Grazing Prevalence and Associations with Eating and General Psychopathology, Body Mass Index, and Quality of Life in a Middle-Income Country
Abstract
:1. Introduction
2. Method
2.1. Participants and Design
2.2. Procedure
3. Measures
3.1. Sociodemographics
3.2. Anthropometrics
3.3. Short Inventory of Grazing (SIG)
3.4. Questionnaire on Eating and Weight Patterns-5 (QEWP-5)
3.5. Patient Health Questionnaire-9 (PHQ-9)
3.6. Generalised Anxiety Disorder-7 (GAD-7)
3.7. 12-Item Short-Form Health Survey (SF-12)
4. Statistical Analyses
5. Results
5.1. Sociodemographic Characteristics
5.2. Grazing and Sociodemographic Characteristics
5.3. Grazing and BMI
5.4. Grazing and Eating Disorders
5.5. Grazing and Eating Disorder Symptomatology
5.6. Grazing and Psychological Difficulties
5.7. Grazing and HRQoL
6. Discussion
7. Clinical and Public Health Implications
8. Limitations and Strengths
9. Future Directions
10. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galmiche, M.; Déchelotte, P.; Lambert, G.; Tavolacci, M.P. Prevalence of eating disorders over the 2000–2018 period: A systematic literature review. Am. J. Clin. Nutr. 2019, 109, 1402–1413. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Arlington, VA, USA, 2013. [Google Scholar] [CrossRef]
- Van Hoeken, D.; Hoek, H.W. Review of the burden of eating disorders: Mortality, disability, costs, quality of life, and family burden. Curr. Opin. Psychiatry 2020, 33, 521–527. [Google Scholar] [CrossRef]
- World Health Organisation. International Statistical Classification of Diseases and Related Health Problems (11th ed.). 2019. Available online: https://icd.who.int/ (accessed on 12 December 2022).
- Heriseanu, A.I.; Hay, P.; Corbit, L.; Touyz, S. Grazing in adults with obesity and eating disorders: A systematic review of associated clinical features and meta-analysis of prevalence. Clin. Psychol. Rev. 2017, 58, 16–32. [Google Scholar] [CrossRef] [PubMed]
- Conceição, E.M.; Mitchell, J.E.; Engel, S.G.; Machado, P.; Lancaster, K.; Wonderlich, S.A. What is “grazing”? Reviewing its definition, frequency, clinical characteristics, and impact on bariatric surgery outcomes, and proposing a standardized definition. Surg. Obes. Relat. Dis. 2014, 10, 973–982. [Google Scholar] [CrossRef] [PubMed]
- Heriseanu, A.I.; Hay, P.; Touyz, S. The short inventory of grazing (SIG): Development and validation of a new brief measure of a common eating behaviour with a compulsive dimension. J. Eat. Disord. 2019, 7, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Reas, D.L.; Wisting, L.; Kapstad, H.; Lask, B. Nibbling: Frequency and relationship to BMI, pattern of eating, and shape, weight, and eating concerns among university women. Eat. Behav. 2012, 13, 65–66. [Google Scholar] [CrossRef]
- Heriseanu, A.I.; Hay, P.; Touyz, S. Grazing behaviour and associations with obesity, eating disorders, and health-related quality of life in the Australian population. Appetite 2019, 143, 104396. [Google Scholar] [CrossRef]
