Garrel, R. Head and neck soft-tissue sarcoma in adults. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2016, 133, 37–42. [Google Scholar] [CrossRef]
- Guillou, L.; Coindre, J.M.; Bonichon, F.; Nguyen, B.B.; Terrier, P.; Collin, F.; Vilain, M.O.; Mandard, A.M.; Le Doussal, V.; Leroux, A.; et al. Comparative study of the National Cancer Institute and French Federation of Cancer Centers Sarcoma Group grading systems in a population of 410 adult patients with soft tissue sarcoma. J. Clin. Oncol. 1997, 15, 350–362. [Google Scholar] [CrossRef] [PubMed]
- Pisters, P.W.; Pollock, R.E. Staging and prognostic factors in soft tissue sarcoma. Semin. Radiat. Oncol. 1999, 9, 307–314. [Google Scholar] [CrossRef]
- Lahat, G.; Tuvin, D.; Wei, C.; Anaya, D.A.; Bekele, B.N.; Lazar, A.J.; Pisters, P.W.; Lev, D.; Pollock, R.E. New perspectives for staging and prognosis in soft tissue sarcoma. Ann. Surg. Oncol. 2008, 15, 2739–2748. [Google Scholar] [CrossRef]
- Li, Y.J.; Dai, Y.L.; Cheng, Y.S.; Zhang, W.B.; Tu, C.Q. Positron emission tomography (18)F-fluorodeoxyglucose uptake and prognosis in patients with bone and soft tissue sarcoma: A meta-analysis. Eur. J. Surg. Oncol. 2016, 42, 1103–1114. [Google Scholar] [CrossRef]
- Rock, C.L.; Doyle, C.; Demark-Wahnefried, W.; Meyerhardt, J.; Courneya, K.S.; Schwartz, A.L.; Bandera, E.V.; Hamilton, K.K.; Grant, B.; McCullough, M.; et al. Nutrition and physical activity guidelines for cancer survivors. CA Cancer J. Clin. 2012, 62, 243–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiseman, M.J. Nutrition and cancer: Prevention and survival. Br. J. Nutr. 2019, 122, 481–487. [Google Scholar] [CrossRef] [Green Version]
- Hebuterne, X.; Lemarie, E.; Michallet, M.; de Montreuil, C.B.; Schneider, S.M.; Goldwasser, F. Prevalence of malnutrition and current use of nutrition support in patients with cancer. JPEN J. Parenter. Enteral. Nutr. 2014, 38, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Andreyev, H.J.; Norman, A.R.; Oates, J.; Cunningham, D. Why do patients with weight loss have a worse outcome when undergoing chemotherapy for gastrointestinal malignancies? Eur. J. Cancer 1998, 34, 503–509. [Google Scholar] [CrossRef]
- Bozzetti, F.; Gianotti, L.; Braga, M.; Di Carlo, V.; Mariani, L. Postoperative complications in gastrointestinal cancer patients: The joint role of the nutritional status and the nutritional support. Clin. Nutr. 2007, 26, 698–709. [Google Scholar] [CrossRef] [PubMed]
- Mantzorou, M.; Koutelidakis, A.; Theocharis, S.; Giaginis, C. Clinical Value of Nutritional Status in Cancer: What is its Impact and how it Affects Disease Progression and Prognosis? Nutr. Cancer 2017, 69, 1151–1176. [Google Scholar] [CrossRef]
- Bao, X.; Liu, F.; Lin, J.; Chen, Q.; Chen, L.; Chen, F.; Wang, J.; Qiu, Y.; Shi, B.; Pan, L.; et al. Nutritional assessment and prognosis of oral cancer patients: A large-scale prospective study. BMC Cancer 2020, 20, 146. [Google Scholar] [CrossRef] [Green Version]
- Cates, J.M.M. Staging soft tissue sarcoma of the head and neck: Evaluation of the AJCC 8th edition revised T classifications. Head Neck. 2019, 41, 2359–2366. [Google Scholar] [CrossRef]
