Sodium Intake and Disease: Another Relationship to Consider
Abstract
:1. Introduction
2. The Drive to Consume Sodium and Salt Taste
2.1. Sodium Appetite
2.2. Salt Preference and Taste
3. Neural and Hormonal Control of Sodium Intake
3.1. Neural Circuitry Mediating Sodium Appetite
3.2. Endocrine Mediators of Sodium Appetite
3.3. Gustatory Mediation of Sodium Appetite
4. Neural and Hormonal Control of Blood-Pressure
4.1. Neural Circuitry Underlying Blood-Pressure Control
4.2. Endocrine Mediators of Blood-Pressure Control
5. Mechanisms Underlying Integration of Cardiovascular Homeostasis and Salt Intake
6. Stress-Induced Dysregulation of Salt Intake
6.1. Psychological Stress
6.2. Obesity
6.3. Hypertension
7. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, B.; Yan, J.; Yang, X. Effects of sodium depletion on detection thresholds for salty taste in rats. Physiol. Behav. 2009, 97, 463–469. [Google Scholar] [CrossRef]
- Berridge, K.C.; Flynn, F.W.; Schulkin, J.; Grill, H.J. Sodium depletion enhances salt palatability in rats. Behav. Neurosci. 1984, 98, 652–660. [Google Scholar] [CrossRef] [PubMed]
- Intersalt Cooperative Research Group. Intersalt: An international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. Intersalt Cooperative Research Group. BMJ 1988, 297, 319–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denton, D.; Weisinger, R.; Mundy, N.I.; Wickings, E.J.; Dixson, A.; Moisson, P.; Pingard, A.M.; Shade, R.; Carey, D.; Ardaillou, R. The effect of increased salt intake on blood pressure of chimpanzees. Nat. Med. 1995, 1, 1009–1016. [Google Scholar] [CrossRef] [PubMed]
- Walkowska, A.; Kuczeriszka, M.; Sadowski, J.; Olszyñski, K.H.; Dobrowolski, L.; Červenka, L.; Hammock, B.D.; Kompanowska-Jezierska, E. High salt intake increases blood pressure in normal rats: Putative role of 20-HETE and no evidence on changes in renal vascular reactivity. Kidney Blood Press. Res. 2015, 40, 323–334. [Google Scholar] [CrossRef]
- Yu, Q.; Larson, D.F.; Slayback, D.; Lundeen, T.F.; Baxter, J.H.; Watson, R.R. Characterization of high-salt and high-fat diets on cardiac and vascular function in mice. Cardiovasc. Toxicol. 2004, 4, 37–46. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Fahimi, S.; Singh, G.M.; Micha, R.; Khatibzadeh, S.; Engell, R.E.; Lim, S.; Danaei, G.; Ezzati, M.; Powles, J. Global Burden of Diseases Nutrition and Chronic Diseases Expert Group Global sodium consumption and death from cardiovascular causes. N. Engl. J. Med. 2014, 371, 624–634. [Google Scholar] [CrossRef] [Green Version]
- Sakaki, M.; Tsuchihashi, T.; Arakawa, K. Characteristics of the hypertensive patients with good and poor compliance to long-term salt restriction. Clin. Exp. Hypertens. 2014, 36, 92–96. [Google Scholar] [CrossRef]
- Ohta, Y.; Ohta, K.; Ishizuka, A.; Hayashi, S.; Kishida, M.; Iwashima, Y.; Yoshihara, F.; Nakamura, S.; Kawano, Y. Awareness of salt restriction and actual salt intake in hypertensive patients at a hypertension clinic and general clinic. Clin. Exp. Hypertens. 2015, 37, 172–175. [Google Scholar] [CrossRef]
- Bobowski, N. Shifting human salty taste preference: Potential opportunities and challenges in reducing dietary salt intake of Americans. Chemosens. Percept. 2015, 8, 112–116. [Google Scholar] [CrossRef]
- Li, Q.; Jin, R.; Yu, H.; Lang, H.; Cui, Y.; Xiong, S.; Sun, F.; He, C.; Liu, D.; Jia, H.; et al. Enhancement of neural salty preference in obesity. Cell. Physiol. Biochem. 2017, 43, 1987–2000. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Cui, Y.; Jin, R.; Lang, H.; Yu, H.; Sun, F.; He, C.; Ma, T.; Li, Y.; Zhou, X.; et al. Enjoyment of Spicy Flavor Enhances Central Salty-Taste Perception and Reduces Salt Intake and Blood Pressure. Hypertension 2017, 70, 1291–1299. [Google Scholar] [CrossRef] [PubMed]
- Leshem, M.; Shaul, S. Vegans, vegetarians and omnivores differ in nutrient hedonics, salt and sweet preference and flavouring. Physiol. Behav. 2022, 255, 113936. [Google Scholar] [CrossRef] [PubMed]
- Contreras, R.J.; Ryan, K.W. Perinatal exposure to a high NaCl diet increases the NaCl intake of adult rats. Physiol. Behav. 1990, 47, 507–512. [Google Scholar] [CrossRef]
- Bird, E.; Contreras, R.J. Maternal dietary NaCl intake influences weanling rats’ salt preferences without affecting taste nerve responsiveness. Dev. Psychobiol. 1987, 20, 111–130. [Google Scholar] [CrossRef]
- Contreras, R.J.; Kosten, T. Prenatal and early postnatal sodium chloride intake modifies the solution preferences of adult rats. J. Nutr. 1983, 113, 1051–1062. [Google Scholar] [CrossRef]
- Curtis, K.S.; Krause, E.G.; Wong, D.L.; Contreras, R.J. Gestational and early postnatal dietary NaCl levels affect NaCl intake, but not stimulated water intake, by adult rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 286, R1043–R1050. [Google Scholar] [CrossRef] [Green Version]
- Stein, L.J.; Cowart, B.J.; Beauchamp, G.K. The development of salty taste acceptance is related to dietary experience in human infants: A prospective study. Am. J. Clin. Nutr. 2012, 95, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Harris, G.; Booth, D.A. Infants’ preference for salt in food: Its dependence upon recent dietary experience. J. Reprod. Infant Psychol. 1987, 5, 97–104. [Google Scholar] [CrossRef]
- Silva, M.S.; Lúcio-Oliveira, F.; Mecawi, A.S.; Almeida, L.F.; Ruginsk, S.G.; Greenwood, M.P.; Greenwood, M.; Vivas, L.; Elias, L.L.K.; Murphy, D.; et al. Increased exposure to sodium during pregnancy and lactation changes basal and induced behavioral and neuroendocrine responses in adult male offspring. Physiol. Rep. 2017, 5, e13210. [Google Scholar] [CrossRef]
- Bertino, M.; Beauchamp, G.K.; Engelman, K. Increasing dietary salt alters salt taste preference. Physiol. Behav. 1986, 38, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Bertino, M.; Beauchamp, G.K.; Engelman, K. Long-term reduction in dietary sodium alters the taste of salt. Am. J. Clin. Nutr. 1982, 36, 1134–1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heck, G.L.; Mierson, S.; DeSimone, J.A. Salt taste transduction occurs through an amiloride-sensitive sodium transport pathway. Science 1984, 223, 403–405. [Google Scholar] [CrossRef] [PubMed]
- DeSimone, J.A.; Ferrell, F. Analysis of amiloride inhibition of chorda tympani taste response of rat to NaCl. Am. J. Physiol. 1985, 249, R52–R61. [Google Scholar] [CrossRef]
- Ninomiya, Y.; Funakoshi, M. Amiloride inhibition of responses of rat single chorda tympani fibers to chemical and electrical tongue stimulations. Brain Res. 1988, 451, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, C.; Gutknecht, S.; Delay, E.; Kinnamon, S. Detection of NaCl and KCl in TRPV1 knockout mice. Chem. Senses 2006, 31, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Treesukosol, Y.; Lyall, V.; Heck, G.L.; DeSimone, J.A.; Spector, A.C. A psychophysical and electrophysiological analysis of salt taste in Trpv1 null mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, R1799–R1809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breza, J.M.; Contreras, R.J. Anion size modulates salt taste in rats. J. Neurophysiol. 2012, 107, 1632–1648. [Google Scholar] [CrossRef] [Green Version]
- Chandrashekar, J.; Kuhn, C.; Oka, Y.; Yarmolinsky, D.A.; Hummler, E.; Ryba, N.J.P.; Zuker, C.S. The cells and peripheral representation of sodium taste in mice. Nature 2010, 464, 297–301. [Google Scholar] [CrossRef] [Green Version]
- Lewandowski, B.C.; Sukumaran, S.K.; Margolskee, R.F.; Bachmanov, A.A. Amiloride-Insensitive Salt Taste Is Mediated by Two Populations of Type III Taste Cells with Distinct Transduction Mechanisms. J. Neurosci. 2016, 36, 1942–1953. [Google Scholar] [CrossRef]
- Oka, Y.; Butnaru, M.; von Buchholtz, L.; Ryba, N.J.P.; Zuker, C.S. High salt recruits aversive taste pathways. Nature 2013, 494, 472–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roitman, M.F.; Bernstein, I.L. Amiloride-sensitive sodium signals and salt appetite: Multiple gustatory pathways. Am. J. Physiol. 1999, 276, R1732–R1738. [Google Scholar] [CrossRef] [PubMed]
- Vandenbeuch, A.; Clapp, T.R.; Kinnamon, S.C. Amiloride-sensitive channels in type I fungiform taste cells in mouse. BMC Neurosci. 2008, 9, 1. [Google Scholar] [CrossRef]
- Baumer-Harrison, C.; Raymond, M.A.; Myers, T.A.; Sussman, K.M.; Rynberg, S.T.; Ugartechea, A.P.; Lauterbach, D.; Mast, T.G.; Breza, J.M. Optogenetic Stimulation of Type I GAD65+ Cells in Taste Buds Activates Gustatory Neurons and Drives Appetitive Licking Behavior in Sodium-Depleted Mice. J. Neurosci. 2020, 40, 7795–7810. [Google Scholar] [CrossRef] [PubMed]
- Spector, A.C.; Grill, H.J. Salt taste discrimination after bilateral section of the chorda tympani or glossopharyngeal nerves. Am. J. Physiol. 1992, 263, R169–R176. [Google Scholar] [CrossRef]
- Breslin, P.A.; Spector, A.C.; Grill, H.J. Chorda tympani section decreases the cation specificity of depletion-induced sodium appetite in rats. Am. J. Physiol. 1993, 264, R319–R323. [Google Scholar] [CrossRef]
- Hellekant, G.; Danilova, V.; Ninomiya, Y. Primate sense of taste: Behavioral and single chorda tympani and glossopharyngeal nerve fiber recordings in the rhesus monkey, Macaca mulatta. J. Neurophysiol. 1997, 77, 978–993. [Google Scholar] [CrossRef] [Green Version]
- Sollars, S.I.; Hill, D.L. In vivo recordings from rat geniculate ganglia: Taste response properties of individual greater superficial petrosal and chorda tympani neurones. J. Physiol. 2005, 564, 877–893. [Google Scholar] [CrossRef]