- Conceição, E.M.; Mitchell, J.E.; Machado, P.P.; Vaz, A.R.; Pinto-Bastos, A.; Ramalho, S.; Brandão, I.; Simões, J.B.; de Lourdes, M.; Freitas, A.C. Repetitive eating questionnaire [Rep(eat)-Q]: Enlightening the concept of grazing and psychometric properties in a Portuguese sample. Appetite 2017, 117, 351–358. [Google Scholar] [CrossRef]
- Reas, D.L.; Dahlgren, C.L.; Wonderlich, J.; Syversen, G.; Kvalem, I.L. Confirmatory factor analysis and psychometric properties of the Norwegian version of the Repetitive Eating Questionnaire: Further evidence for two distinct subtypes of grazing behaviour. Eur. Eat. Disord. Rev. 2018, 27, 205–211. [Google Scholar] [CrossRef]
- Goodpaster, K.P.; Marek, R.; Lavery, M.E.; Ashton, K.; Rish, J.M.; Heinberg, L.J. Graze eating among bariatric surgery candidates: Prevalence and psychosocial correlates. Surg. Obes. Relat. Dis. 2016, 12, 1091–1097. [Google Scholar] [CrossRef] [PubMed]
- Darby, A.; Hay, P.; Mond, J.; Quirk, F.; Buttner, P.; Kennedy, L. The rising prevalence of comorbid obesity and eating disorder behaviors from 1995 to 2005. Int. J. Eat. Disord. 2009, 42, 104–108. [Google Scholar] [CrossRef]
- Appolinario, J.C.; Sichieri, R.; Lopes, C.S.; Moraes, C.E.; da Veiga, G.V.; Freitas, S.; Nunes, M.A.A.; Wang, Y.-P.; Hay, P. Correlates and impact of DSM-5 binge eating disorder, bulimia nervosa and recurrent binge eating: A representative population survey in a middle-income country. Soc. Psychiatry Psychiatr. Epidemiol. 2022, 57, 1491–1503. [Google Scholar] [CrossRef]
- De Moraes, C.E.F.; Heriseanu, A.; Mourilhe, C.; Faller, A.L.; Hay, P.; Appolinario, J.C. Validation of the Brazilian version of the Short Inventory of Grazing (SIG). Trends Psychiatry Psychother. 2022, 43, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Yanovski, S.Z.; Marcus, M.D.; Wadden, T.A.; Walsh, B.T. The Questionnaire on Eating and Weight Patterns-5: An updated screening instrument for binge eating disorder. Int. J. Eat. Disord. 2014, 48, 259–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Moraes, C.E.F.; Mourilhe, C.; De Freitas, S.R.; Da Veiga, G.V.; Marcus, M.D.; Appolinário, J.C. Cross-cultural adaptation of the Brazilian version of the Questionnaire on Eating and Weight Patterns-5 (QEWP-5). Trends Psychiatry Psychother. 2020, 42, 39–47. [Google Scholar] [CrossRef] [Green Version]
- De Moraes, C.E.F.; Appolinário, J.C.; Mourilhe, C.; de Freitas, S.R.; da Veiga, G.V. Reliability of the Brazilian version of the questionnaire on eating and weight patterns-5 (QEWP-5). Eat. Weight. Disord.-Stud. Anorex. Bulim. Obes. 2021, 26, 2463–2470. [Google Scholar] [CrossRef] [PubMed]