- Edge, S.B.; Compton, C.C. The American Joint Committee on Cancer: The 7th edition of the AJCC cancer staging manual and the future of TNM. Ann. Surg. Oncol. 2010, 17, 1471–1474. [Google Scholar] [CrossRef]
- Bouillanne, O.; Morineau, G.; Dupont, C.; Coulombel, I.; Vincent, J.P.; Nicolis, I.; Benazeth, S.; Cynober, L.; Aussel, C. Geriatric Nutritional Risk Index: A new index for evaluating at-risk elderly medical patients. Am. J. Clin. Nutr. 2005, 82, 777–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Wang, R.; Wu, P.; Zhang, W.; Mao, S.; Wu, Y.; Liu, J.; Ma, W.; Zheng, Z.; Zhang, J.; et al. Preoperative Nutritional Risk Index Predicts Recurrence of Oligometastatic Prostate Cancer in Patients Undergoing Cytoreductive Radical Prostatectomy. Nutr. Cancer 2021, 73, 1440–1447. [Google Scholar] [CrossRef]
- Renehan, A.G.; Tyson, M.; Egger, M.; Heller, R.F.; Zwahlen, M. Body-mass index and incidence of cancer: A systematic review and meta-analysis of prospective observational studies. Lancet 2008, 371, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Wada, H.; Dohi, T.; Miyauchi, K.; Doi, S.; Naito, R.; Konishi, H.; Tsuboi, S.; Ogita, M.; Kasai, T.; Hassan, A.; et al. Prognostic Impact of the Geriatric Nutritional Risk Index on Long-Term Outcomes in Patients Who Underwent Percutaneous Coronary Intervention. Am. J. Cardiol. 2017, 119, 1740–1745. [Google Scholar] [CrossRef]
- Senesse, P.; Assenat, E.; Schneider, S.; Chargari, C.; Magne, N.; Azria, D.; Hebuterne, X. Nutritional support during oncologic treatment of patients with gastrointestinal cancer: Who could benefit? Cancer Treat. Rev. 2008, 34, 568–575. [Google Scholar] [CrossRef]
- Schwegler, I.; von Holzen, A.; Gutzwiller, J.P.; Schlumpf, R.; Muhlebach, S.; Stanga, Z. Nutritional risk is a clinical predictor of postoperative mortality and morbidity in surgery for colorectal cancer. Br. J. Surg. 2010, 97, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Alifano, M.; Mansuet-Lupo, A.; Lococo, F.; Roche, N.; Bobbio, A.; Canny, E.; Schussler, O.; Dermine, H.; Regnard, J.F.; Burroni, B.; et al. Systemic inflammation, nutritional status and tumor immune microenvironment determine outcome of resected non-small cell lung cancer. PLoS ONE 2014, 9, e106914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aktas, A.; Walsh, D.; Galang, M.; O’Donoghue, N.; Rybicki, L.; Hullihen, B.; Schleckman, E. Underrecognition of Malnutrition in Advanced Cancer: The Role of the Dietitian and Clinical Practice Variations. Am. J. Hosp. Palliat. Care 2017, 34, 547–555. [Google Scholar] [CrossRef]
- Sealy, M.J.; Nijholt, W.; Stuiver, M.M.; van der Berg, M.M.; Roodenburg, J.L.; van der Schans, C.P.; Ottery, F.D.; Jager-Wittenaar, H. Content validity across methods of malnutrition assessment in patients with cancer is limited. J. Clin. Epidemiol. 2016, 76, 125–136. [Google Scholar] [CrossRef]
- Tenardi, R.D.; Fruhwald, M.C.; Jurgens, H.; Hertroijs, D.; Bauer, J. Nutritional status of children and young adults with Ewing sarcoma or osteosarcoma at diagnosis and during multimodality therapy. Pediatr. Blood Cancer 2012, 59, 621–626. [Google Scholar] [CrossRef]