- Matsumoto, I. Gustatory neural pathways revealed by genetic tracing from taste receptor cells. Biosci. Biotechnol. Biochem. 2013, 77, 1359–1362. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, T.C.; Di Lorenzo, P.M. Central taste anatomy and physiology of rodents and primates. In Handbook of Olfaction and Gustation; Doty, R.L., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 701–726. ISBN 9781118139226. [Google Scholar]
- Gibbons, J.R.; Sadiq, N.M. Neuroanatomy, neural taste pathway. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Stellar, E. Salt appetite: Its neuroendocrine basis. Acta Neurobiol. Exp. 1993, 53, 475–484. [Google Scholar]
- Daniels, D.; Fluharty, S.J. Salt appetite: A neurohormonal viewpoint. Physiol. Behav. 2004, 81, 319–337. [Google Scholar] [CrossRef] [PubMed]
- Krause, E.G.; Sakai, R.R. Richter and sodium appetite: From adrenalectomy to molecular biology. Appetite 2007, 49, 353–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geerling, J.C.; Loewy, A.D. Central regulation of sodium appetite. Exp. Physiol. 2008, 93, 177–209. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, A.V.; Donevan, S.D.; Papas, S.; Smith, P.M. Circumventricular structures: CNS sensors of circulating peptides and autonomic control centres. Endocrinol. Exp. 1990, 24, 19–27. [Google Scholar] [PubMed]
- McKinley, M.J.; McAllen, R.M.; Davern, P.; Giles, M.E.; Penschow, J.; Sunn, N.; Uschakov, A.; Oldfield, B.J. The Sensory Circumventricular Organs of the Mammalian Brain, 1st ed.; Advances in Anatomy, Embryology and Cell Biology; Springer: Berlin/Heidelberg, Germany, 2003; Volume 172, pp. III–XII. [Google Scholar] [CrossRef]
- Stein, M.K.; Loewy, A.D. Area postrema projects to FoxP2 neurons of the pre-locus coeruleus and parabrachial nuclei: Brainstem sites implicated in sodium appetite regulation. Brain Res. 2010, 1359, 116–127. [Google Scholar] [CrossRef] [Green Version]
- Camacho, A.; Phillips, M.I. Horseradish peroxidase study in rat of the neural connections of the organum vasculosum of the lamina terminalis. Neurosci. Lett. 1981, 25, 201–204. [Google Scholar] [CrossRef]
- Honda, K.; Negoro, H.; Dyball, R.E.; Higuchi, T.; Takano, S. The osmoreceptor complex in the rat: Evidence for interactions between the supraoptic and other diencephalic nuclei. J. Physiol. 1990, 431, 225–241. [Google Scholar] [CrossRef]
- Moga, M.M.; Herbert, H.; Hurley, K.M.; Yasui, Y.; Gray, T.S.; Saper, C.B. Organization of cortical, basal forebrain, and hypothalamic afferents to the parabrachial nucleus in the rat. J. Comp. Neurol. 1990, 295, 624–661. [Google Scholar] [CrossRef]
- Matsuda, T.; Hiyama, T.Y.; Niimura, F.; Matsusaka, T.; Fukamizu, A.; Kobayashi, K.; Kobayashi, K.; Noda, M. Distinct neural mechanisms for the control of thirst and salt appetite in the subfornical organ. Nat. Neurosci. 2017, 20, 230–241. [Google Scholar] [CrossRef]
- Shapiro, R.E.; Miselis, R.R. The central neural connections of the area postrema of the rat. J. Comp. Neurol. 1985, 234, 344–364. [Google Scholar] [CrossRef]
- Weisinger, R.S.; Denton, D.A.; Di Nicolantonio, R.; McKinley, M.J.; Muller, A.F.; Tarjan, E. Role of angiotensin in sodium appetite of sodium-deplete sheep. Am. J. Physiol. 1987, 253, R482–R488. [Google Scholar] [CrossRef] [PubMed]
- Thunhorst, R.L.; Beltz, T.G.; Johnson, A.K. Effects of subfornical organ lesions on acutely induced thirst and salt appetite. Am. J. Physiol. 1999, 277, R56–R65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, G.L.; Beltz, T.G.; Power, J.D.; Johnson, A.K. Rapid-onset “need-free” sodium appetite after lesions of the dorsomedial medulla. Am. J. Physiol. 1993, 264, R1242–R1247. [Google Scholar] [CrossRef] [PubMed]
- Weisinger, R.S.; Considine, P.; Denton, D.A.; McKinley, M.J.; Mouw, D. Rapid effect of change in cerebrospinal fluid sodium concentration on salt appetite. Nature 1979, 280, 490–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weisinger, R.S.; Denton, D.A.; McKinley, M.J.; Muller, A.F.; Tarjan, E. Cerebrospinal fluid sodium concentration and salt appetite. Brain Res. 1985, 326, 95–105. [Google Scholar] [CrossRef]
- Xing, D.; Wu, Y.; Li, G.; Song, S.; Liu, Y.; Liu, H.; Wang, X.; Fei, Y.; Zhang, C.; Li, Y.; et al. Role of cerebrospinal fluid-contacting nucleus in sodium sensing and sodium appetite. Physiol. Behav. 2015, 147, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Porcari, C.Y.; Debarba, L.K.; Amigone, J.L.; Caeiro, X.E.; Reis, L.C.; Cunha, T.M.; Mecawi, A.S.; Elias, L.L.; Antunes-Rodrigues, J.; Vivas, L.; et al. Brain osmo-sodium sensitive channels and the onset of sodium appetite. Horm. Behav. 2020, 118, 104658. [Google Scholar] [CrossRef]
- Mason, W.T. Supraoptic neurones of rat hypothalamus are osmosensitive. Nature 1980, 287, 154–157. [Google Scholar] [CrossRef]
- Hiyama, T.Y.; Noda, M. Sodium sensing in the subfornical organ and body-fluid homeostasis. Neurosci. Res. 2016, 113, 1–11. [Google Scholar] [CrossRef]
- Barad, Z.; Jacob-Tomas, S.; Sobrero, A.; Lean, G.; Hicks, A.-I.; Yang, J.; Choe, K.Y.; Prager-Khoutorsky, M. Unique Organization of Actin Cytoskeleton in Magnocellular Vasopressin Neurons in Normal Conditions and in Response to Salt-Loading. eNeuro 2020, 7, ENEURO.0351-19.2020. [Google Scholar] [CrossRef]
- Sheng, W.; Harden, S.W.; Tan, Y.; Krause, E.G.; Frazier, C.J. Dendritic osmosensors modulate activity-induced calcium influx in oxytocinergic magnocellular neurons of the mouse PVN. eLife 2021, 10, e63486. [Google Scholar] [CrossRef] [PubMed]
- Sharif Naeini, R.; Witty, M.-F.; Séguéla, P.; Bourque, C.W. An N-terminal variant of Trpv1 channel is required for osmosensory transduction. Nat. Neurosci. 2006, 9, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Shenton, F.C.; Pyner, S. Transient receptor potential vanilloid type 4 is expressed in vasopressinergic neurons within the magnocellular subdivision of the rat paraventricular nucleus of the hypothalamus. J. Comp. Neurol. 2018, 526, 3035–3044. [Google Scholar] [CrossRef] [PubMed]
- Grob, M.; Drolet, G.; Mouginot, D. Specific Na+ sensors are functionally expressed in a neuronal population of the median preoptic nucleus of the rat. J. Neurosci. 2004, 24, 3974–3984. [Google Scholar] [CrossRef] [Green Version]
- McKinley, M.J.; Allen, A.M.; May, C.N.; McAllen, R.M.; Oldfield, B.J.; Sly, D.; Mendelsohn, F.A. Neural pathways from the lamina terminalis influencing cardiovascular and body fluid homeostasis. Clin. Exp. Pharmacol. Physiol. 2001, 28, 990–992. [Google Scholar] [CrossRef]
- Housley, G.D.; Martin-Body, R.L.; Dawson, N.J.; Sinclair, J.D. Brain stem projections of the glossopharyngeal nerve and its carotid sinus branch in the rat. Neuroscience 1987, 22, 237–250. [Google Scholar] [CrossRef]
- Altschuler, S.M.; Bao, X.M.; Bieger, D.; Hopkins, D.A.; Miselis, R.R. Viscerotopic representation of the upper alimentary tract in the rat: Sensory ganglia and nuclei of the solitary and spinal trigeminal tracts. J. Comp. Neurol. 1989, 283, 248–268. [Google Scholar] [CrossRef]
- Ritter, R.C.; Campos, C.A.; Nasse, J.; Peters, J.H. Vagal afferent signaling and the integration of direct and indirect controls of food intake. In Appetite and Food Intake: Central Control; Harris, R.B.S., Ed.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2017; ISBN 9781315120171. [Google Scholar]
- Zeng, Q.; Zhou, Q.; Liu, W.; Wang, Y.; Xu, X.; Xu, D. Mechanisms and Perspectives of Sodium-Glucose Co-transporter 2 Inhibitors in Heart Failure. Front. Cardiovasc. Med. 2021, 8, 636152. [Google Scholar] [CrossRef]
- Zimmerman, C.A.; Huey, E.L.; Ahn, J.S.; Beutler, L.R.; Tan, C.L.; Kosar, S.; Bai, L.; Chen, Y.; Corpuz, T.V.; Madisen, L.; et al. A gut-to-brain signal of fluid osmolarity controls thirst satiation. Nature 2019, 568, 98–102. [Google Scholar] [CrossRef]
- Ichiki, T.; Wang, T.; Kennedy, A.; Pool, A.-H.; Ebisu, H.; Anderson, D.J.; Oka, Y. Sensory representation and detection mechanisms of gut osmolality change. Nature 2022, 602, 468–474. [Google Scholar] [CrossRef]
- Ogihara, C.A.; Schoorlemmer, G.H.M.; Colombari, E.; Sato, M.A. Changes in sodium appetite evoked by lesions of the commissural nucleus of the tractus solitarius. Braz. J. Med. Biol. Res. 2009, 42, 561–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Travers, S.; Breza, J.; Harley, J.; Zhu, J.; Travers, J. Neurons with diverse phenotypes project from the caudal to the rostral nucleus of the solitary tract. J. Comp. Neurol. 2018, 526, 2319–2338. [Google Scholar] [CrossRef] [PubMed]
- Herbert, H.; Moga, M.M.; Saper, C.B. Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat. J. Comp. Neurol. 1990, 293, 540–580. [Google Scholar] [CrossRef] [PubMed]
- Shimura, T.; Komori, M.; Yamamoto, T. Acute sodium deficiency reduces gustatory responsiveness to NaCl in the parabrachial nucleus of rats. Neurosci. Lett. 1997, 236, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Menani, J.V.; De Luca, L.A.; Johnson, A.K. Role of the lateral parabrachial nucleus in the control of sodium appetite. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 306, R201–R210. [Google Scholar] [CrossRef] [Green Version]
- Geerling, J.C.; Stein, M.K.; Miller, R.L.; Shin, J.-W.; Gray, P.A.; Loewy, A.D. FoxP2 expression defines dorsolateral pontine neurons activated by sodium deprivation. Brain Res. 2011, 1375, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Gasparini, S.; Resch, J.M.; Gore, A.M.; Peltekian, L.; Geerling, J.C. Pre-locus coeruleus neurons in rat and mouse. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2021, 320, R342–R361. [Google Scholar] [CrossRef]