- De Moraes, C.E.F.; Mourilhe, C.; da Veiga, G.V.; de Freitas, S.R.; Luiz, R.R.; Hay, P.; Appolinario, J.C. Concurrent validity of the Brazilian Portuguese version of the Questionnaire on Eating and Weight Patterns-5 (QEWP-5) in the general population. Eat. Behav. 2021, 43, 101571. [Google Scholar] [CrossRef] [PubMed]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.; Patient Health Questionnaire Primary Care Study Group. Validation and utility of a self-report version of PRIME-MD: The PHQ primary care study. JAMA 1999, 282, 1737–1744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraguas, R.; Henriques, S.G.; De Lucia, M.S.; Iosifescu, D.V.; Schwartz, F.H.; Menezes, P.; Gattaz, W.F.; Martins, M.A. The detection of depression in medical setting: A study with PRIME-MD. J. Affect. Disord. 2006, 91, 11–17. [Google Scholar] [CrossRef]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2011, 16, 606–613. [Google Scholar] [CrossRef]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.W.; Löwe, B. A brief measure for assessing generalized anxiety disorder: The GAD-7. Arch. Intern. Med. 2006, 166, 1092–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, A.L.; DeSousa, D.A.; Souza, A.M.F.L.P.; Manfro, G.G.; Salum, G.A.; Koller, S.H.; Osório, F.L.; Crippa, J.A.S. Factor Structure, Reliability, and Item Parameters of the Brazilian-Portuguese Version of the GAD-7 Questionnaire. Temas Psicol. 2016, 24, 367–376. [Google Scholar] [CrossRef] [Green Version]
- Ware, J., Jr.; Kosinski, M.; Keller, S.D. A 12-Item Short-Form Health Survey: Construction of scales and preliminary tests of reliability and validity. Med. Care 1996, 34, 220–233. [Google Scholar] [CrossRef] [Green Version]
- Silveira, M.F.; Almeida, J.C.; Freire, R.S.; Haikal, D.S.; Martins, A.E.D.B.L. Propriedades psicométricas do instrumento de avaliação da qualidade de vida: 12-item health survey (SF-12). Ciência Saúde Coletiva 2013, 18, 1923–1931. [Google Scholar] [CrossRef]
- Chen, H.; Cohen, P.; Chen, S. How Big is a Big Odds Ratio? Interpreting the Magnitudes of Odds Ratios in Epidemiological Studies. Commun. Stat.-Simul. Comput. 2010, 39, 860–864. [Google Scholar] [CrossRef]
- Karanja, A.; Ickowitz, A.; Stadlmayr, B.; McMullin, S. Understanding drivers of food choice in low- and middle-income countries: A systematic mapping study. Glob. Food Secur. 2022, 32, 100615. [Google Scholar] [CrossRef]
- Marsola, C.D.M.; Cunha, L.M.; De Carvalho-Ferreira, J.P.; Da Cunha, D.T. Factors Underlying Food Choice Motives in a Brazilian Sample: The Association with Socioeconomic Factors and Risk Perceptions about Chronic Diseases. Foods 2020, 9, 1114. [Google Scholar] [CrossRef] [PubMed]
- Mulders-Jones, B.; Mitchison, D.; Girosi, F.; Hay, P. Socioeconomic Correlates of Eating Disorder Symptoms in an Australian Population-Based Sample. PLoS ONE 2017, 12, e0170603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Australian Institute of Health and Welfare. Risk Factors to Health. 2017. Available online: https://www.aihw.gov.au/reports/risk-factors/risk-factors-to-health (accessed on 12 December 2022).
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 18 October 2022).
- Conde, W.L.; da Silva, I.V.; Ferraz, F.R. Undernutrition and obesity trends in Brazilian adults from 1975 to 2019 and its associated factors. Cad. Saúde Pública 2022, 38, e00149721. [Google Scholar] [CrossRef] [PubMed]
