Effect of Glycerol-Induced Hyperhydration on a 5-kilometer Running Time-Trial Performance in the Heat in Recreationally Active Individuals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Overview of the Study
2.3. Preliminary Visit
2.4. Pre-Experimental Protocol
2.5. Familiarization Trial
2.6. Experimental Trials
2.7. Measurements
2.7.1. Heart Rate and Gastrointestinal and Skin Temperatures
2.7.2. Urinary Measurements, Assessment of Accumulated Fluid Retention and Excretion, and Sweat Loss
2.7.3. Capillary Blood Measurements
2.7.4. Subjective Perceptions
2.8. Statistical Analysis
3. Results
3.1. State of Hydration of Participants at Arrival at the Laboratory and Ambient Conditions during the Hydration and 5-kilometer Running Time-Trial Periods
3.2. Fluid Retention, Body Mass, Plasma Volume, Hemoglobin Concentration and Sweat Loss
3.3. Gastrointestinal and Mean Skin Temperatures and Heart Rate
3.4. Subjective Perceptions
3.5. Performance
4. Discussion
4.1. Fluid Retention
4.2. Plasma Volume Change, Hemoglobin Concentration and Exercise Performance
4.3. Gastro-Intestinal Temperature
4.4. Exercise Performance
4.5. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramsbottom, R.; Nute, M.G.; Williams, C. Determinants of five kilometre running performance in active men and women. Br. J. Sports Med. 1987, 21, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Ramsbottom, R.; Williams, C.; Kerwin, D.G.; Nute, M.L. Physiological and metabolic responses of men and women to a 5-km treadmill time trial. J. Sports Sci. 1992, 10, 119–129. [Google Scholar] [CrossRef]
- Lundby, C.; Montero, D.; Joyner, M. Biology of O2max: Looking under the physiology lamp. Acta Physiol. 2017, 220, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Hopper, M.K.; Coggan, A.R.; Coyle, E.F. Exercise stroke volume relative to plasma-volume expansion. J. Appl. Physiol. 1988, 64, 404–408. [Google Scholar] [CrossRef] [PubMed]
- Goulet, E.D.B.; De La Flore, A.; Savoie, F.A.; Gosselin, J. Salt + Glycerol-Induced Hyperhydration Enhances Fluid Retention More Than Salt- or Glycerol-Induced Hyperhydration. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Savoie, F.A.; Asselin, A.; Goulet, E.D. Comparison of Sodium Chloride Tablets-Induced, Sodium Chloride Solution-Induced, and Glycerol-Induced Hyperhydration on Fluid Balance Responses in Healthy Men. J. Strength Cond. Res. 2016, 30, 2880–2891. [Google Scholar] [CrossRef]
- Savoie, F.A.; Dion, T.; Asselin, A.; Goulet, E.D. Sodium-induced hyperhydration decreases urine output and improves fluid balance compared with glycerol- and water-induced hyperhydration. Appl. Physiol. Nutr. Metab. 2015, 40, 51–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berger, N.J.; Campbell, I.T.; Wilkerson, D.P.; Jones, A.M. Influence of acute plasma volume expansion on VO2 kinetics, VO2 peak, and performance during high-intensity cycle exercise. J. Appl. Physiol. 2006, 101, 707–714. [Google Scholar] [CrossRef] [Green Version]
- Convertino, V.A. Blood volume: Its adaptation to endurance training. Med. Sci. Sports Exerc. 1991, 23, 1338–1348. [Google Scholar] [CrossRef]
- Coyle, E.F.; Hopper, M.K.; Coggan, A.R. Maximal oxygen uptake relative to plasma volume expansion. Int. J. Sports Med. 1990, 11, 116–119. [Google Scholar] [CrossRef]