- Shin, J.-W.; Geerling, J.C.; Stein, M.K.; Miller, R.L.; Loewy, A.D. FoxP2 brainstem neurons project to sodium appetite regulatory sites. J. Chem. Neuroanat. 2011, 42, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Andrade-Franzé, G.M.F.; Andrade, C.A.F.; De Luca, L.A.; De Paula, P.M.; Menani, J.V. Lateral parabrachial nucleus and central amygdala in the control of sodium intake. Neuroscience 2010, 165, 633–641. [Google Scholar] [CrossRef]
- Andrade-Franzé, G.M.F.; Andrade, C.A.F.; De Luca, L.A.; De Paula, P.M.; Colombari, D.S.A.; Menani, J.V. Lesions in the central amygdala impair sodium intake induced by the blockade of the lateral parabrachial nucleus. Brain Res. 2010, 1332, 57–64. [Google Scholar] [CrossRef]
- Andrade-Franzé, G.M.F.; Andrade, C.A.F.; Gasparini, S.; De Luca, L.A.; De Paula, P.M.; Colombari, D.S.A.; Colombari, E.; Menani, J.V. Importance of the central nucleus of the amygdala on sodium intake caused by deactivation of lateral parabrachial nucleus. Brain Res. 2015, 1625, 238–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopp, U.; DiBona, G.F. Interaction of renal beta 1-adrenoceptors and prostaglandins in reflex renin release. Am. J. Physiol. 1983, 244, F418–F424. [Google Scholar] [CrossRef] [PubMed]
- Freeman, R.H.; Davis, J.O.; Villarreal, D. Role of renal prostaglandins in the control of renin release. Circ. Res. 1984, 54, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bock, H.A.; Hermle, M.; Brunner, F.P.; Thiel, G. Pressure dependent modulation of renin release in isolated perfused glomeruli. Kidney Int. 1992, 41, 275–280. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.O.; Spielman, W.S. The renin-angiotensin system in the control of aldosterone secretion in the rat. Acta Physiol. Lat. Am. 1974, 24, 399–404. [Google Scholar] [PubMed]
- Epstein, A.N. Mineralocorticoids and cerebral angiotensin may act together to produce sodium appetite. Peptides 1982, 3, 493–494. [Google Scholar] [CrossRef]
- Fluharty, S.J.; Epstein, A.N. Sodium appetite elicited by intracerebroventricular infusion of angiotensin II in the rat: II. Synergistic interaction with systemic mineralocorticoids. Behav. Neurosci. 1983, 97, 746–758. [Google Scholar] [CrossRef]
- Shade, R.E.; Blair-West, J.R.; Carey, K.D.; Madden, L.J.; Weisinger, R.S.; Denton, D.A. Synergy between angiotensin and aldosterone in evoking sodium appetite in baboons. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 283, R1070–R1078. [Google Scholar] [CrossRef] [Green Version]
- Resch, J.M.; Fenselau, H.; Madara, J.C.; Wu, C.; Campbell, J.N.; Lyubetskaya, A.; Dawes, B.A.; Tsai, L.T.; Li, M.M.; Livneh, Y.; et al. Aldosterone-Sensing Neurons in the NTS Exhibit State-Dependent Pacemaker Activity and Drive Sodium Appetite via Synergy with Angiotensin II Signaling. Neuron 2017, 96, 190–206.e7. [Google Scholar] [CrossRef] [Green Version]
- Richter, C.P. Increased salt appetite in adrenalectomized rats. Am. J. Physiol.-Leg. Content 1936, 115, 155–161. [Google Scholar] [CrossRef]
- Sakai, R.R.; Epstein, A.N. Dependence of adrenalectomy-induced sodium appetite on the action of angiotensin II in the brain of the rat. Behav. Neurosci. 1990, 104, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Wolf, G. Effect of deoxycorticosterone on sodium appetite of intact and adrenalectomized rats. Am. J. Physiol. 1965, 208, 1281–1285. [Google Scholar] [CrossRef] [PubMed]
- Buggy, J.; Fisher, A.E. Evidence for a dual central role for angiotensin in water and sodium intake. Nature 1974, 250, 733–735. [Google Scholar] [CrossRef] [PubMed]
- Buggy, J.; Jonklaas, J. Sodium appetite decreased by central angiotensin blockade. Physiol. Behav. 1984, 32, 737–742. [Google Scholar] [CrossRef] [PubMed]
- Beresford, M.J.; Fitzsimons, J.T. Intracerebroventricular angiotensin II-induced thirst and sodium appetite in rat are blocked by the AT1 receptor antagonist, Losartan (DuP 753), but not by the AT2 antagonist, CGP 42112B. Exp. Physiol. 1992, 77, 761–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weisinger, R.S.; Blair-West, J.R.; Burns, P.; Denton, D.A.; Tarjan, E. Role of brain angiotensin in thirst and sodium appetite of rats. Peptides 1997, 18, 977–984. [Google Scholar] [CrossRef]
- Wolf, G. Effect of dorsolateral hypothalamic lesions on sodium appetite elicited by desoxycorticosterone and by acute hyponatremia. J. Comp. Physiol. Psychol. 1964, 58, 396–402. [Google Scholar] [CrossRef]
- Zenatti, A.A.; Pereira, E.D.; Possari, J.; Andrade, C.A.F.; Menani, J.V.; De Luca, L.A. Interference with the renin-angiotensin system reduces the palatability of 0.3 M NaCl in sodium-deplete rats. Appetite 2021, 158, 105037. [Google Scholar] [CrossRef]
- Mecawi, A.S.; Vilhena-Franco, T.; Fonseca, F.V.; Reis, L.C.; Elias, L.L.K.; Antunes-Rodrigues, J. The role of angiotensin II on sodium appetite after a low-sodium diet. J. Neuroendocrinol. 2013, 25, 281–291. [Google Scholar] [CrossRef]
- Nitabach, M.N.; Schulkin, J.; Epstein, A.N. The medial amygdala is part of a mineralocorticoid-sensitive circuit controlling NaCl intake in the rat. Behav. Brain Res. 1989, 35, 127–134. [Google Scholar] [CrossRef]
- Sumners, C.; de Kloet, A.D.; Krause, E.G.; Unger, T.; Steckelings, U.M. Angiotensin type 2 receptors: Blood pressure regulation and end organ damage. Curr. Opin. Pharmacol. 2015, 21, 115–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elsaafien, K.; de Kloet, A.D.; Krause, E.G.; Sumners, C. Brain Angiotensin Type-1 and Type-2 Receptors in Physiological and Hypertensive Conditions: Focus on Neuroinflammation. Curr. Hypertens. Rep. 2020, 22, 48. [Google Scholar] [CrossRef] [PubMed]
- Oliverio, M.I.; Best, C.F.; Smithies, O.; Coffman, T.M. Regulation of sodium balance and blood pressure by the AT(1A) receptor for angiotensin II. Hypertension 2000, 35, 550–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, V.; Schunck, W.H.; Honeck, H.; Milia, A.F.; Kärgel, E.; Walther, T.; Bader, M.; Inagami, T.; Schneider, W.; Luft, F.C. Inhibition of pressure natriuresis in mice lacking the AT2 receptor. Kidney Int. 2000, 57, 191–202. [Google Scholar] [CrossRef] [Green Version]
- Sumners, C.; Alleyne, A.; Rodríguez, V.; Pioquinto, D.J.; Ludin, J.A.; Kar, S.; Winder, Z.; Ortiz, Y.; Liu, M.; Krause, E.G.; et al. Brain angiotensin type-1 and type-2 receptors: Cellular locations under normal and hypertensive conditions. Hypertens. Res. 2020, 43, 281–295. [Google Scholar] [CrossRef] [PubMed]
- Lenkei, Z.; Corvol, P.; Llorens-Cortes, C. Comparative expression of vasopressin and angiotensin type-1 receptor mRNA in rat hypothalamic nuclei: A double in situ hybridization study. Brain Res. Mol. Brain Res. 1995, 34, 135–142. [Google Scholar] [CrossRef]
- Lenkei, Z.; Palkovits, M.; Corvol, P.; Llorens-Cortès, C. Expression of angiotensin type-1 (AT1) and type-2 (AT2) receptor mRNAs in the adult rat brain: A functional neuroanatomical review. Front. Neuroendocrinol. 1997, 18, 383–439. [Google Scholar] [CrossRef]
- Mendelsohn, F.A.; Quirion, R.; Saavedra, J.M.; Aguilera, G.; Catt, K.J. Autoradiographic localization of angiotensin II receptors in rat brain. Proc. Natl. Acad. Sci. USA 1984, 81, 1575–1579. [Google Scholar] [CrossRef] [Green Version]
- Galaverna, O.; Polidori, C.; Sakai, R.R.; Liénard, F.; Chow, S.Y.; Fluharty, S.J. Blockade of central angiotensin II type 1 and type 2 receptors suppresses adrenalectomy-induced NaCl intake in rats. Regul. Pept. 1996, 66, 47–50. [Google Scholar] [CrossRef]
- Fitts, D.A.; Masson, D.B. Preoptic angiotensin and salt appetite. Behav. Neurosci. 1990, 104, 643–650. [Google Scholar] [CrossRef]
- Nation, H.L.; Nicoleau, M.; Kinsman, B.J.; Browning, K.N.; Stocker, S.D. DREADD-induced activation of subfornical organ neurons stimulates thirst and salt appetite. J. Neurophysiol. 2016, 115, 3123–3129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harding, J.W.; Jensen, L.L.; Hanesworth, J.M.; Roberts, K.A.; Page, T.A.; Wright, J.W. Release of angiotensins in paraventricular nucleus of rat in response to physiological and chemical stimuli. Am. J. Physiol. 1992, 262, F17–F23. [Google Scholar] [CrossRef] [PubMed]
- Bains, J.S.; Potyok, A.; Ferguson, A.V. Angiotensin II actions in paraventricular nucleus: Functional evidence for neurotransmitter role in efferents originating in subfornical organ. Brain Res. 1992, 599, 223–229. [Google Scholar] [CrossRef]
- Li, Z.; Ferguson, A.V. Subfornical organ efferents to paraventricular nucleus utilize angiotensin as a neurotransmitter. Am. J. Physiol. 1993, 265, R302–R309. [Google Scholar] [CrossRef] [PubMed]
- Biancardi, V.C.; Son, S.J.; Ahmadi, S.; Filosa, J.A.; Stern, J.E. Circulating angiotensin II gains access to the hypothalamus and brain stem during hypertension via breakdown of the blood-brain barrier. Hypertension 2014, 63, 572–579. [Google Scholar] [CrossRef]
- Farmer, G.E.; Amune, A.; Bachelor, M.E.; Duong, P.; Yuan, J.P.; Cunningham, J.T. Sniffer cells for the detection of neural Angiotensin II in vitro. Sci. Rep. 2019, 9, 8820. [Google Scholar] [CrossRef] [Green Version]
- Swanson, L.W.; Lind, R.W. Neural projections subserving the initiation of a specific motivated behavior in the rat: New projections from the subfornical organ. Brain Res. 1986, 379, 399–403. [Google Scholar] [CrossRef]
- Náray-Fejes-Tóth, A.; Fejes-Tóth, G. Novel mouse strain with Cre recombinase in 11beta-hydroxysteroid dehydrogenase-2-expressing cells. Am. J. Physiol. Ren. Physiol. 2007, 292, F486–F494. [Google Scholar] [CrossRef]
