Relative Enhancement in Gadoxetate Disodium-Enhanced Liver MRI as an Imaging Biomarker in the Diagnosis of Non-Alcoholic Fatty Liver Disease in Pediatric Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Imaging Biomarkers
2.3. Statistical Analysis
2.4. Ethics
3. Results
4. Discussion
Study Limitations
- Due to the small sample size, the results should be interpreted with caution. Because of the multiple tests, the statistics dictate a Bonferroni correction for univariate linear regression analyses, with a p-value less than 0.0045 considered significant. Under this consideration, no results can be interpreted as significant due to the small sample size. Further prospective studies with larger sample sizes could confirm the study results.
- MRI is expensive and not always widely available, compared to ultrasound.
- RE assessment requires gadolinium methoxybenzyl-DTPA, so this method should be reserved only for pediatric patients with a clinical suspicion of NASH prior to liver biopsy.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uppal, V.; Mansoor, S.; Furuya, K.N. Pediatric Non-alcoholic Fatty Liver Disease. Curr. Gastroenterol. Rep. 2016, 18, 24. [Google Scholar] [CrossRef] [PubMed]
- Abstracts des Kongresses für Kinder- und Jugendmedizin 2022. Monatsschrift Kinderheilkunde 2022, 170, 277–385. [CrossRef]
- Marzuillo, P.; Del Giudice, E.M.; Santoro, N. Pediatric non-alcoholic fatty liver disease: New insights and future directions. World J. Hepatol. 2014, 6, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Stepanova, M.; Rafiq, N.; Makhlouf, H.; Younoszai, Z.; Agrawal, R.; Goodman, Z. Pathologic criteria for nonalcoholic steatohepatitis: Interprotocol agreement and ability to predict liver-related mortality. Hepatology 2011, 53, 1874–1882. [Google Scholar] [CrossRef]
- Schwimmer, J.B.; Behling, C.; Newbury, R.; Deutsch, R.; Nievergelt, C.; Schork, N.J.; Lavine, J.E. Histopathology of pediatric nonalcoholic fatty liver disease. Hepatology 2005, 42, 641–649. [Google Scholar] [CrossRef]
- Molleston, J.P.; White, F.; Teckman, J.; Fitzgerald, J.F. Obese children with steatohepatitis can develop cirrhosis in childhood. Am. J. Gastroenterol. 2002, 97, 2460–2462. [Google Scholar] [CrossRef]
- Angulo, P.; Kleiner, D.E.; Dam-Larsen, S.; Adams, L.A.; Bjornsson, E.S.; Charatcharoenwitthaya, P.; Mills, P.R.; Keach, J.C.; Lafferty, H.D.; Stahler, A.; et al. Liver Fibrosis, but No Other Histologic Features, Is Associated with Long-term Outcomes of Patients with Nonalcoholic Fatty Liver Disease. Gastroenterology 2015, 149, 389–397.e310. [Google Scholar] [CrossRef] [Green Version]
- Preiss, D.; Sattar, N. Non-alcoholic fatty liver disease: An overview of prevalence, diagnosis, pathogenesis and treatment considerations. Clin. Sci. 2008, 115, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Feldstein, A.E.; Charatcharoenwitthaya, P.; Treeprasertsuk, S.; Benson, J.T.; Enders, F.B.; Angulo, P. The natural history of non-alcoholic fatty liver disease in children: A follow-up study for up to 20 years. Gut 2009, 58, 1538–1544. [Google Scholar] [CrossRef] [Green Version]
- Rashid, M.; Roberts, E.A. Nonalcoholic steatohepatitis in children. J. Pediatr. Gastroenterol. Nutr. 2000, 30, 48–53. [Google Scholar] [CrossRef]
- Lischka, J.; Schanzer, A.; Hojreh, A.; Ba Ssalamah, A.; Item, C.B.; de Gier, C.; Walleczek, N.K.; Metz, T.F.; Jakober, I.; Greber-Platzer, S.; et al. A branched-chain amino acid-based metabolic score can predict liver fat in children and adolescents with severe obesity. Pediatr. Obes. 2020, 16, e12739. [Google Scholar] [CrossRef]