- Roop, C.; Piscitelli, M.; Lynch, M.P. Assessing the nutritional status of patients with sarcoma by using the scored patient-generated subjective global assessment. Clin. J. Oncol. Nurs. 2010, 14, 375–377. [Google Scholar] [CrossRef]
- Ita, M.; Okafuji, M.; Fukuda, K.; Mitsuoka, K.; Hanakita, T.; Hayatsu, Y. Concurrent chemoradiotherapy with new platinum compound nedaplatin in oral cancer. Oral Oncol. 2003, 39, 144–149. [Google Scholar] [CrossRef]
- Buzby, G.P.; Williford, W.O.; Peterson, O.L.; Crosby, L.O.; Page, C.P.; Reinhardt, G.F.; Mullen, J.L. A randomized clinical trial of total parenteral nutrition in malnourished surgical patients: The rationale and impact of previous clinical trials and pilot study on protocol design. Am. J. Clin. Nutr. 1988, 47, 357–365. [Google Scholar] [CrossRef]
- Kato, M.; Hayashi, Y.; Fukuda, H.; Yamaguchi, S.; Inoue, T.; Ogiyama, H.; Kitamura, S.; Komori, M.; Yamamoto, K.; Yamamoto, M.; et al. Geriatric nutritional risk index as a prognostic indicator in elderly patients with early colorectal cancer undergoing endoscopic submucosal dissection. Dig. Endosc. 2022, 34, 569–578. [Google Scholar] [CrossRef]
- Righini, C.A.; Timi, N.; Junet, P.; Bertolo, A.; Reyt, E.; Atallah, I. Assessment of nutritional status at the time of diagnosis in patients treated for head and neck cancer. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2013, 130, 8–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravasco, P.; Monteiro-Grillo, I.; Vidal, P.M.; Camilo, M.E. Nutritional deterioration in cancer: The role of disease and diet. Clin. Oncol. (R. Coll Radiol.) 2003, 15, 443–450. [Google Scholar] [CrossRef]
- Ravasco, P.; Monteiro-Grillo, I.; Marques Vidal, P.; Camilo, M.E. Impact of nutrition on outcome: A prospective randomized controlled trial in patients with head and neck cancer undergoing radiotherapy. Head Neck 2005, 27, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, M.; Gosho, M.; Adachi, M.; Ii, R.; Matsumoto, S.; Miyamoto, H.; Hirose, Y.; Nishimura, B.; Tanaka, S.; Wada, T.; et al. The Geriatric Nutritional Risk Index as a Prognostic Factor in Patients with Advanced Head and Neck Cancer. Laryngoscope 2021, 131, E151–E156. [Google Scholar] [CrossRef] [PubMed]
- Kurzrock, R. Cytokine deregulation in cancer. Biomed. Pharmacother. 2001, 55, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Rutkowski, P.; Kaminska, J.; Kowalska, M.; Ruka, W.; Steffen, J. Cytokine and cytokine receptor serum levels in adult bone sarcoma patients: Correlations with local tumor extent and prognosis. J. Surg. Oncol. 2003, 84, 151–159. [Google Scholar] [CrossRef]
- Kaminska, J.; Kowalska, M.; Kotowicz, B.; Fuksiewicz, M.; Glogowski, M.; Wojcik, E.; Chechlinska, M.; Steffen, J. Pretreatment serum levels of cytokines and cytokine receptors in patients with non-small cell lung cancer, and correlations with clinicopathological features and prognosis. M-CSF—An independent prognostic factor. Oncology 2006, 70, 115–125. [Google Scholar] [CrossRef]