- Birmingham, M.K.; Stumpf, W.E.; Sar, M. Nuclear localization of aldosterone in rat brain cells assessed by autoradiography. Experientia 1979, 35, 1240–1241. [Google Scholar] [CrossRef]
- McEwen, B.S.; Lambdin, L.T.; Rainbow, T.C.; De Nicola, A.F. Aldosterone effects on salt appetite in adrenalectomized rats. Neuroendocrinology 1986, 43, 38–43. [Google Scholar] [CrossRef]
- Geerling, J.C.; Engeland, W.C.; Kawata, M.; Loewy, A.D. Aldosterone target neurons in the nucleus tractus solitarius drive sodium appetite. J. Neurosci. 2006, 26, 411–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarvie, B.C.; Palmiter, R.D. HSD2 neurons in the hindbrain drive sodium appetite. Nat. Neurosci. 2017, 20, 167–169. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.C.; Ivy, J.R.; Wyrwoll, C.; McNairn, J.A.; Menzies, R.I.; Christensen, T.H.; Al-Dujaili, E.A.S.; Kenyon, C.J.; Mullins, J.J.; Seckl, J.R.; et al. Conditional deletion of hsd11b2 in the brain causes salt appetite and hypertension. Circulation 2016, 133, 1360–1370. [Google Scholar] [CrossRef] [PubMed]
- Jurek, B.; Neumann, I.D. The oxytocin receptor: From intracellular signaling to behavior. Physiol. Rev. 2018, 98, 1805–1908. [Google Scholar] [CrossRef] [PubMed]
- Stricker, E.M.; Verbalis, J.G. Central inhibitory control of sodium appetite in rats: Correlation with pituitary oxytocin secretion. Behav. Neurosci. 1987, 101, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, R.E.; Demko, A.D.; Hoffman, G.E.; Stricker, E.M.; Verbalis, J.G. Central oxytocin inhibition of angiotensin-induced salt appetite in rats. Am. J. Physiol. 1992, 263, R1347–R1353. [Google Scholar] [CrossRef]
- Stricker, E.M.; Verbalis, J.G. Central inhibition of salt appetite by oxytocin in rats. Regul. Pept. 1996, 66, 83–85. [Google Scholar] [CrossRef]
- Puryear, R.; Rigatto, K.V.; Amico, J.A.; Morris, M. Enhanced salt intake in oxytocin deficient mice. Exp. Neurol. 2001, 171, 323–328. [Google Scholar] [CrossRef]
- Ryan, P.J.; Ross, S.I.; Campos, C.A.; Derkach, V.A.; Palmiter, R.D. Oxytocin-receptor-expressing neurons in the parabrachial nucleus regulate fluid intake. Nat. Neurosci. 2017, 20, 1722–1733. [Google Scholar] [CrossRef] [Green Version]
- Lang, R.E.; Rascher, W.; Heil, J.; Unger, T.; Wiedemann, G.; Ganten, D. Angiotensin stimulates oxytocin release. Life Sci. 1981, 29, 1425–1428. [Google Scholar] [CrossRef]
- Gimpl, G.; Fahrenholz, F. The oxytocin receptor system: Structure, function, and regulation. Physiol. Rev. 2001, 81, 629–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stricker, E.M.; Schreihofer, A.M.; Verbalis, J.G. Sodium deprivation blunts hypovolemia-induced pituitary secretion of vasopressin and oxytocin in rats. Am. J. Physiol. 1994, 267, R1336–R1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amico, J.A.; Morris, M.; Vollmer, R.R. Mice deficient in oxytocin manifest increased saline consumption following overnight fluid deprivation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 281, R1368–R1373. [Google Scholar] [CrossRef] [PubMed]
- Vollmer, R.R.; Li, X.; Karam, J.R.; Amico, J.A. Sodium ingestion in oxytocin knockout mice. Exp. Neurol. 2006, 202, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, R.E.; Stricker, E.M.; Verbalis, J.G. Central oxytocin mediates inhibition of sodium appetite by naloxone in hypovolemic rats. Neuroendocrinology 1992, 56, 255–263. [Google Scholar] [CrossRef]
- Sandefur, C.C.; Jialal, I. Atrial Natriuretic Peptide. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Quirion, R.; Dalpé, M.; Dam, T.V. Characterization and distribution of receptors for the atrial natriuretic peptides in mammalian brain. Proc. Natl. Acad. Sci. USA 1986, 83, 174–178. [Google Scholar] [CrossRef] [Green Version]
- Antunes-Rodrigues, J.; McCann, S.M.; Samson, W.K. Central administration of atrial natriuretic factor inhibits saline preference in the rat. Endocrinology 1986, 118, 1726–1728. [Google Scholar] [CrossRef]
- Stellar, E.; Epstein, A.N. Neuroendocrine factors in salt appetite. J. Physiol. Pharmacol. 1991, 42, 345–355. [Google Scholar]
- Godino, A.; Margatho, L.O.; Caeiro, X.E.; Antunes-Rodrigues, J.; Vivas, L. Activation of lateral parabrachial afferent pathways and endocrine responses during sodium appetite regulation. Exp. Neurol. 2010, 221, 275–284. [Google Scholar] [CrossRef]
- Ma, L.Y.; McEwen, B.S.; Sakai, R.R.; Schulkin, J. Glucocorticoids facilitate mineralocorticoid-induced sodium intake in the rat. Horm. Behav. 1993, 27, 240–250. [Google Scholar] [CrossRef]
- Thunhorst, R.L.; Beltz, T.G.; Johnson, A.K. Glucocorticoids increase salt appetite by promoting water and sodium excretion. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 293, R1444–R1451. [Google Scholar] [CrossRef]
- Zhang, D.M.; Epstein, A.N.; Schulkin, J. Medial region of the amygdala: Involvement in adrenal-steroid-induced salt appetite. Brain Res. 1993, 600, 20–26. [Google Scholar] [CrossRef] [PubMed]
- de Paula, P.M.; Sato, M.A.; Menani, J.V.; De Luca Júnior, L.A. Effects of central alpha-adrenergic agonists on hormone-induced 3% NaCl and water intake. Neurosci. Lett. 1996, 214, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Yada, M.M.; de PAULA, P.M.; Menani, J.V.; de LUCA, L.A. Central α-Adrenergic Agonists and Need-Induced 3% NaCl and Water Intake. Pharmacol. Biochem. Behav. 1997, 57, 137–143. [Google Scholar] [CrossRef]
- Sugawara, A.M.; Miguel, T.T.; de Oliveira, L.B.; Menani, J.V.; De Luca, L.A. Noradrenaline and mixed α2-adrenoceptor/imidazoline-receptor ligands: Effects on sodium intake. Brain Res. 1999, 839, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Rowland, N.E.; Fregly, M.J. Sodium appetite: Species and strain differences and role of renin-angiotensin-aldosterone system. Appetite 1988, 11, 143–178. [Google Scholar] [CrossRef] [PubMed]
- Fitzsimons, J.T. Angiotensin, thirst, and sodium appetite. Physiol. Rev. 1998, 78, 583–686. [Google Scholar] [CrossRef] [PubMed]
- Curtis, K.S.; Krause, E.G.; Contreras, R.J. Altered NaCl taste responses precede increased NaCl ingestion during Na(+) deprivation. Physiol. Behav. 2001, 72, 743–749. [Google Scholar] [CrossRef]
- Jacobs, K.M.; Mark, G.P.; Scott, T.R. Taste responses in the nucleus tractus solitarius of sodium-deprived rats. J. Physiol. 1988, 406, 393–410. [Google Scholar] [CrossRef]
- St John, S.J. The Perceptual Characteristics of Sodium Chloride to Sodium-Depleted Rats. Chem. Senses 2017, 42, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Richter, C.P. Salt taste thresholds of normal and adrenalectomized rats. Endocrinology 1939, 24, 367–371. [Google Scholar] [CrossRef]
- Shigemura, N.; Iwata, S.; Yasumatsu, K.; Ohkuri, T.; Horio, N.; Sanematsu, K.; Yoshida, R.; Margolskee, R.F.; Ninomiya, Y. Angiotensin II modulates salty and sweet taste sensitivities. J. Neurosci. 2013, 33, 6267–6277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinclair, M.S.; Perea-Martinez, I.; Dvoryanchikov, G.; Yoshida, M.; Nishimori, K.; Roper, S.D.; Chaudhari, N. Oxytocin signaling in mouse taste buds. PLoS ONE 2010, 5, e11980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Contreras, R.J. Changes in gustatory nerve discharges with sodium deficiency: A single unit analysis. Brain Res. 1977, 121, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Contreras, R.J.; Frank, M. Sodium deprivation alters neural responses to gustatory stimuli. J. Gen. Physiol. 1979, 73, 569–594. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Norgren, R. Sodium-deficient diet reduces gustatory activity in the nucleus of the solitary tract of behaving rats. Am. J. Physiol. 1995, 269, R647–R661. [Google Scholar] [CrossRef]
- McCaughey, S.A.; Scott, T.R. Rapid induction of sodium appetite modifies taste-evoked activity in the rat nucleus of the solitary tract. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 279, R1121–R1131. [Google Scholar] [CrossRef]
- Cho, Y.K.; Smith, M.E.; Norgren, R. Low-dose furosemide modulates taste responses in the nucleus of the solitary tract of the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 287, R706–R714. [Google Scholar] [CrossRef] [Green Version]
- Robinson, M.J.F.; Berridge, K.C. Instant transformation of learned repulsion into motivational “wanting”. Curr. Biol. 2013, 23, 282–289. [Google Scholar] [CrossRef] [Green Version]
- Nachman, M.; Valentino, D.A. Roles of taste and postingestional factors in the satiation of sodium appetite in rats. J. Comp. Physiol. Psychol. 1966, 62, 280–283. [Google Scholar] [CrossRef]
- Wolf, G.; Schulkin, J.; Simson, P.E. Multiple factors in the satiation of salt appetite. Behav. Neurosci. 1984, 98, 661–673. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Augustine, V.; Zhao, Y.; Ebisu, H.; Ho, B.; Kong, D.; Oka, Y. Chemosensory modulation of neural circuits for sodium appetite. Nature 2019, 568, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Ganten, D.; Stock, G. Humoral and neurohormonal aspects of blood pressure regulation: Focus on angiotensin. Klin. Wochenschr. 1978, 56 (Suppl. S1), 31–41. [Google Scholar] [CrossRef] [PubMed]
- Wadei, H.M.; Textor, S.C. The role of the kidney in regulating arterial blood pressure. Nat. Rev. Nephrol. 2012, 8, 602–609. [Google Scholar] [CrossRef]
- Wehrwein, E.A.; Joyner, M.J. Regulation of blood pressure by the arterial baroreflex and autonomic nervous system. Handb. Clin. Neurol. 2013, 117, 89–102. [Google Scholar] [CrossRef]
- Dampney, R.A.L. Central neural control of the cardiovascular system: Current perspectives. Adv. Physiol. Educ. 2016, 40, 283–296. [Google Scholar] [CrossRef] [Green Version]