- Feldschuh, J.; Enson, Y. Prediction of the normal blood volume. Relation of blood volume to body habitus. Circulation 1977, 56, 605–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patlar, S.; Yalçin, H.; Boyali, E. The effect of glycerol supplements on aerobic and anaerobic performance of athletes and sedentary subjects. J. Hum. Kinet. 2012, 34, 69–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Racinais, S.; Alonso, J.M.; Coutts, A.J.; Flouris, A.D.; Girard, O.; González-Alonso, J.; Hausswirth, C.; Jay, O.; Lee, J.K.; Mitchell, N.; et al. Consensus recommendations on training and competing in the heat. Br. J. Sports Med. 2015, 49, 1164–1173. [Google Scholar] [CrossRef] [Green Version]
- Fellmann, N. Hormonal and plasma volume alterations following endurance exercise. A brief review. Sports Med. 1992, 13, 37–49. [Google Scholar] [CrossRef]
- Goulet, E.D.; Rousseau, S.F.; Lamboley, C.R.; Plante, G.E.; Dionne, I.J. Pre-exercise hyperhydration delays dehydration and improves endurance capacity during 2 h of cycling in a temperate climate. J. Physiol. Anthropol. 2008, 27, 263–271. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.K.; Shirreffs, S.M.; Maughan, R.J. Cold drink ingestion improves exercise endurance capacity in the heat. Med. Sci. Sports Exerc. 2008, 40, 1637–1644. [Google Scholar] [CrossRef] [Green Version]
- Howley, E.T.; Bassett, D.R., Jr.; Welch, H.G. Criteria for maximal oxygen uptake: Review and commentary. Med. Sci. Sports Exerc. 1995, 27, 1292–1301. [Google Scholar] [CrossRef] [PubMed]
- Dion, T.; Savoie, F.A.; Asselin, A.; Gariepy, C.; Goulet, E.D. Half-marathon running performance is not improved by a rate of fluid intake above that dictated by thirst sensation in trained distance runners. Eur. J. Appl. Physiol. 2013, 113, 3011–3020. [Google Scholar] [CrossRef]
- Deshayes, T.A.; De La Flore, A.; Gosselin, J.; Beliveau, J.; Jeker, D.; Goulet, E.D.B. The Impact of an Ice Slurry-Induced Gastrointestinal Heat Sink on Gastrointestinal and Rectal Temperatures Following Exercise. Sports 2019, 7, 198. [Google Scholar] [CrossRef] [Green Version]
- Ramanathan, N.L. A new weighting system for mean surface temperature of the human body. J. Appl. Physiol. 1964, 19, 531–533. [Google Scholar] [CrossRef]
- Goulet, E.D.; Robergs, R.A.; Labrecque, S.; Royer, D.; Dionne, I.J. Effect of glycerol-induced hyperhydration on thermoregulatory and cardiovascular functions and endurance performance during prolonged cycling in a 25 °C environment. Appl. Physiol. Nutr. Metab. 2006, 31, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Hutler, M.; Beneke, R.; Boning, D. Determination of circulating hemoglobin mass and related quantities by using capillary blood. Med. Sci. Sports Exerc. 2000, 32, 1024–1027. [Google Scholar] [CrossRef] [PubMed]
- Dill, D.B.; Costill, D.L. Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J. Appl. Physiol. 1974, 37, 247–248. [Google Scholar] [CrossRef] [Green Version]
- Claveau, P.; Deshayes, T.A.; Jeker, D.; Pancrate, T.; Goulet, E.D.B. Provision of instructions to drink ad libitum or according to thirst sensation: Impact during 120 km of cycling in the heat in men. Appl. Physiol. Nutr. Metab. 2022, 47, 83–90. [Google Scholar] [CrossRef]
- Jeker, D.; Claveau, P.; Abed, M.E.F.; Deshayes, T.A.; Lajoie, C.; Gendron, P.; Hoffman, M.D.; Goulet, E.D.B. Programmed vs. Thirst-Driven Drinking during Prolonged Cycling in a Warm Environment. Nutrients 2021, 14, 141. [Google Scholar] [CrossRef] [PubMed]
- Robertson, R.J.; Noble, B.J. Perception of physical exertion: Methods, mediators, and applications. Exerc. Sport Sci. Rev. 1997, 25, 407–452. [Google Scholar] [CrossRef]