- Levinson, C.A.; Spoor, S.P.; Keshishian, A.C.; Pruitt, A. Pilot outcomes from a multidisciplinary telehealth versus in-person intensive outpatient program for eating disorders during versus before the COVID-19 pandemic. Int. J. Eat. Disord. 2021, 54, 1672–1679. [Google Scholar] [CrossRef]
- Steinberg, D.; Perry, T.; Freestone, D.; Bohon, C.; Baker, J.H.; Parks, E. Effectiveness of delivering evidence-based eating disorder treatment via telemedicine for children, adolescents, and youth. Eat. Disord. 2022, 31, 85–101. [Google Scholar] [CrossRef] [PubMed]
- Catania, J.; Spirou, D.; Gascoigne, M.; Raman, J. Loss of control as a transdiagnostic feature in obesity-related eating behaviours: A systematic review. Eur. Eat. Disord. Rev. 2022, 31, 24–45. [Google Scholar] [CrossRef] [PubMed]
- De Souza, M.L.P.; Caranha, N.P.; Herkrath, F.J. The role of rurality on factors associated with major depressive episode screening among Brazilian adults in a national household survey. Int. J. Soc. Psychiatry 2021, 68, 762–772. [Google Scholar] [CrossRef] [PubMed]
- Field, A. Discovering Statistics Using IBM SPSS Statistics, 5th ed.; Sage: Thousand Oaks, CA, USA, 2017. [Google Scholar]
- Raman, J.; Spirou, D.; Jahren, L.; Eik-Nes, T.T. The Clinical Obesity Maintenance Model: A Theoretical Framework for Bariatric Psychology. Front. Endocrinol. 2020, 11, 563. [Google Scholar] [CrossRef]
- Spirou, D.; Smith, E.; Wood, K.; Raman, J. The clinical obesity maintenance model: A structural equation model. Eat. Weight. Disord.-Stud. Anorex. Bulim. Obes. 2020, 26, 1927–1937. [Google Scholar] [CrossRef]
Variable | NG (n = 1371) | NCG (n = 679) | CG (n = 239) | CG vs. NG | NCG vs. NG | CG vs. NCG | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
n | % | 95% CI | n | % | 95% CI | n | % | 95% CI | p | p | p | |
Gender | <0.001 | 0.269 | <0.001 | |||||||||
Women | 803 | 48.3 | [44.4, 52.3] | 423 | 51.7 | [47.4, 55.9] | 176 | 71.9 | [66.0, 77.0] | |||
Men | 568 | 51.7 | [47.7, 55.6] | 256 | 48.3 | [44.1, 52.6] | 63 | 28.1 | [23.0, 34.0] | |||
Age | 0.007 | 0.009 | 0.711 | |||||||||
18–30 years | 294 | 28.4 | [24.2, 33.0] | 197 | 37.5 | [31.7, 43.8] | 76 | 40.6 | [34.9, 46.6] | |||
31–45 years | 480 | 38.1 | [33.6, 42.8] | 229 | 34.0 | [29.2, 39.1] | 87 | 33.4 | [27.4, 40.1] | |||
46–60 years | 597 | 33.5 | [29.8, 37.5] | 253 | 28.5 | [24.7, 32.5] | 76 | 25.9 | [20.9, 31.7] | |||
Race/ethnicity | 0.477 | 0.566 | 0.126 | |||||||||
White | 535 | 37.0 | [33.1, 41.0] | 288 | 39.2 | [33.1, 45.6] | 81 | 33.4 | [26.6, 40.9] | |||
Black | 240 | 19.8 | [16.0, 24.1] | 109 | 17.1 | [13.6, 21.3] | 52 | 24.6 | [18.9, 31.2] | |||
Mixed | 596 | 43.2 | [39.9, 46.7] | 282 | 43.7 | [38.3, 49.2] | 106 | 42.0 | [32.7, 52.0] | |||
Marital status | 0.071 | 0.355 | 0.333 | |||||||||
Single | 497 | 34.3 | [30.3, 38.4] | 263 | 37.1 | [31.7, 43.0] | 100 | 43.1 | [33.6, 53.2] | |||
Married | 660 | 54.9 | [51.0, 58.7] | 330 | 54.3 | [48.8, 59.7] | 110 | 49.9 | [40.9, 59.1] | |||
Widow/divorced | 214 | 10.9 | [9.1, 12.9] | 86 | 8.6 | [6.5, 11.2] | 29 | 6.9 | [4.6, 10.3] | |||