- Lozić, M.; Šarenac, O.; Murphy, D.; Japundžić-Žigon, N. Vasopressin, central autonomic control and blood pressure regulation. Curr. Hypertens. Rep. 2018, 20, 11. [Google Scholar] [CrossRef]
- Nakagawa, P.; Gomez, J.; Grobe, J.L.; Sigmund, C.D. The Renin-Angiotensin System in the Central Nervous System and Its Role in Blood Pressure Regulation. Curr. Hypertens. Rep. 2020, 22, 7. [Google Scholar] [CrossRef]
- Spyer, K.M.; Lambert, J.H.; Thomas, T. Central nervous system control of cardiovascular function: Neural mechanisms and novel modulators. Clin. Exp. Pharmacol. Physiol. 1997, 24, 743–747. [Google Scholar] [CrossRef]
- Scalco, A.; Moro, N.; Mongillo, M.; Zaglia, T. Neurohumoral cardiac regulation: Optogenetics gets into the groove. Front. Physiol. 2021, 12, 726895. [Google Scholar] [CrossRef]
- Ferguson, A.V.; Bains, J.S.; Lowes, V.L. Circumventricular organs and cardiovascular homeostasis. In Central Neural Mechanisms in Cardiovascular Regulation; Kunos, G., Ciriello, J., Eds.; Birkhäuser: Boston, MA, USA, 1992; pp. 80–101. ISBN 978-1-4684-9184-5. [Google Scholar]
- Marson, O.; Chernicky, C.L.; Barnes, K.L.; Diz, D.I.; Slugg, R.M.; Ferrario, C.M. The anteroventral third ventricle region. Participation in the regulation of blood pressure in conscious dogs. Hypertension 1985, 7, I80. [Google Scholar] [CrossRef] [PubMed]
- Rosa, F.; Vásquez, J.; Lupi, J.; Lezama, E.; Romero-Vecchione, E. Pharmacological modulation of the cardiovascular response to hypertonic NaCl injection in the anteroventral area of the rat brain third ventricle. Pharmacology 1997, 54, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Pedrino, G.R.; Nakagawa Sera, C.T.; Cravo, S.L.; Colombari, D.S. de A. Anteroventral third ventricle lesions impair cardiovascular responses to intravenous hypertonic saline infusion. Auton. Neurosci. 2005, 117, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Knuepfer, M.M.; Johnson, A.K.; Brody, M.J. Vasomotor projections from the anteroventral third ventricle (AV3V) region. Am. J. Physiol. 1984, 247, H139–H145. [Google Scholar] [CrossRef]
- Antunes-Rodrigues, J.; Favaretto, A.L.; Gutkowska, J.; McCann, S.M. The neuroendocrine control of atrial natriuretic peptide release. Mol. Psychiatry 1997, 2, 359–367. [Google Scholar] [CrossRef] [Green Version]
- Whyte, D.G.; Johnson, A.K. Lesions of the anteroventral third ventricle region exaggerate neuroendocrine and thermogenic but not behavioral responses to a novel environment. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, R137–R142. [Google Scholar] [CrossRef]
- Russell, J.A.; Blackburn, R.E.; Leng, G. The role of the AV3V region in the control of magnocellular oxytocin neurons. Brain Res. Bull. 1988, 20, 803–810. [Google Scholar] [CrossRef]
- Penny, M.L.; Bruno, S.B.; Cornelius, J.; Higgs, K.A.N.; Cunningham, J.T. The effects of osmotic stimulation and water availability on c-Fos and FosB staining in the supraoptic and paraventricular nuclei of the hypothalamus. Exp. Neurol. 2005, 194, 191–202. [Google Scholar] [CrossRef]
- Stocker, S.D.; Toney, G.M. Median preoptic neurones projecting to the hypothalamic paraventricular nucleus respond to osmotic, circulating Ang II and baroreceptor input in the rat. J. Physiol. 2005, 568, 599–615. [Google Scholar] [CrossRef]
- Son, S.J.; Filosa, J.A.; Potapenko, E.S.; Biancardi, V.C.; Zheng, H.; Patel, K.P.; Tobin, V.A.; Ludwig, M.; Stern, J.E. Dendritic peptide release mediates interpopulation crosstalk between neurosecretory and preautonomic networks. Neuron 2013, 78, 1036–1049. [Google Scholar] [CrossRef] [Green Version]
- Frazier, C.J.; Harden, S.W.; Alleyne, A.R.; Mohammed, M.; Sheng, W.; Smith, J.A.; Elsaafien, K.; Spector, E.A.; Johnson, D.N.; Scott, K.A.; et al. An Angiotensin-Responsive Connection from the Lamina Terminalis to the Paraventricular Nucleus of the Hypothalamus Evokes Vasopressin Secretion to Increase Blood Pressure in Mice. J. Neurosci. 2021, 41, 1429–1442. [Google Scholar] [CrossRef] [PubMed]
- Elsaafien, K.; Kirchner, M.K.; Mohammed, M.; Eikenberry, S.A.; West, C.; Scott, K.A.; de Kloet, A.D.; Stern, J.E.; Krause, E.G. Identification of Novel Cross-Talk between the Neuroendocrine and Autonomic Stress Axes Controlling Blood Pressure. J. Neurosci. 2021, 41, 4641–4657. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.-Z.; Marshall, K.L.; Min, S.; Daou, I.; Chapleau, M.W.; Abboud, F.M.; Liberles, S.D.; Patapoutian, A. PIEZOs mediate neuronal sensing of blood pressure and the baroreceptor reflex. Science 2018, 362, 464–467. [Google Scholar] [CrossRef] [Green Version]
- Beckstead, R.M.; Morse, J.R.; Norgren, R. The nucleus of the solitary tract in the monkey: Projections to the thalamus and brain stem nuclei. J. Comp. Neurol. 1980, 190, 259–282. [Google Scholar] [CrossRef]
- Sved, A.F.; Ito, S.; Madden, C.J. Baroreflex dependent and independent roles of the caudal ventrolateral medulla in cardiovascular regulation. Brain Res. Bull. 2000, 51, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Ganchrow, D.; Ganchrow, J.R.; Cicchini, V.; Bartel, D.L.; Kaufman, D.; Girard, D.; Whitehead, M.C. Nucleus of the solitary tract in the C57BL/6J mouse: Subnuclear parcellation, chorda tympani nerve projections, and brainstem connections. J. Comp. Neurol. 2014, 522, 1565–1596. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Zhang, H.; Yu, J.; Wurster, R.D.; Gozal, D. Attenuation of baroreflex sensitivity after domoic acid lesion of the nucleus ambiguus of rats. J. Appl. Physiol. 2004, 96, 1137–1145. [Google Scholar] [CrossRef]
- Ross, C.A.; Ruggiero, D.A.; Park, D.H.; Joh, T.H.; Sved, A.F.; Fernandez-Pardal, J.; Saavedra, J.M.; Reis, D.J. Tonic vasomotor control by the rostral ventrolateral medulla: Effect of electrical or chemical stimulation of the area containing C1 adrenaline neurons on arterial pressure, heart rate, and plasma catecholamines and vasopressin. J. Neurosci. 1984, 4, 474–494. [Google Scholar] [CrossRef]
- Brown, D.L.; Guyenet, P.G. Electrophysiological study of cardiovascular neurons in the rostral ventrolateral medulla in rats. Circ. Res. 1985, 56, 359–369. [Google Scholar] [CrossRef] [Green Version]
- Moon, E.A.; Goodchild, A.K.; Pilowsky, P.M. Lateralisation of projections from the rostral ventrolateral medulla to sympathetic preganglionic neurons in the rat. Brain Res. 2002, 929, 181–190. [Google Scholar] [CrossRef]
- Herman, M.A.; Cruz, M.T.; Sahibzada, N.; Verbalis, J.; Gillis, R.A. GABA signaling in the nucleus tractus solitarius sets the level of activity in dorsal motor nucleus of the vagus cholinergic neurons in the vagovagal circuit. Am. J. Physiol. Gastrointest. Liver Physiol. 2009, 296, G101–G111. [Google Scholar] [CrossRef] [PubMed]
- Babic, T.; Browning, K.N.; Travagli, R.A. Differential organization of excitatory and inhibitory synapses within the rat dorsal vagal complex. Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 300, G21–G32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boychuk, C.R.; Smith, K.C.; Peterson, L.E.; Boychuk, J.A.; Butler, C.R.; Derera, I.D.; McCarthy, J.J.; Smith, B.N. A hindbrain inhibitory microcircuit mediates vagally-coordinated glucose regulation. Sci. Rep. 2019, 9, 2722. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, M.; Johnson, D.N.; Wang, L.A.; Harden, S.W.; Sheng, W.; Spector, E.A.; Elsaafien, K.; Bader, M.; Steckelings, U.M.; Scott, K.A.; et al. Targeting angiotensin type-2 receptors located on pressor neurons in the nucleus of the solitary tract to relieve hypertension in mice. Cardiovasc. Res. 2022, 118, 883–896. [Google Scholar] [CrossRef] [PubMed]
- Geis, G.S.; Wurster, R.D. Cardiac responses during stimulation of the dorsal motor nucleus and nucleus ambiguus in the cat. Circ. Res. 1980, 46, 606–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Z.; Powley, T.L.; Schwaber, J.S.; Doyle, F.J. Projections of the dorsal motor nucleus of the vagus to cardiac ganglia of rat atria: An anterograde tracing study. J. Comp. Neurol. 1999, 410, 320–341. [Google Scholar] [CrossRef]
- Machhada, A.; Ang, R.; Ackland, G.L.; Ninkina, N.; Buchman, V.L.; Lythgoe, M.F.; Trapp, S.; Tinker, A.; Marina, N.; Gourine, A.V. Control of ventricular excitability by neurons of the dorsal motor nucleus of the vagus nerve. Heart Rhythm 2015, 12, 2285–2293. [Google Scholar] [CrossRef] [Green Version]
- Rogers, R.C.; Kita, H.; Butcher, L.L.; Novin, D. Afferent projections to the dorsal motor nucleus of the vagus. Brain Res. Bull. 1980, 5, 365–373. [Google Scholar] [CrossRef]
- Davis, S.F.; Derbenev, A.V.; Williams, K.W.; Glatzer, N.R.; Smith, B.N. Excitatory and inhibitory local circuit input to the rat dorsal motor nucleus of the vagus originating from the nucleus tractus solitarius. Brain Res. 2004, 1017, 208–217. [Google Scholar] [CrossRef] [Green Version]
- Geerling, J.C.; Shin, J.-W.; Chimenti, P.C.; Loewy, A.D. Paraventricular hypothalamic nucleus: Axonal projections to the brainstem. J. Comp. Neurol. 2010, 518, 1460–1499. [Google Scholar] [CrossRef] [Green Version]
- Fulwiler, C.E.; Saper, C.B. Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res. 1984, 319, 229–259. [Google Scholar] [CrossRef] [PubMed]
- Krout, K.E.; Loewy, A.D. Parabrachial Nucleus Projections to Midline and Intralaminar Thalamic Nuclei of the Rat. Available online: https://onlinelibrary-wiley-com.lp.hscl.ufl.edu/doi/epdf/10.1002/1096-9861%2820001218%29428%3A3%3C475%3A%3AAID-CNE6%3E3.0.CO%3B2-9 (accessed on 1 July 2020).