- Goulet, E.D.B.; Aubertin-Leheudre, M.; Plante, G.E.; Dionne, I.J. A Meta-Analysis of the Effects of Glycerol-Induced Hyperhydration on Fluid Retention and Endurance Performance. Int. J. Sport Nutr. Exerc. Metab. 2007, 17, 391–410. [Google Scholar] [CrossRef]
- Laursen, P.B.; Francis, G.T.; Abbiss, C.R.; Newton, M.J.; Nosaka, K. Reliability of time-to-exhaustion versus time-trial running tests in runners. Med. Sci. Sports Exerc. 2007, 39, 1374–1379. [Google Scholar] [CrossRef]
- Cheuvront, S.N.; Kenefick, R.W.; Heavens, K.R.; Spitz, M.G. A comparison of whole blood and plasma osmolality and osmolarity. J. Clin. Lab. Anal. 2014, 28, 368–373. [Google Scholar] [CrossRef]
- Kratz, A.; Lewandrowski, K.B. Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Normal reference laboratory values. N. Engl. J. Med. 1998, 339, 1063–1072. [Google Scholar] [CrossRef]
- Oppliger, R.A.; Bartok, C. Hydration testing of athletes. Sports Med. 2002, 32, 959–971. [Google Scholar] [CrossRef] [PubMed]
- Sawka, M.N.; Burke, L.M.; Eichner, E.R.; Maughan, R.J.; Montain, S.J.; Stachenfeld, N.S. American College of Sports Medicine position stand. Exercise and fluid replacement. Med. Sci. Sports Exerc. 2007, 39, 377–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, M.J.; Cotter, J.D.; Garnham, A.P.; Casley, D.J.; Febbraio, M.A. Effect of glycerol-induced hyperhydration on thermoregulation and metabolism during exercise in heat. Int. J. Sport Nutr. Exerc. Metab. 2001, 11, 315–333. [Google Scholar] [CrossRef] [PubMed]
- Marino, F.E.; Kay, D.; Cannon, J. Glycerol hyperhydration fails to improve endurance performance and thermoregulation in humans in a warm humid environment. Pflugers Arch. 2003, 446, 455–462. [Google Scholar] [CrossRef]
- Wingo, J.E.; Casa, D.J.; Berger, E.M.; Dellis, W.O.; Knight, J.C.; McClung, J.M. Influence of a Pre-Exercise Glycerol Hydration Beverage on Performance and Physiologic Function During Mountain-Bike Races in the Heat. J. Athl. Train. 2004, 39, 169–175. [Google Scholar] [PubMed]
- Coutts, A.; Reaburn, P.; Mummery, K.; Holmes, M. The effect of glycerol hyperhydration on olympic distance triathlon performance in high ambient temperatures. Int. J. Sport Nutr. Exerc. Metab. 2002, 12, 105–119. [Google Scholar] [CrossRef]
- Gigou, P.Y.; Dion, T.; Asselin, A.; Berrigan, F.; Goulet, E.D. Pre-exercise hyperhydration-induced bodyweight gain does not alter prolonged treadmill running time-trial performance in warm ambient conditions. Nutrients 2012, 4, 949–966. [Google Scholar] [CrossRef]
- Scheadler, C.; Garver, M.; Kirby, T.; Devor, T. Glycerol Hyperhydration and Endurance Running Performance in the Heat. J. Exerc. Physiol. Online 2010, 13, 1–11. [Google Scholar] [CrossRef] [Green Version]
- van Rosendal, S.P.; Osborne, M.A.; Fassett, R.G.; Coombes, J.S. Guidelines for glycerol use in hyperhydration and rehydration associated with exercise. Sports Med. 2010, 40, 113–129. [Google Scholar] [CrossRef] [PubMed]
- Latzka, W.A.; Sawka, M.N.; Montain, S.J.; Skrinar, G.A.; Fielding, R.A.; Matott, R.P.; Pandolf, K.B. Hyperhydration: Tolerance and cardiovascular effects during uncompensable exercise-heat stress. J. Appl. Physiol. 1998, 84, 1858–1864. [Google Scholar] [CrossRef]
- Morton, D.; Callister, R. Exercise-related transient abdominal pain (ETAP). Sports Med. 2015, 45, 23–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goulet, E.D. Review of the effects of glycerol-containing hyperhydration solutions on gastric emptying and intestinal absorption in humans and in rats. Int. J. Sport Nutr. Exerc. Metab. 2009, 19, 547–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noakes, T.D.; Rehrer, N.J.; Maughan, R.J. The importance of volume in regulating gastric emptying. Med. Sci. Sports Exerc. 1991, 23, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Skattebo, Ø.; Calbet, J.A.L.; Rud, B.; Capelli, C.; Hallén, J. Contribution of oxygen extraction fraction to maximal oxygen uptake in healthy young men. Acta Physiol. 2020, 230, e13486. [Google Scholar] [CrossRef]