- Marton, S.; Garai, J.; Molnar, V.; Juhasz, V.; Bogar, L.; Koszegi, T.; Falusi, B.; Ghosh, S. Kinetics of inflammatory markers following cancer-related bowel and liver resection. UPS J. Med. Sci. 2011, 116, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Krzystek-Korpacka, M.; Matusiewicz, M.; Diakowska, D.; Grabowski, K.; Blachut, K.; Kustrzeba-Wojcicka, I.; Terlecki, G.; Gamian, A. Acute-phase response proteins are related to cachexia and accelerated angiogenesis in gastroesophageal cancers. Clin. Chem. Lab. Med. 2008, 46, 359–364. [Google Scholar] [CrossRef]
- Moldawer, L.L.; Copeland, E.M., 3rd. Proinflammatory cytokines, nutritional support, and the cachexia syndrome: Interactions and therapeutic options. Cancer 1997, 79, 1828–1839. [Google Scholar] [CrossRef]
- Ku, J.Y.; Roh, J.L.; Cho, K.J.; Song, J.S.; Choi, S.H.; Nam, S.Y.; Kim, S.Y. Risk factors for survival of head and neck soft tissue sarcomas: A comparison between 7th and 8th edition AJCC staging systems. Oral Oncol. 2020, 106, 104705. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zeng, H.; Du, Z.; Zhao, Y.; Ma, X. Nomogram based on pre-treatment inflammatory biomarkers predicting survival in patients with head and neck soft tissue sarcoma. Cancer Biomark. 2020, 29, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Bo, Y.; Yao, M.; Zhang, L.; Bekalo, W.; Lu, W.; Lu, Q. Preoperative Nutritional Risk Index to predict postoperative survival time in primary liver cancer patients. Asia Pac. J. Clin. Nutr. 2015, 24, 591–597. [Google Scholar] [CrossRef]
- Lin, F.; Xia, W.; Chen, M.; Jiang, T.; Guo, J.; Ouyang, Y.; Sun, H.; Chen, X.; Deng, W.; Guo, L.; et al. A Prognostic Model Based on Nutritional Risk Index in Operative Breast Cancer. Nutrients 2022, 14, 3783. [Google Scholar] [CrossRef]
- Fujiya, K.; Kawamura, T.; Omae, K.; Makuuchi, R.; Irino, T.; Tokunaga, M.; Tanizawa, Y.; Bando, E.; Terashima, M. Impact of Malnutrition After Gastrectomy for Gastric Cancer on Long-Term Survival. Ann. Surg. Oncol. 2018, 25, 974–983. [Google Scholar] [CrossRef]
- Yamana, I.; Takeno, S.; Shimaoka, H.; Yamashita, K.; Yamada, T.; Shiwaku, H.; Hashimoto, T.; Yamashita, Y.; Hasegawa, S. Geriatric Nutritional Risk Index as a prognostic factor in patients with esophageal squamous cell carcinoma -retrospective cohort study. Int. J. Surg. 2018, 56, 44–48. [Google Scholar] [CrossRef]
- Yoon, J.P.; Nam, J.S.; Abidin, M.; Kim, S.O.; Lee, E.H.; Choi, I.C.; Chin, J.H. Comparison of Preoperative Nutritional Indexes for Outcomes after Primary Esophageal Surgery for Esophageal Squamous Cell Carcinoma. Nutrients 2021, 13, 4086. [Google Scholar] [CrossRef] [PubMed]
- Yeh, K.Y.; Wang, C.H.; Ling, H.H.; Peng, C.L.; Chen, Z.S.; Hsia, S. Pretreatment Glasgow Prognostic Score Correlated with Serum Histidine Level and Three-Year Mortality of Patients with Locally Advanced Head and Neck Squamous Cell Carcinoma and Optimal Performance Status. Nutrients 2022, 14, 3475. [Google Scholar] [CrossRef] [PubMed]
- Fanetti, G.; Polesel, J.; Fratta, E.; Muraro, E.; Lupato, V.; Alfieri, S.; Gobitti, C.; Minatel, E.; Matrone, F.; Caroli, A.; et al. Prognostic Nutritional Index Predicts Toxicity in Head and Neck Cancer Patients Treated with Definitive Radiotherapy in Association with Chemotherapy. Nutrients 2021, 13, 1277. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total, No. (%) | Low-NRI Group, No. (%) | High-NRI Group, No. (%) | p-Value |