- Davern, P.J. A role for the lateral parabrachial nucleus in cardiovascular function and fluid homeostasis. Front. Physiol. 2014, 5, 436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayward, L.F.; Felder, R.B. Lateral parabrachial nucleus modulates baroreflex regulation of sympathetic nerve activity. Am. J. Physiol. 1998, 274, R1274–R1282. [Google Scholar] [CrossRef] [PubMed]
- Anselmo-Franci, J.A.; Peres-Polon, V.L.; da Rocha-Barros, V.M.; Moreira, E.R.; Franci, C.R.; Rocha, M.J. C-fos expression and electrolytic lesions studies reveal activation of the posterior region of locus coeruleus during hemorrhage induced hypotension. Brain Res. 1998, 799, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Anselmo-Franci, J.A.; Rocha, M.J.; Peres-Polon, V.L.; Moreira, E.R.; Antunes-Rodrigues, J.; Rodrigues Franci, C. Role of the locus coeruleus on blood pressure response and atrial natriuretic peptide secretion following extracellular volume expansion. Brain Res. Bull. 1999, 50, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Singewald, N.; Kaehler, S.T.; Philippu, A. Noradrenaline release in the locus coeruleus of conscious rats is triggered by drugs, stress and blood pressure changes. Neuroreport 1999, 10, 1583–1587. [Google Scholar] [CrossRef]
- Benarroch, E.E. Insular cortex: Functional complexity and clinical correlations. Neurology 2019, 93, 932–938. [Google Scholar] [CrossRef]
- Sanchez-Larsen, A.; Principe, A.; Ley, M.; Navarro-Cuartero, J.; Rocamora, R. Characterization of the Insular Role in Cardiac Function through Intracranial Electrical Stimulation of the Human Insula. Ann. Neurol. 2021, 89, 1172–1180. [Google Scholar] [CrossRef]
- Alves, F.H.F.; Crestani, C.C.; Corrêa, F.M.A. The insular cortex modulates cardiovascular responses to acute restraint stress in rats. Brain Res. 2010, 1333, 57–63. [Google Scholar] [CrossRef]
- Alves, F.H.F.; Crestani, C.C.; Resstel, L.B.M.; Corrêa, F.M.A. Both α1- and α2-adrenoceptors in the insular cortex are involved in the cardiovascular responses to acute restraint stress in rats. PLoS ONE 2014, 9, e83900. [Google Scholar] [CrossRef] [Green Version]
- Ricardo, J.A.; Koh, E.T. Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Res. 1978, 153, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Affleck, V.S.; Coote, J.H.; Pyner, S. The projection and synaptic organisation of NTS afferent connections with presympathetic neurons, GABA and nNOS neurons in the paraventricular nucleus of the hypothalamus. Neuroscience 2012, 219, 48–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jhamandas, J.H.; Harris, K.H.; Petrov, T.; Krukoff, T.L. Characterization of the parabrachial nucleus input to the hypothalamic paraventricular nucleus in the rat. J. Neuroendocrinol. 1992, 4, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Saper, C.B.; Loewy, A.D.; Swanson, L.W.; Cowan, W.M. Direct hypothalamo-autonomic connections. Brain Res. 1976, 117, 305–312. [Google Scholar] [CrossRef]
- Yang, Z.; Coote, J.H. Influence of the hypothalamic paraventricular nucleus on cardiovascular neurones in the rostral ventrolateral medulla of the rat. J. Physiol. 1998, 513 Pt 2, 521–530. [Google Scholar] [CrossRef] [Green Version]
- Dampney, R.A.; Michelini, L.C.; Li, D.-P.; Pan, H.-L. Regulation of sympathetic vasomotor activity by the hypothalamic paraventricular nucleus in normotensive and hypertensive states. Am. J. Physiol. Heart Circ. Physiol. 2018, 315, H1200–H1214. [Google Scholar] [CrossRef] [Green Version]
- Duan, Y.F.; Kopin, I.J.; Goldstein, D.S. Stimulation of the paraventricular nucleus modulates firing of neurons in the nucleus of the solitary tract. Am. J. Physiol. 1999, 277, R403–R411. [Google Scholar] [CrossRef]
- Herman, J.P.; Figueiredo, H.; Mueller, N.K.; Ulrich-Lai, Y.; Ostrander, M.M.; Choi, D.C.; Cullinan, W.E. Central mechanisms of stress integration: Hierarchical circuitry controlling hypothalamo–pituitary–adrenocortical responsiveness. Front. Neuroendocrinol. 2003, 24, 151–180. [Google Scholar] [CrossRef]
- Myers, B. Corticolimbic regulation of cardiovascular responses to stress. Physiol. Behav. 2017, 172, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Lawler, J.E.; Obrist, P.A.; Lawler, K.A. Cardiovascular function during pre-avoidance, avoidance, and post-avoidance in dogs. Psychophysiology 1975, 12, 4–11. [Google Scholar] [CrossRef]
- Kvetnansky, R.; McCarty, R.; Thoa, N.B.; Lake, C.R.; Kopin, I.J. Sympatho-adrenal responses of spontaneously hypertensive rats to immobilization stress. Am. J. Physiol. 1979, 236, H457–H462. [Google Scholar] [CrossRef] [PubMed]
- Irvine, R.J.; White, J.; Chan, R. The influence of restraint on blood pressure in the rat. J. Pharmacol. Toxicol. Methods 1997, 38, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Tavares, R.F.; Corrêa, F.M.A. Role of the medial prefrontal cortex in cardiovascular responses to acute restraint in rats. Neuroscience 2006, 143, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Carrive, P. Dual activation of cardiac sympathetic and parasympathetic components during conditioned fear to context in the rat. Clin. Exp. Pharmacol. Physiol. 2006, 33, 1251–1254. [Google Scholar] [CrossRef]
- Hatton, D.C.; Brooks, V.; Qi, Y.; McCarron, D.A. Cardiovascular response to stress: Baroreflex resetting and hemodynamics. Am. J. Physiol. 1997, 272, R1588–R1594. [Google Scholar] [CrossRef]
- Coote, J.H.; Hilton, S.M.; Perez-Gonzalez, J.F. Inhibition of the baroreceptor reflex on stimulation in the brain stem defence centre. J. Physiol. 1979, 288, 549–560. [Google Scholar]
- Herman, J.P.; Ostrander, M.M.; Mueller, N.K.; Figueiredo, H. Limbic system mechanisms of stress regulation: Hypothalamo-pituitary-adrenocortical axis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2005, 29, 1201–1213. [Google Scholar] [CrossRef]
- Ulrich-Lai, Y.M.; Herman, J.P. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci. 2009, 10, 397–409. [Google Scholar] [CrossRef] [Green Version]
- Hall, M.; Vasko, R.; Buysse, D.; Ombao, H.; Chen, Q.; Cashmere, J.D.; Kupfer, D.; Thayer, J.F. Acute stress affects heart rate variability during sleep. Psychosom. Med. 2004, 66, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Hansen, A.L.; Johnsen, B.H.; Sollers, J.J.; Stenvik, K.; Thayer, J.F. Heart rate variability and its relation to prefrontal cognitive function: The effects of training and detraining. Eur. J. Appl. Physiol. 2004, 93, 263–272. [Google Scholar] [CrossRef]
- Lane, R.D.; McRae, K.; Reiman, E.M.; Chen, K.; Ahern, G.L.; Thayer, J.F. Neural correlates of heart rate variability during emotion. Neuroimage 2009, 44, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.; Thayer, J.F.; Khalsa, S.S.; Lane, R.D. The hierarchical basis of neurovisceral integration. Neurosci. Biobehav. Rev. 2017, 75, 274–296. [Google Scholar] [CrossRef] [PubMed]
- Ueno, Y.; Mohara, O.; Brosnihan, K.B.; Ferrario, C.M. Characteristics of hormonal and neurogenic mechanisms of deoxycorticosterone-induced hypertension. Hypertension 1988, 11, I172–I177. [Google Scholar] [CrossRef] [Green Version]
- Itaya, Y.; Suzuki, H.; Matsukawa, S.; Kondo, K.; Saruta, T. Central renin-angiotensin system and the pathogenesis of DOCA-salt hypertension in rats. Am. J. Physiol. 1986, 251, H261–H268. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-H.; Yu, Y.; Kang, Y.-M.; Wei, S.-G.; Felder, R.B. Aldosterone acts centrally to increase brain renin-angiotensin system activity and oxidative stress in normal rats. Am. J. Physiol. Heart Circ. Physiol. 2008, 294, H1067–H1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.-H.; Yu, Y.; Wei, S.-G.; Felder, R.B. Aldosterone-induced brain MAPK signaling and sympathetic excitation are angiotensin II type-1 receptor dependent. Am. J. Physiol. Heart Circ. Physiol. 2012, 302, H742–H751. [Google Scholar] [CrossRef] [PubMed]
- Bickerton, R.K.; Buckley, J.P. Evidence for a central mechanism in angiotensin induced hypertension. Exp. Biol. Med. 1961, 106, 834–836. [Google Scholar] [CrossRef]