- Savoie, F.-A.; Kenefick, R.W.; Ely, B.R.; Cheuvront, S.N.; Goulet, E.D.B. Effect of Hypohydration on Muscle Endurance, Strength, Anaerobic Power and Capacity and Vertical Jumping Ability: A Meta-Analysis. Sports Med. 2015, 45, 1207–1227. [Google Scholar] [CrossRef]
- Arngrïmsson, S.A.; Petitt, D.S.; Stueck, M.G.; Jorgensen, D.K.; Cureton, K.J. Cooling vest worn during active warm-up improves 5-km run performance in the heat. J. Appl. Physiol. 2004, 96, 1867–1874. [Google Scholar] [CrossRef] [Green Version]
- Barnes, K.R.; Kilding, A.E. Running economy: Measurement, norms, and determining factors. Sports Med. Open. 2015, 1, 8. [Google Scholar] [CrossRef] [Green Version]
- Roelands, B.; De Koning, J.; Foster, C.; Hettinga, F.; Meeusen, R. Neurophysiological determinants of theoretical concepts and mechanisms involved in pacing. Sports Med. 2013, 43, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Beedie, C.J.; Foad, A.J. The Placebo Effect in Sports Performance: A Brief Review. Sports Med. 2009, 39, 313–329. [Google Scholar] [CrossRef] [PubMed]
- Moran, D.S.; Mendal, L. Core temperature measurement: Methods and current insights. Sports Med. 2002, 32, 879–885. [Google Scholar] [CrossRef]
- Wilke, J.; Vogel, O.; Vogt, L. Why Are You Running and Does It Hurt? Pain, Motivations and Beliefs about Injury Prevention among Participants of a Large-Scale Public Running Event. Int J. Environ. Res. Public Health 2019, 16, 3766. [Google Scholar] [CrossRef] [PubMed]
Variables | EUH | GIH | p-Value |
---|---|---|---|
Body mass (kg) | 68.8 ± 8.8 | 69.1 ± 8.7 | 0.051 |
Urine specific gravity (g/mL) | 1.008 ± 0.004 | 1.013 ± 0.005 | 0.035 |
Urine osmolality (mOsmol/kg) | 391 ± 303 | 522 ± 282 | 0.066 |
Blood osmolality (mOsmol/kg) | 296.5 ± 5.9 | 297.6 ± 16.7 | 0.781 |
Blood natremia (mmol/L) * | 139.3 ± 2.3 | 139.7 ± 3.1 | 0.540 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jolicoeur Desroches, A.; Naulleau, C.; Deshayes, T.A.; Parent-Roberge, H.; Pancrate, T.; Goulet, E.D.B. Effect of Glycerol-Induced Hyperhydration on a 5-kilometer Running Time-Trial Performance in the Heat in Recreationally Active Individuals. Nutrients 2023, 15, 599. https://doi.org/10.3390/nu15030599
Jolicoeur Desroches A, Naulleau C, Deshayes TA, Parent-Roberge H, Pancrate T, Goulet EDB. Effect of Glycerol-Induced Hyperhydration on a 5-kilometer Running Time-Trial Performance in the Heat in Recreationally Active Individuals. Nutrients. 2023; 15(3):599. https://doi.org/10.3390/nu15030599
Chicago/Turabian StyleJolicoeur Desroches, Antoine, Catherine Naulleau, Thomas A. Deshayes, Hugo Parent-Roberge, Timothée Pancrate, and Eric D. B. Goulet. 2023. "Effect of Glycerol-Induced Hyperhydration on a 5-kilometer Running Time-Trial Performance in the Heat in Recreationally Active Individuals" Nutrients 15, no. 3: 599. https://doi.org/10.3390/nu15030599
APA StyleJolicoeur Desroches, A., Naulleau, C., Deshayes, T. A., Parent-Roberge, H., Pancrate, T., & Goulet, E. D. B. (2023). Effect of Glycerol-Induced Hyperhydration on a 5-kilometer Running Time-Trial Performance in the Heat in Recreationally Active Individuals. Nutrients, 15(3), 599. https://doi.org/10.3390/nu15030599