---|---|---|---|---|
(n = 436) | (n = 90) | (n = 346) | ||
Age (years, mean ± SD) | 45.4 ± 15.4 | 49.6 ± 17.1 | 44.3 ± 14.7 | 0.003 |
Gender | 0.394 | |||
Female | 160 (36.7) | 37 (41.1) | 123 (35.6) | |
Male | 276 (63.3) | 53 (58.9) | 223 (64.4) | |
BMI (kg/m2, mean ± SD) | 22.37 ± 3.65 | 19.00 ± 2.31 | 23.24 ± 3.41 | <0.001 |
Smoking exposure | 0.234 | |||
No | 362 (83.0) | 79 (87.8) | 283 (81.8) | |
Yes | 74 (17.0) | 11 (12.2) | 63 (18.2) | |
Tumor site | 0.155 | |||
Scalp or face | 129 (29.6) | 20 (22.2) | 109 (31.5) | |
Neck | 117 (26.8) | 21 (23.3) | 96 (27.7) | |
Nasal cavity or paranasal sinus | 71 (16.3) | 18 (20.0) | 53 (15.3) | |
Oral cavity | 49 (11.2) | 13 (14.4) | 36 (10.4) | |
Pharynx or larynx | 29 (6.7) | 10 (11.1) | 19 (5.5) | |
Others | 41 (9.4) | 8 (8.9) | 33 (9.5) | |
Tumor size (cm) | ||||
≤2 | 93 (21.3) | 21 (23.3) | 72 (20.8) | 0.601 |
>2 to ≤4 | 153 (35.1) | 34 (37.8) | 119 (34.4) | |
>4 | 190 (43.6) | 35 (38.9) | 155 (44.8) | |
Lymph node metastasis | ||||
No | 384 (88.1) | 77 (85.6) | 307 (88.7) | 0.519 |
Yes | 52 (11.9) | 13 (14.4) | 39 (11.3) | |
Distant metastasis | ||||
No | 412 (94.5) | 80 (88.9) | 332 (95.9) | 0.018 |
Yes | 24 (5.5) | 10 (11.1) | 14 (4.1) | |
Tumor depth | 0.015 | |||
Superficial | 157 (36.0) | 22 (24.4) | 135 (39.0) | |
Deep | 279 (64.0) | 68 (75.6) | 211 (61.0) | |
Tumor grade | ||||
G1 | 173 (39.7) | 22 (24.4) | 151 (43.7) | 0.003 |
G2 | 203 (46.5) | 50 (55.6) | 153 (44.2) | |
G3 | 60 (13.8) | 18 (20.0) | 42 (12.1) | |
TNM stage (AJCC7) | ||||
I | 150 (34.4) | 16 (17.8) | 134 (38.7) | <0.001 |
II | 205 (47.0) | 49 (54.4) | 156 (45.1) | |
III | 58 (13.3) | 15 (16.7) | 43 (12.4) | |
IV | 23 (5.3) | 10 (11.1) | 13 (3.8) | |
Treatment modality | 0.816 | |||
Surgery-definitive | 254 (58.3) | 52 (57.8) | 202 (58.4) | |
Surgery + CT-adjuvant | 38 (8.7) | 6 (6.7) | 32 (9.2) | |
Surgery + RT-adjuvant | 72 (16.5) | 17 (18.9) | 55 (15.9) | |
Surgery + CRT-adjuvant | 72 (16.5) | 15 (16.6) | 57 (16.5) |
Characteristics | Training Set, No. (%) | Validation Set, No. (%) | p-Value |
---|---|---|---|
(n = 308) | (n = 128) | ||
Age (years, mean ± SD) | 45.0 ± 15.0 | 46.2 ± 16.3 | 0.467 |
Gender | 0.748 | ||
Female | 115 (37.3) | 45 (35.2) | |
Male | 193 (62.7) | 83 (64.8) | |
BMI (kg/m2, mean ± SD) | 22.44 ± 3.71 | 22.18 ± 3.50 | 0.501 |
Smoking exposure | 1.000 | ||
No | 256 (83.1) | 106 (82.8) | |
Yes | 52 (16.9) | 22 (17.2) | |
Tumor site | 0.135 | ||
Scalp or face | 95 (30.8) | 34 (26.6) | |
Neck | 73 (23.7) | 44 (34.4) | |
Nasal cavity or paranasal sinus | 55 (17.8) | 16 (12.5) | |
Oral cavity | 33 (10.7) | 16 (12.5) | |
Pharynx or larynx | 24(7.8) | 5 (3.9) | |
Others | 28 (9.1) | 13 (10.1) | |
Tumor size (cm) | 0.814 | ||
≤2 | 68 (22.1) | 25 (19.5) | |
>2 to ≤4 | 106 (34.4) | 47 (36.7) | |
>4 | 134 (43.5) | 56 (43.8) | |
Lymph node metastasis | 0.294 | ||
No | 275 (89.3) | 109 (85.2) | |
Yes | 33 (10.7) | 19 (14.8) | |
Distant metastasis | 0.476 | ||
No | 289 (93.8) | 123 (96.1) | |
Yes | 19 (6.2) | 5 (3.9) | |
Tumor depth | 0.758 | ||
Superficial | 109 (35.4) | 48 (37.5) | |
Deep | 199 (64.6) | 80 (62.5) | |