- Carter, D.A.; Choong, Y.T.; Connelly, A.A.; Bassi, J.K.; Hunter, N.O.; Thongsepee, N.; Llewellyn-Smith, I.J.; Fong, A.Y.; McDougall, S.J.; Allen, A.M. Functional and neurochemical characterization of angiotensin type 1A receptor-expressing neurons in the nucleus of the solitary tract of the mouse. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017, 313, R438–R449. [Google Scholar] [CrossRef] [Green Version]
- Matsumura, K.; Averill, D.B.; Ferrario, C.M. Angiotensin II acts at AT1 receptors in the nucleus of the solitary tract to attenuate the baroreceptor reflex. Am. J. Physiol. 1998, 275, R1611–R1619. [Google Scholar] [CrossRef]
- Tan, P.S.P.; Killinger, S.; Horiuchi, J.; Dampney, R.A.L. Baroreceptor reflex modulation by circulating angiotensin II is mediated by AT1 receptors in the nucleus tractus solitarius. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 293, R2267–R2278. [Google Scholar] [CrossRef] [Green Version]
- Matsukawa, S.; Reid, I.A. Role of the area postrema in the modulation of the baroreflex control of heart rate by angiotensin II. Circ. Res. 1990, 67, 1462–1473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collister, J.P.; Hendel, M.D. Role of the subfornical organ in the chronic hypotensive response to losartan in normal rats. Hypertension 2003, 41, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.W.; Guyenet, P.G. Neuronal excitation by angiotensin II in the rostral ventrolateral medulla of the rat in vitro. Am. J. Physiol. 1995, 268, R272–R277. [Google Scholar] [CrossRef]
- Ito, S.; Komatsu, K.; Tsukamoto, K.; Kanmatsuse, K.; Sved, A.F. Ventrolateral medulla AT1 receptors support blood pressure in hypertensive rats. Hypertension 2002, 40, 552–559. [Google Scholar] [CrossRef] [Green Version]
- Henry, M.; Grob, M.; Mouginot, D. Endogenous angiotensin II facilitates GABAergic neurotransmission afferent to the Na+-responsive neurons of the rat median preoptic nucleus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 297, R783–R792. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Hiller, H.; Smith, J.A.; de Kloet, A.D.; Krause, E.G. Angiotensin type 1a receptors in the paraventricular nucleus of the hypothalamus control cardiovascular reactivity and anxiety-like behavior in male mice. Physiol. Genom. 2016, 48, 667–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Kloet, A.D.; Wang, L.; Pitra, S.; Hiller, H.; Smith, J.A.; Tan, Y.; Nguyen, D.; Cahill, K.M.; Sumners, C.; Stern, J.E.; et al. A Unique “Angiotensin-Sensitive” Neuronal Population Coordinates Neuroendocrine, Cardiovascular, and Behavioral Responses to Stress. J. Neurosci. 2017, 37, 3478–3490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Wei, S.-G.; Weiss, R.M.; Felder, R.B. Angiotensin II type 1a receptors in the subfornical organ modulate neuroinflammation in the hypothalamic paraventricular nucleus in heart failure rats. Neuroscience 2018, 381, 46–58. [Google Scholar] [CrossRef]
- Morris, M.; Alexander, N. Baroreceptor influences on oxytocin and vasopressin secretion. Hypertension 1989, 13, 110–114. [Google Scholar] [CrossRef] [Green Version]
- Cowley, A.W. Vasopressin and blood pressure regulation. Clin. Physiol. Biochem. 1988, 6, 150–162. [Google Scholar]
- Smith, J.A.; Eikenberry, S.A.; Scott, K.A.; Baumer-Harrison, C.; de Lartigue, G.; de Kloet, A.D.; Krause, E.G. Oxytocin and cardiometabolic interoception: Knowing oneself affects ingestive and social behaviors. Appetite 2022, 175, 106054. [Google Scholar] [CrossRef] [PubMed]
- Herman, J.P.; Nawreen, N.; Smail, M.A.; Cotella, E.M. Brain mechanisms of HPA axis regulation: Neurocircuitry and feedback in context Richard Kvetnansky lecture. Stress 2020, 23, 617–632. [Google Scholar] [CrossRef] [PubMed]
- Spiess, J.; Rivier, J.; Rivier, C.; Vale, W. Primary structure of corticotropin-releasing factor from ovine hypothalamus. Proc. Natl. Acad. Sci. USA 1981, 78, 6517–6521. [Google Scholar] [CrossRef]
- Handa, M.; Kondo, K.; Suzuki, H.; Saruta, T. Dexamethasone hypertension in rats: Role of prostaglandins and pressor sensitivity to norepinephrine. Hypertension 1984, 6, 236–241. [Google Scholar] [CrossRef] [Green Version]
- Couture, R.; Regoli, D. Vascular reactivity to angiotensin and noradrenaline in rats maintained on a sodium free diet or made hypertensive with desoxycorticosterone acetate and salt (DOCA/salt). Clin. Exp. Hypertens. 1980, 2, 25–43. [Google Scholar] [CrossRef] [PubMed]
- Kurland, G.S.; Freedberg, A.S. The potentiating effect of ACTH and of cortisone of pressor response to intravenous infusion of L-nor-epinephrine. Proc. Soc. Exp. Biol. Med. 1951, 78, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Pirpiris, M.; Sudhir, K.; Yeung, S.; Jennings, G.; Whitworth, J.A. Pressor responsiveness in corticosteroid-induced hypertension in humans. Hypertension 1992, 19, 567–574. [Google Scholar] [CrossRef] [Green Version]
- Glaviano, V.V.; Bass, N.; Nykiel, F. Adrenal medullary secretion of epinephrine and norepinephrine in dogs subjected to hemorrhagic hypotension. Circ. Res. 1960, 8, 564–571. [Google Scholar] [CrossRef] [Green Version]
- Schadt, J.C.; Ludbrook, J. Hemodynamic and neurohumoral responses to acute hypovolemia in conscious mammals. Am. J. Physiol. 1991, 260, H305–H318. [Google Scholar] [CrossRef]
- de Jong, W.; Nijkamp, F.P.; Bohus, B. Role of noradrenaline and serotonin in the central control of blood pressure in normotensive and spontaneously hypertensive rats. Arch. Int. Pharmacodyn. Ther. 1975, 213, 272–284. [Google Scholar]
- Berecek, K.H.; Brody, M.J. Evidence for a neurotransmitter role for epinephrine derived from the adrenal medulla. Am. J. Physiol. 1982, 242, H593–H601. [Google Scholar] [CrossRef] [PubMed]
- Toth, E.; Stelfox, J.; Kaufman, S. Cardiac control of salt appetite. Am. J. Physiol. 1987, 252, R925–R929. [Google Scholar] [CrossRef] [PubMed]
- De Gobbi, J.I.F.; Menani, J.V.; Beltz, T.G.; Johnson, R.F.; Thunhorst, R.L.; Johnson, A.K. Right atrial stretch alters fore- and hind-brain expression of c-fos and inhibits the rapid onset of salt appetite. J. Physiol. 2008, 586, 3719–3729. [Google Scholar] [CrossRef] [PubMed]
- Thunhorst, R.L.; Lewis, S.J.; Johnson, A.K. Effects of sinoaortic baroreceptor denervation on depletion-induced salt appetite. Am. J. Physiol. 1994, 267, R1043–R1049. [Google Scholar] [CrossRef]
- Rocha, M.J.; Callahan, M.F.; Morris, M. Baroreceptor regulation of salt intake. Brain Res. Bull. 1997, 42, 147–151. [Google Scholar] [CrossRef]
- McEwen, B.S. Protection and damage from acute and chronic stress: Allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Ann. N. Y. Acad. Sci. 2004, 1032, 1–7. [Google Scholar] [CrossRef]
- Crestani, C.C. Emotional stress and cardiovascular complications in animal models: A review of the influence of stress type. Front. Physiol. 2016, 7, 251. [Google Scholar] [CrossRef] [Green Version]
- Godoy, L.D.; Rossignoli, M.T.; Delfino-Pereira, P.; Garcia-Cairasco, N.; de Lima Umeoka, E.H. A comprehensive overview on stress neurobiology: Basic concepts and clinical implications. Front. Behav. Neurosci. 2018, 12, 127. [Google Scholar] [CrossRef] [Green Version]
- Joëls, M.; Karst, H.; Sarabdjitsingh, R.A. The stressed brain of humans and rodents. Acta Physiol. 2018, 223, e13066. [Google Scholar] [CrossRef]
- de Kloet, E.R.; Joëls, M.; Holsboer, F. Stress and the brain: From adaptation to disease. Nat. Rev. Neurosci. 2005, 6, 463–475. [Google Scholar] [CrossRef]
- Schneiderman, N.; Ironson, G.; Siegel, S.D. Stress and health: Psychological, behavioral, and biological determinants. Annu. Rev. Clin. Psychol. 2005, 1, 607–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golbidi, S.; Frisbee, J.C.; Laher, I. Chronic stress impacts the cardiovascular system: Animal models and clinical outcomes. Am. J. Physiol. Heart Circ. Physiol. 2015, 308, H1476–H1498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization (WHO). Hypertension. Available online: https://www.who.int/news-room/fact-sheets/detail/hypertension (accessed on 9 October 2022).
- World Health Organization (WHO). Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 27 September 2022).