Education | 0.121 | 0.483 | 0.294 | |||||||||
0–10 years | 520 | 37.0 | [31.4, 42.9] | 246 | 34.8 | [28.5, 41.8] | 93 | 39.2 | [32.0, 46.9] | |||
11–14 years | 570 | 44.6 | [39.9, 49.4] | 303 | 48.9 | [43.4, 54.5] | 114 | 49.2 | [41.7, 56.8] | |||
>15 years | 281 | 18.5 | [14.8, 22.8] | 130 | 16.3 | [11.9, 21.9] | 32 | 11.6 | [7.7, 17.1] | |||
Employment status | <0.001 | 0.008 | 0.004 | |||||||||
Student | 48 | 5.4 | [3.5, 8.2] | 42 | 8.4 | [6.1, 11.6] | 18 | 10.2 | [6.1, 16.7] | |||
Paid employment | 916 | 69.2 | [65.8, 72.5] | 413 | 59.2 | [52.7, 65.4] | 117 | 42.7 | [35.9. 49.8] | |||
NIP employment | 334 | 21.9 | [18.8, 25.3] | 198 | 30.0 | [24.3, 36.5] | 90 | 40.6 | [34.4, 47.2] | |||
Retired | 69 | 3.5 | [2.5, 4.9] | 26 | 2.3 | [24.3, 36.5] | 14 | 6.4 | [3.6, 11.3] | |||
Income | 0.098 | <0.001 | 0.173 | |||||||||
Up to R$1000 | 263 | 17.9 | [14.6, 21.8] | 186 | 34.5 | [26.9, 43.1] | 55 | 29.0 | [19.5, 40.8] | |||
R$1001–3000 | 578 | 55.6 | [50.3, 60.8] | 228 | 39.8 | [32.4, 47.8] | 111 | 49.8 | [41.2, 58.4] | |||
>R$3000 | 300 | 26.5 | [21.1, 32.6] | 135 | 25.6 | [20.1, 32.1] | 40 | 21.2 | [13.6, 31.5] | |||
BMI class | <0.001 | 0.554 | <0.001 | |||||||||
Underweight | 29 | 2.8 | [1.5, 5.2] | 25 | 4.0 | [2.3, 6.8] | 8 | 7.9 | [3.3., 17.9] | |||
Normal weight | 434 | 33.9 | [28.9, 39.2] | 204 | 31.4 | [26.1, 37.2] | 47 | 20.5 | [15.1, 27.3] | |||
Overweight | 503 | 36.6 | [33.5, 39.9] | 258 | 40.7 | [32.8, 49.1] | 60 | 24.0 | [18.8, 30.1] | |||
Obesity | 336 | 26.6 | [23.2, 30.3] | 158 | 24.0 | [18.9, 30.0] | 111 | 47.5 | [41.3, 53.9] | |||
Obesity class | 0.006 | 0.522 | 0.206 | |||||||||
Class I | 215 | 65.9 | [57.0, 73.8] | 98 | 65.3 | [55.6, 73.8] | 69 | 52.8 | [36.8, 68.2] | |||
Class II | 84 | 24.6 | [18.1, 32.6] | 37 | 21.5 | [14.1, 31.4] | 21 | 24.3 | [14.4, 38.0] | |||
Class III | 37 | 9.5 | [6.6, 13.4] | 23 | 13.2 | [8.3, 20.3] | 21 | 22.9 | [15.2, 33.0] | |||
NG | NCG | CG | ||||||||||
M (SE) | 95% CI | M (SE) | 95% CI | M (SE) | 95% CI | |||||||
Age | 39.32 (0.56) | [38.20, 40.43] | 36.49 (0.70) | [35.10, 37.88] | 36.29 (0.68) | [34.95, 37.62] | <0.001 | <0.001 | 0.846 | |||
BMI | 27.38 (0.26) | [26.87, 27.90] | 27.24 (0.29) | [26.67, 27.80] | 29.86 (0.58) | [28.71, 31.00] | <0.001 | 0.690 | <0.001 |
Variable | NG (n = 1371) | NCG (n = 679) | CG (n = 239) | CG vs. NG | NCG vs. NG | CG vs. NCG | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
n (%) | n (%) | n (%) | OR | 95% CI | p | OR | 95% CI | p | OR | 95% CI | p | |
Eating disorders | ||||||||||||
BED | 11 (1.0) | 3 (0.3) | 15 (6.8) | 6.99 | [2.04, 23.94] | <0.001 | 0.31 | [0.07, 1.38] | 0.104 | 22.36 | [5.65, 88.55] | <0.001 |
BN | 3 (0.1) | 2 (0.4) | 12 (5.6) | 71.46 | [14.72, 347.02] | <0.001 | 4.64 | [0.71, 30.19] | 0.077 | 15.40 | [2.73, 86.95] | <0.001 |
Disordered eating behaviours | ||||||||||||
OBE | 55 (4.6) | 43 (6.7) | 72 (28.9) | 8.47 | [3.98, 18.03] | <0.001 | 1.50 | [0.90, 2.50] | 0.113 | 5.64 | [2.89, 11.02] | <0.001 |
SBE | 91 (5.9) | 112 (19.6) | 92 (42.1) | 11.48 | [7.04, 18.72] | <0.001 | 3.87 | [2.62, 5.70] | <0.001 | 2.97 | [1.88, 4.69] | <0.001 |