Tumor grade | |||
G1 | 116 (37.7) | 57 (44.5) | 0.164 |
G2 | 144 (46.7) | 59 (46.1) | |
G3 | 48 (15.6) | 12 (9.4) | |
TNM stage (AJCC7) | |||
I | 100 (32.5) | 50 (39.1) | 0.297 |
II | 150 (48.7) | 55 (43.0) | |
III | 39 (12.6) | 19 (14.8) | |
IV | 19 (6.2) | 4 (3.1) | |
Treatment modality | 0.044 | ||
Surgery-definitive | 167 (54.2) | 87 (68.0) | |
Surgery + CT-adjuvant | 32 (10.4) | 6 (4.7) | |
Surgery + RT-adjuvant | 54 (17.85 | 18 (14.1) | |
Surgery + CRT-adjuvant | 55 (17.9) | 17 (13.3) | |
NRI | 0.779 | ||
≤99.34 | 62 (20.1) | 28 (21.9) | |
>99.34 | 246 (79.9) | 100 (78.1) |
Characteristics | Overall Survival | Progression-Free Survival | ||
---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Age (years) | 1.006 (0.994–1.019) | 0.325 | - | - |
BMI (kg/m2) | 1.000 (0.943–1.060) | 0.997 | - | - |
Tumor site | ||||
Low-risk site * | 1.0 [Reference] | 1.0 [Reference] | ||
High-risk site † | 1.057 (0.726–1.538) | 0.774 | 0.756 (0.547–1.046) | 0.091 |
Lymph node metastasis | ||||
No | 1.0 [Reference] | - | - | |
Yes | 1.177 (0.602–2.302) | 0.633 | - | - |
Distant metastasis | ||||
No | 1.0 [Reference] | 1.0 [Reference] | ||
Yes | 5.661 (2.847–11.258) | <0.001 | 2.609 (1.388–4.907) | 0.003 |
Tumor depth | ||||
Superficial | 1.0 [Reference] | 1.0 [Reference] | ||
Deep | 3.306 (1.843–5.929) | <0.001 | 2.446 (1.663–3.597) | <0.001 |
Tumor grade | ||||
G1 | 1.0 [Reference] | 1.0 [Reference] | ||
G2 | 4.592 (2.726–7.734) | <0.001 | 1.613 (1.147–2.267) | 0.006 |
G3 | 3.811 (2.034–7.140) | <0.001 | 1.544 (0.972–2.455) | 0.066 |
TNM stage (AJCC7) | ||||
I + II | 1.0 [Reference] | 1.0 [Reference] | ||
III + IV | 1.081 (0.563–2.077) | 0.814 | 0.792 (0.496–1.265) | 0.330 |
Treatment modality | ||||
Surgery-definitive | 1.0 [Reference] | 1.0 [Reference] | ||
Surgery + CT-adjuvant | 2.182 (1.269–3.752) | 0.005 | 1.470 (0.893–2.417) | 0.130 |
Surgery + RT-adjuvant | 1.164 (0.729–1.859) | 0.525 | 1.162 (0.788–1.712) | 0.449 |
Surgery + CRT-adjuvant | 1.237 (0.741–2.066) | 0.416 | 1.281 (0.836–1.963) | 0.256 |
NRI | ||||
>99.34 | 1.0 [Reference] | 1.0 [Reference] | ||
≤99.34 | 1.912 (1.213–3.013) | 0.005 | 1.581 (1.132–2.210) | 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, Z.; Liang, C.; Luo, G.; Liu, M.; Jiang, K.; Yang, A.; Liang, Y. Prognostic Utility of Nutritional Risk Index in Patients with Head and Neck Soft Tissue Sarcoma. Nutrients 2023, 15, 641. https://doi.org/10.3390/nu15030641
Jiao Z, Liang C, Luo G, Liu M, Jiang K, Yang A, Liang Y. Prognostic Utility of Nutritional Risk Index in Patients with Head and Neck Soft Tissue Sarcoma. Nutrients. 2023; 15(3):641. https://doi.org/10.3390/nu15030641
Chicago/Turabian StyleJiao, Zan, Chengcai Liang, Guangfeng Luo, Mengmeng Liu, Ke Jiang, Ankui Yang, and Yao Liang. 2023. "Prognostic Utility of Nutritional Risk Index in Patients with Head and Neck Soft Tissue Sarcoma" Nutrients 15, no. 3: 641. https://doi.org/10.3390/nu15030641
APA StyleJiao, Z., Liang, C., Luo, G., Liu, M., Jiang, K., Yang, A., & Liang, Y. (2023). Prognostic Utility of Nutritional Risk Index in Patients with Head and Neck Soft Tissue Sarcoma. Nutrients, 15(3), 641. https://doi.org/10.3390/nu15030641