- Tiniakos, D.G.; Vos, M.B.; Brunt, E.M. Nonalcoholic fatty liver disease: Pathology and pathogenesis. Annu. Rev. Pathol. 2010, 5, 145–171. [Google Scholar] [CrossRef] [Green Version]
- Dezsofi, A.; Baumann, U.; Dhawan, A.; Durmaz, O.; Fischler, B.; Hadzic, N.; Hierro, L.; Lacaille, F.; McLin, V.A.; Nobili, V.; et al. Liver biopsy in children: Position paper of the ESPGHAN Hepatology Committee. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 408–420. [Google Scholar] [CrossRef] [Green Version]
- Vajro, P.; Lenta, S.; Socha, P.; Dhawan, A.; McKiernan, P.; Baumann, U.; Durmaz, O.; Lacaille, F.; McLin, V.; Nobili, V. Diagnosis of nonalcoholic fatty liver disease in children and adolescents: Position paper of the ESPGHAN Hepatology Committee. J. Pediatr. Gastroenterol. Nutr. 2012, 54, 700–713. [Google Scholar] [CrossRef]
- Widhalm, K.; Ghods, E. Nonalcoholic fatty liver disease: A challenge for pediatricians. Int. J. Obes. 2010, 34, 1451–1467. [Google Scholar] [CrossRef] [Green Version]
- Saadeh, S.; Younossi, Z.M.; Remer, E.M.; Gramlich, T.; Ong, J.P.; Hurley, M.; Mullen, K.D.; Cooper, J.N.; Sheridan, M.J. The utility of radiological imaging in nonalcoholic fatty liver disease. Gastroenterology 2002, 123, 745–750. [Google Scholar] [CrossRef]
- Patton, H.M.; Sirlin, C.; Behling, C.; Middleton, M.; Schwimmer, J.B.; Lavine, J.E. Pediatric nonalcoholic fatty liver disease: A critical appraisal of current data and implications for future research. J. Pediatr. Gastroenterol. Nutr. 2006, 43, 413–427. [Google Scholar] [CrossRef]
- Guiu, B.; Petit, J.M.; Loffroy, R.; Ben Salem, D.; Aho, S.; Masson, D.; Hillon, P.; Krause, D.; Cercueil, J.P. Quantification of liver fat content: Comparison of triple-echo chemical shift gradient-echo imaging and in vivo proton MR spectroscopy. Radiology 2009, 250, 95–102. [Google Scholar] [CrossRef]
- Sirlin, C.B. Invited commentary. Radiographics 2009, 29, 1277–1280. [Google Scholar] [CrossRef]
- Leoni, S.; Tovoli, F.; Napoli, L.; Serio, I.; Ferri, S.; Bolondi, L. Current guidelines for the management of non-alcoholic fatty liver disease: A systematic review with comparative analysis. World J. Gastroenterol. 2018, 24, 3361–3373. [Google Scholar] [CrossRef]
- Motosugi, U.; Ichikawa, T.; Sou, H.; Sano, K.; Tominaga, L.; Kitamura, T.; Araki, T. Liver parenchymal enhancement of hepatocyte-phase images in Gd-EOB-DTPA-enhanced MR imaging: Which biological markers of the liver function affect the enhancement? J. Magn. Reson. Imaging JMRI 2009, 30, 1042–1046. [Google Scholar] [CrossRef] [PubMed]
- Feier, D.; Balassy, C.; Bastati, N.; Stift, J.; Badea, R.; Ba-Ssalamah, A. Liver fibrosis: Histopathologic and biochemical influences on diagnostic efficacy of hepatobiliary contrast-enhanced MR imaging in staging. Radiology 2013, 269, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Bastati, N.; Feier, D.; Wibmer, A.; Traussnigg, S.; Balassy, C.; Tamandl, D.; Einspieler, H.; Wrba, F.; Trauner, M.; Herold, C.; et al. Noninvasive Differentiation of Simple Steatosis and Steatohepatitis by Using Gadoxetic Acid-enhanced MR Imaging in Patients with Nonalcoholic Fatty Liver Disease: A Proof-of-Concept Study. Radiology 2014, 271, 739–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 2016, 64, 1388–1402. [Google Scholar] [CrossRef] [PubMed]
- de Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef]
- WHO. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 29 October 2021).
- Österreichische Gesellschaft für Ultraschall in der Medizin. Standard Documentation of Sonography of the Child’s Abdomen. Available online: http://www.oegum.at/service/poster.html (accessed on 5 July 2020).