Compensatory behaviours | ||||||||||||
OBE | 53 (27.6) | 9 (53.9) | 5 (41.6) | 1.87 | [0.33, 10.57] | 0.469 | 3.07 | [0.44, 21.31] | 0.240 | 0.61 | [0.38, 0.98] | 0.042 * |
SBE | 16 (14.5) | 16 (13.7) | 24 (33.9) | 3.04 | [1.27, 7.25] | 0.011 | 0.94 | [0.29, 3.07] | 0.917 | 3.23 | [1.45, 7.23] | 0.004 |
Body evaluation | ||||||||||||
Wg/Sh | 431 (30.5) | 296 (45.6) | 127 (51.8) | 2.45 | [1.67, 3.60] | <0.001 | 1.91 | [1.45, 2.51] | <0.001 | 1.28 | [0.94, 1.75] | 0.115 |
Dissat | 376 (25.5) | 243 (35.9) | 148 (57.9) | 4.03 | [2.82, 5.76] | <0.001 | 1.64 | [1.13, 2.38] | 0.010 | 2.46 | [1.76, 3.42] | <0.001 |
Variable | NG (n = 1371) | NCG (n = 679) | CG (n = 239) | CG vs. NG | NCG vs. NG | CG vs. NCG | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
n (%) | n (%) | n (%) | OR | 95% CI | p | OR | 95% CI | p | OR | 95% CI | p | |
Depression | 103 (6.5) | 90 (11.1) | 85 (37.8) | 8.74 | [5.83, 13.09 | <0.001 | 1.80 | [1.15, 2.80] | 0.010 * | 4.87 | [3.00, 7.90] | <0.001 |
Anxiety | 99 (6.7) | 104 (13.1) | 88 (37.1) | 8.22 | [4.60, 14.67] | <0.001 | 2.10 | [1.32, 3.32] | 0.002 | 3.92 | [2.50, 6.16] | <0.001 |
Variable | NG (n = 1371) | NCG (n = 679) | CG (n = 239) | CG vs. NG | NCG vs. NG | CG vs. NCG | |||
---|---|---|---|---|---|---|---|---|---|
M (SE) | 95% CI | M (SE) | 95% CI | M (SE) | 95% CI | p | p | p | |
PCS | 54.20 (0.25) | [53.72, 54.69] | 53.64 (0.41) | [52.82, 54.46] | 50.75 (0.65) | [49.47, 52.03] | <0.001 | 0.178 | <0.001 |
MCS | 48.23 (0.36) | [47.52, 48.94] | 44.85 (0.45) | [43.96, 45.76] | 39.33 (0.97) | [37.41, 41.25] | <0.001 | <0.001 | <0.001 |
Overall | 102.43 (0.49) | [101.46, 103.41] | 98.50 (0.70) | [97.11, 99.88] | 90.08 (0.92) | [88.26, 91.91] | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spirou, D.; Heriseanu, A.I.; Sichieri, R.; Hay, P.; Moraes, C.E.; Appolinario, J.C. Grazing Prevalence and Associations with Eating and General Psychopathology, Body Mass Index, and Quality of Life in a Middle-Income Country. Nutrients 2023, 15, 557. https://doi.org/10.3390/nu15030557
Spirou D, Heriseanu AI, Sichieri R, Hay P, Moraes CE, Appolinario JC. Grazing Prevalence and Associations with Eating and General Psychopathology, Body Mass Index, and Quality of Life in a Middle-Income Country. Nutrients. 2023; 15(3):557. https://doi.org/10.3390/nu15030557
Chicago/Turabian StyleSpirou, Dean, Andreea I. Heriseanu, Rosely Sichieri, Phillipa Hay, Carlos E. Moraes, and Jose C. Appolinario. 2023. "Grazing Prevalence and Associations with Eating and General Psychopathology, Body Mass Index, and Quality of Life in a Middle-Income Country" Nutrients 15, no. 3: 557. https://doi.org/10.3390/nu15030557
APA StyleSpirou, D., Heriseanu, A. I., Sichieri, R., Hay, P., Moraes, C. E., & Appolinario, J. C. (2023). Grazing Prevalence and Associations with Eating and General Psychopathology, Body Mass Index, and Quality of Life in a Middle-Income Country. Nutrients, 15(3), 557. https://doi.org/10.3390/nu15030557