- Kukuk, G.M.; Schaefer, S.G.; Fimmers, R.; Hadizadeh, D.R.; Ezziddin, S.; Spengler, U.; Schild, H.H.; Willinek, W.A. Hepatobiliary magnetic resonance imaging in patients with liver disease: Correlation of liver enhancement with biochemical liver function tests. Eur. Radiol. 2014, 24, 2482–2490. [Google Scholar] [CrossRef]
- Pickhardt, P.J.; Graffy, P.M.; Reeder, S.B.; Hernando, D.; Li, K. Quantification of Liver Fat Content with Unenhanced MDCT: Phantom and Clinical Correlation with MRI Proton Density Fat Fraction. Am. J. Roentgenol. 2018, 211, W151–W157. [Google Scholar] [CrossRef]
- Wibmer, A.; Aliya, Q.; Steininger, R.; Trauner, M.; Maresch, J.; Muhlbacher, F.; Ba-Ssalamah, A. Liver transplantation: Impaired biliary excretion of gadoxate is associated with an inferior 1-year retransplantation-free survival. Investig. Radiol. 2012, 47, 353–358. [Google Scholar] [CrossRef]
- Wibmer, A.; Prusa, A.M.; Nolz, R.; Gruenberger, T.; Schindl, M.; Ba-Ssalamah, A. Liver failure after major liver resection: Risk assessment by using preoperative Gadoxetic acid-enhanced 3-T MR imaging. Radiology 2013, 269, 777–786. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available online: https://www.R-project.org/ (accessed on 1 December 2021).
- Pacifico, L.; Celestre, M.; Anania, C.; Paolantonio, P.; Chiesa, C.; Laghi, A. MRI and ultrasound for hepatic fat quantification:relationships to clinical and metabolic characteristics of pediatric nonalcoholic fatty liver disease. Acta Paediatr. 2007, 96, 542–547. [Google Scholar] [CrossRef]
- Fishbein, M.; Castro, F.; Cheruku, S.; Jain, S.; Webb, B.; Gleason, T.; Stevens, W.R. Hepatic MRI for fat quantitation: Its relationship to fat morphology, diagnosis, and ultrasound. J. Clin. Gastroenterol. 2005, 39, 619–625. [Google Scholar] [CrossRef]
- Ndrepepa, G.; Colleran, R.; Kastrati, A. Gamma-glutamyl transferase and the risk of atherosclerosis and coronary heart disease. Clin. Chim. Acta Int. J. Clin. Chem. 2018, 476, 130–138. [Google Scholar] [CrossRef]
- Bobrus-Chociej, A.; Flisiak-Jackiewicz, M.; Daniluk, U.; Wojtkowska, M.; Kłusek-Oksiuta, M.; Tarasów, E.; Lebensztejn, D. Estimation of gamma-glutamyl transferase as a suitable simple biomarker of the cardiovascular risk in children with non-alcoholic fatty liver disease. Acta Biochim. Pol. 2018, 65, 539–544. [Google Scholar] [CrossRef]
- Wu, Z.; Matsui, O.; Kitao, A.; Kozaka, K.; Koda, W.; Kobayashi, S.; Ryu, Y.; Minami, T.; Sanada, J.; Gabata, T. Usefulness of Gd-EOB-DTPA-enhanced MR imaging in the evaluation of simple steatosis and nonalcoholic steatohepatitis. J. Magn. Reson. Imaging JMRI 2013, 37, 1137–1143. [Google Scholar] [CrossRef]
Characteristics | Value (%) | Mean (±SD) | Median | Range |
---|---|---|---|---|
No. Patients | 68 | |||
Females (%) | 24 (35.3) | |||
Age (all patients, years) | 13.07 (2.95) | 13.2 | 1.9–17.8 | |
Body mass index (all patients) | 34.09 (7.16) | 32.15 | 22.6–56.3 | |
Body mass index z-score (all patients) | 2.74 (0.68) | 2.68 | 1.70–6.20 | |
No of US examinations | 74 | |||
No of MRI scans | 74 | |||
Gd-EOB-DTPA a-enhanced MRI scans (%) | 58 (78.4) | |||
Unenhanced MRI scans (%) | 16 (21.6) | |||
MRI scans under sedation (%) | 1 (1.35) | |||
Time interval between US and MRI (days) | 24 (33.35) | 10 | 0–145 | |
Time interval between US and blood sampling (days) | 0 | 0 | 0 | |
Time interval between MRI and blood sampling (days) | 0 | 0 | 0 |
Hepatic Fat Fraction Levels | ||||||
---|---|---|---|---|---|---|
no | mild | moderate | severe | |||
Value (%) | 30 (40.54%) | 12 (16.22%) | 20 (27.02%) | 12 (16.22%) | ||
Echogenicity levels | No | 12 (16.22%) | 12 | 0 | 0 | 0 |
Mild | 15 (20.27%) | 7 | 4 | 4 | 0 | |
Moderate | 32 (43.24%) | 11 | 8 | 8 | 5 | |
Severe | 15 (20.27%) | 0 | 0 | 8 | 7 |
Liver Size on US Images | Spleen Size on US Images | Liver Size on MR Images | Spleen Size on MR Images | ||||||
---|---|---|---|---|---|---|---|---|---|
AAL a in cm | MCL b in cm | LSL c in cm | Long Axis of the Spleen in cm | AAL in cm | MCL in cm | LSL in cm | Liver Volume in mL | Long Axis of the Spleen in cm | |
Total bilirubin | 0.067 | 0.147 | 0.023 | −0.037 | 0.215 | 0.264 | 0.129 | 0.214 | −0.042 |
Albumin | 0.328 | 0.153 | 0.001 | −0.145 | 0.175 | 0.089 | 0.242 | 0.185 | 0.055 |
Cholinesterase | −0.001 | 0.249 | 0.262 | 0.039 | 0.219 | 0.111 | 0.370 | 0.414 | 0.250 |
Alkaline phosphatase | −0.137 | −0.004 | −0.058 | −0.135 | −0.209 | −0.261 | −0.107 | −0.201 | −0.112 |
ASAT d | 0.221 | 0.290 | 0.187 | −0.220 | 0.283 | 0.104 | 0.208 | 0.243 | −0.104 |
ALAT e | 0.257 | 0.362 | 0.249 | 0.193 | 0.341 | 0.247 | 0.338 | 0.392 | 0.017 |
GGT f | 0.239 | 0.333 | 0.287 | 0.003 | 0.335 | 0.107 | 0.258 | 0.430 | 0.090 |
Ferritin | 0.068 | 0.151 | 0.090 | −0.097 | 0.222 | 0.111 | 0.119 | 0.192 | −0.041 |
Lipase | 0.045 | 0.154 | −0.110 | −0.016 | 0.002 | −0.071 | 0.129 | 0.010 | −0.103 |
LDH g | 0.154 | 0.188 | −0.004 | −0.288 | 0.022 | −0.051 | −0.092 | −0.046 | −0.311 |
BMI h | 0.162 | 0.247 | 0.283 | 0.363 | 0.276 | 0.447 | 0.154 | 0.481 | 0.365 |
BMI z-score | −0.070 | 0.044 | 0.092 | 0.203 | −0.007 | 0.196 | −0.062 | 0.183 | 0.151 |
CRP i | 0.094 | −0.033 | 0.087 | 0.360 | 0.090 | 0.166 | −0.187 | 0.029 | 0.043 |
Spleen size * (on US or MRI, respectively) | 0.261 | 0.347 | 0.205 | 1 | 0.534 | 0.557 | 0.553 | 0.604 | 1 |
US Images of the Whole Study Sample | MR Images of the Whole Study Sample | MR Images of the Subgroup with RE f < 1 | |||||
---|---|---|---|---|---|---|---|
Hepatic Steatosis Grade Based on Echogenicity | Hepatic Steatosis Grade Based on Hepatic Fat Fraction | Hepatic Fat Fraction (Absolute Measured Value) | Relative Enhancement | Hepatic Steatosis Grade Based on Hepatic Fat Fraction | Hepatic Fat Fraction (Absolute Measured Value) | Relative Enhancement | |
Total bilirubin | 0.007 | 0.079 | −0.000 | 0.035 | 0.106 | −0.002 | −0.213 |
Albumin | 0.280 | 0.249 | 0.251 | −0.291 | −0.175 | −0.082 | −0.106 |
Cholinesterase | 0.517 | 0.367 | 0.353 | 0.071 | 0.465 | 0.461 | −0.288 |
Alkaline phosphatase | 0.057 | 0.190 | 0.216 | 0.008 | 0.337 | 0.381 | 0.066 |
ASAT a | 0.452 | 0.544 | 0.507 | 0.032 | 0.502 | 0.535 | −0.311 |
ALAT b | 0.543 | 0.627 | 0.628 | 0.149 | 0.682 | 0.756 | −0.261 |
GGT c | 0.412 | 0.368 | 0.421 | 0.054 | 0.128 | 0.210 | −0.322 |
Ferritin | 0.292 | 0.391 | 0.393 | 0.003 | 0.635 | 0.637 | −0.058 |
Lipase | 0.165 | 0.162 | 0.139 | 0.299 | −0.706 | −0.771 | 0.618 |
LDH d | 0.151 | 0.345 | 0.334 | −0.105 | 0.452 | 0.418 | −0.244 |
CRP e | −0.045 | 0.077 | 0.044 | 0.033 | −0.308 | −0.309 | 0.103 |
Spleen size * | 0.100 | 0.134 | 0.091 | −0.052 | −0.099 | −0.023 | −0.173 |
Whole Study Sample (n = 58) | Sample with an RE < 1 (n = 19) | |||||||
---|---|---|---|---|---|---|---|---|
Beta | 95% CI h | p | Beta | 95% CI | p | |||
LL i | UL j | LL | UL | |||||
HFF a | 0.001 | −0.004 | 0.007 | 0.687 | −0.006 | −0.011 | −0.000 | 0.059 |
Total bilirubin | −0.005 | −0.272 | 0.263 | 0.973 | 0.051 | −0.220 | 0.321 | 0.718 |
Albumin | −0.028 | −0.055 | −0.001 | 0.045 | −0.016 | −0.057 | 0.025 | 0.446 |
Cholinesterase | −0.003 | −0.043 | 0.038 | 0.902 | −0.078 | −0.163 | 0.008 | 0.100 |
Alkaline phosphatase | −0.000 | −0.001 | 0.001 | 0.979 | 0.000 | −0.001 | 0.001 | 0.749 |
ASAT b | −0.000 | −0.003 | 0.002 | 0.790 | −0.003 | −0.008 | 0.002 | 0.288 |
ALAT c | 0.000 | −0.001 | 0.001 | 0.856 | −0.001 | −0.004 | 0.001 | 0.409 |
GGT d | −0.000 | −0.001 | 0.001 | 0.731 | −0.010 | −0.018 | −0.002 | 0.033 |
Ferritin | 0.001 | −0.000 | 0.002 | 0.113 | 0.001 | −0.002 | 0.003 | 0.677 |
LDH e | −0.000 | −0.001 | 0.000 | 0.309 | −0.000 | −0.001 | 0.001 | 0.813 |
CRP f | 0.040 | −0.080 | 0.161 | 0.513 | −0.002 | −0.240 | 0.237 | 0.990 |
Spleen size | −0.023 | −0.062 | 0.016 | 0.253 | −0.031 | −0.072 | 0.011 | 0.163 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hojreh, A.; Lischka, J.; Tamandl, D.; Ramazanova, D.; Mulabdic, A.; Greber-Platzer, S.; Ba-Ssalamah, A. Relative Enhancement in Gadoxetate Disodium-Enhanced Liver MRI as an Imaging Biomarker in the Diagnosis of Non-Alcoholic Fatty Liver Disease in Pediatric Obesity. Nutrients 2023, 15, 558. https://doi.org/10.3390/nu15030558
Hojreh A, Lischka J, Tamandl D, Ramazanova D, Mulabdic A, Greber-Platzer S, Ba-Ssalamah A. Relative Enhancement in Gadoxetate Disodium-Enhanced Liver MRI as an Imaging Biomarker in the Diagnosis of Non-Alcoholic Fatty Liver Disease in Pediatric Obesity. Nutrients. 2023; 15(3):558. https://doi.org/10.3390/nu15030558
Chicago/Turabian StyleHojreh, Azadeh, Julia Lischka, Dietmar Tamandl, Dariga Ramazanova, Amra Mulabdic, Susanne Greber-Platzer, and Ahmed Ba-Ssalamah. 2023. "Relative Enhancement in Gadoxetate Disodium-Enhanced Liver MRI as an Imaging Biomarker in the Diagnosis of Non-Alcoholic Fatty Liver Disease in Pediatric Obesity" Nutrients 15, no. 3: 558. https://doi.org/10.3390/nu15030558
APA StyleHojreh, A., Lischka, J., Tamandl, D., Ramazanova, D., Mulabdic, A., Greber-Platzer, S., & Ba-Ssalamah, A. (2023). Relative Enhancement in Gadoxetate Disodium-Enhanced Liver MRI as an Imaging Biomarker in the Diagnosis of Non-Alcoholic Fatty Liver Disease in Pediatric Obesity. Nutrients, 15(3), 558. https://doi.org/10.3390/nu15030558