- Helliwell, J.; Layard, R.; Sachs, J.D.; De Neve, J.; Ankin, L.B.; Wang, S. World Happiness Report 2022; Helliwell, J., Layard, R., Sachs, J.D., De Neve, J., Ankin, L.B., Wang, S., Eds.; Sustainable Development Solutions Netwrok: New York, NY, USA, 2022. [Google Scholar]
- Oliver, G.; Wardle, J. Perceived effects of stress on food choice. Physiol. Behav. 1999, 66, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Li, R.; Ren, X.; Cao, B.; Gao, X. Association between Perceived Levels of Stress and Self-Reported Food Preferences among Males and Females: A Stated Preference Approach Based on the China Health and Nutrition Survey. Front. Public Health 2022, 10, 850411. [Google Scholar] [CrossRef]
- Villela, P.T.M.; de-Oliveira, E.B.; Villela, P.T.M.; Bonardi, J.M.T.; Bertani, R.F.; Moriguti, J.C.; Ferriolli, E.; Lima, N.K.C. Salt preference is linked to hypertension and not to aging. Arq. Bras. Cardiol. 2019, 113, 392–399. [Google Scholar] [CrossRef]
- Park, D.C.; Yeo, J.H.; Ryu, I.Y.; Kim, S.H.; Jung, J.; Yeo, S.G. Differences in taste detection thresholds between normal-weight and obese young adults. Acta Oto-Laryngol. 2015, 135, 478–483. [Google Scholar] [CrossRef]
- Howell, L.A.; Harris, R.B.; Clarke, C.; Youngblood, B.D.; Ryan, D.H.; Gilbertson, T.A. The effects of restraint stress on intake of preferred and nonpreferred solutions in rodents. Physiol. Behav. 1999, 65, 697–704. [Google Scholar] [CrossRef]
- Ely, D.; Herman, M.; Ely, L.; Barrett, L.; Milsted, A. Sodium intake is increased by social stress and the Y chromosome and reduced by clonidine. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 278, R407–R412. [Google Scholar] [CrossRef]
- Leshem, M.; Maroun, M.; Del Canho, S. Sodium depletion and maternal separation in the suckling rat increase its salt intake when adult. Physiol. Behav. 1996, 59, 199–204. [Google Scholar] [CrossRef]
- Pollard, I.; Bassett, J.R.; Cairncross, K.D. Plasma glucocorticoid elevation and ultrastructural changes in the adenohypophysis of the male rat following prolonged exposure to stress. Neuroendocrinology 1976, 21, 312–330. [Google Scholar] [CrossRef]
- Schedlowski, M.; Wiechert, D.; Wagner, T.O.F.; Tewes, U. Acute psychological stress increases plasma levels of cortisol, prolactin and TSH. Life Sci. 1992, 50, 1201–1205. [Google Scholar] [CrossRef] [PubMed]
- Bowers, S.L.; Bilbo, S.D.; Dhabhar, F.S.; Nelson, R.J. Stressor-specific alterations in corticosterone and immune responses in mice. Brain Behav. Immun. 2008, 22, 105–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cay, M.; Ucar, C.; Senol, D.; Cevirgen, F.; Ozbag, D.; Altay, Z.; Yildiz, S. Effect of increase in cortisol level due to stress in healthy young individuals on dynamic and static balance scores. North. Clin. Istanb. 2018, 5, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Denton, D.A.; Blair-West, J.R.; McBurnie, M.I.; Miller, J.A.; Weisinger, R.S.; Williams, R.M. Effect of adrenocorticotrophic hormone on sodium appetite in mice. Am. J. Physiol. 1999, 277, R1033–R1040. [Google Scholar] [CrossRef] [PubMed]
- Saavedra, J.M.; Benicky, J. Brain and peripheral angiotensin II play a major role in stress. Stress 2007, 10, 185–193. [Google Scholar] [CrossRef]
- Krause, E.G.; de Kloet, A.D.; Scott, K.A.; Flak, J.N.; Jones, K.; Smeltzer, M.D.; Ulrich-Lai, Y.M.; Woods, S.C.; Wilson, S.P.; Reagan, L.P.; et al. Blood-borne angiotensin II acts in the brain to influence behavioral and endocrine responses to psychogenic stress. J. Neurosci. 2011, 31, 15009–15015. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.B.; Friese, M.; Dolgoy, L.; Sita, A.; Lavoie, K.; Campbell, T. Hostility, sodium consumption, and cardiovascular response to interpersonal stress. Psychosom. Med. 1998, 60, 71–77. [Google Scholar] [CrossRef]
- Oliver, G.; Wardle, J.; Gibson, E.L. Stress and food choice: A laboratory study. Psychosom. Med. 2000, 62, 853–865. [Google Scholar] [CrossRef]
- Zellner, D.A.; Loaiza, S.; Gonzalez, Z.; Pita, J.; Morales, J.; Pecora, D.; Wolf, A. Food selection changes under stress. Physiol. Behav. 2006, 87, 789–793. [Google Scholar] [CrossRef]
- Al’Absi, M.; Nakajima, M.; Hooker, S.; Wittmers, L.; Cragin, T. Exposure to acute stress is associated with attenuated sweet taste. Psychophysiology 2012, 49, 96–103. [Google Scholar] [CrossRef] [Green Version]
- Ileri-Gurel, E.; Pehlivanoglu, B.; Dogan, M. Effect of acute stress on taste perception: In relation with baseline anxiety level and body weight. Chem. Senses 2013, 38, 27–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krause, E.G.; de Kloet, A.D.; Flak, J.N.; Smeltzer, M.D.; Solomon, M.B.; Evanson, N.K.; Woods, S.C.; Sakai, R.R.; Herman, J.P. Hydration state controls stress responsiveness and social behavior. J. Neurosci. 2011, 31, 5470–5476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, J.A.; Wang, L.; Hiller, H.; Taylor, C.T.; de Kloet, A.D.; Krause, E.G. Acute hypernatremia promotes anxiolysis and attenuates stress-induced activation of the hypothalamic-pituitary-adrenal axis in male mice. Physiol. Behav. 2014, 136, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Frazier, C.J.; Pati, D.; Hiller, H.; Nguyen, D.; Wang, L.; Smith, J.A.; MacFadyen, K.; de Kloet, A.D.; Krause, E.G. Acute hypernatremia exerts an inhibitory oxytocinergic tone that is associated with anxiolytic mood in male rats. Endocrinology 2013, 154, 2457–2467. [Google Scholar] [CrossRef] [PubMed]
- Pati, D.; Harden, S.W.; Sheng, W.; Kelly, K.B.; de Kloet, A.D.; Krause, E.G.; Frazier, C.J. Endogenous oxytocin inhibits hypothalamic corticotrophin-releasing hormone neurones following acute hypernatraemia. J. Neuroendocrinol. 2020, 32, e12839. [Google Scholar] [CrossRef]
- Kulkarni, S.; O’Farrell, I.; Erasi, M.; Kochar, M.S. Stress and hypertension. WMJ 1998, 97, 34–38. [Google Scholar]
- Spruill, T.M. Chronic psychosocial stress and hypertension. Curr. Hypertens. Rep. 2010, 12, 10–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, K.A.; Melhorn, S.J.; Sakai, R.R. Effects of chronic social stress on obesity. Curr. Obes. Rep. 2012, 1, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Koski, M.; Naukkarinen, H. The Relationship between Stress and Severe Obesity: A Case-Control Study. Biomed. Hub 2017, 2, 458771. [Google Scholar] [CrossRef]
- van der Valk, E.S.; Savas, M.; van Rossum, E.F.C. Stress and obesity: Are there more susceptible individuals? Curr. Obes. Rep. 2018, 7, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Inoue, K.; Horwich, T.; Bhatnagar, R.; Bhatt, K.; Goldwater, D.; Seeman, T.; Watson, K.E. Urinary Stress Hormones, Hypertension, and Cardiovascular Events: The Multi-Ethnic Study of Atherosclerosis. Hypertension 2021, 78, 1640–1647. [Google Scholar] [CrossRef] [PubMed]
- Iams, S.G.; McMurthy, J.P.; Wexler, B.C. Aldosterone, deoxycorticosterone, corticosterone, and prolactin changes during the lifespan of chronically and spontaneously hypertensive rats. Endocrinology 1979, 104, 1357–1363. [Google Scholar] [CrossRef] [PubMed]
- Watlington, C.O.; Kramer, L.B.; Schuetz, E.G.; Zilai, J.; Grogan, W.M.; Guzelian, P.; Gizek, F.; Schoolwerth, A.C. Corticosterone 6 beta-hydroxylation correlates with blood pressure in spontaneously hypertensive rats. Am. J. Physiol. 1992, 262, F927–F931. [Google Scholar] [CrossRef]
- Livingstone, D.E.; Jones, G.C.; Smith, K.; Jamieson, P.M.; Andrew, R.; Kenyon, C.J.; Walker, B.R. Understanding the role of glucocorticoids in obesity: Tissue-specific alterations of corticosterone metabolism in obese Zucker rats. Endocrinology 2000, 141, 560–563. [Google Scholar] [CrossRef]
- Gold, S.M.; Dziobek, I.; Rogers, K.; Bayoumy, A.; McHugh, P.F.; Convit, A. Hypertension and hypothalamo-pituitary-adrenal axis hyperactivity affect frontal lobe integrity. J. Clin. Endocrinol. Metab. 2005, 90, 3262–3267. [Google Scholar] [CrossRef] [PubMed]
- Akalestou, E.; Genser, L.; Rutter, G.A. Glucocorticoid metabolism in obesity and following weight loss. Front. Endocrinol. 2020, 11, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werdermann, M.; Berger, I.; Scriba, L.D.; Santambrogio, A.; Schlinkert, P.; Brendel, H.; Morawietz, H.; Schedl, A.; Peitzsch, M.; King, A.J.F.; et al. Insulin and obesity transform hypothalamic-pituitary-adrenal axis stemness and function in a hyperactive state. Mol. Metab. 2021, 43, 101112. [Google Scholar] [CrossRef] [PubMed]
- Erin, A.; Rotar, O.; Kolesova, E.; Boyarinova, M.; Alieva, A.; Moguchaia, E.; Baranova, E.; Konradi, A.; Shlyakhto, E. The relationship of cortisol levels with high blood pressure in residents of St. Petersburg. J. Hypertens. 2021, 39, e240. [Google Scholar] [CrossRef]
- Skrandies, W.; Zschieschang, R. Olfactory and gustatory functions and its relation to body weight. Physiol. Behav. 2015, 142, 1–4. [Google Scholar] [CrossRef]
- Hardikar, S.; Höchenberger, R.; Villringer, A.; Ohla, K. Higher sensitivity to sweet and salty taste in obese compared to lean individuals. Appetite 2017, 111, 158–165. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, A.; Choo, E.; Koh, A.; Dando, R. Inflammation arising from obesity reduces taste bud abundance and inhibits renewal. PLoS Biol. 2018, 16, e2001959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardikar, S.; Wallroth, R.; Villringer, A.; Ohla, K. Shorter-lived neural taste representations in obese compared to lean individuals. Sci. Rep. 2018, 8, 11027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, M.S.; Hajnal, A.; Czaja, K.; Di Lorenzo, P.M. Taste responses in the nucleus of the solitary tract of awake obese rats are blunted compared with those in lean rats. Front. Integr. Neurosci. 2019, 13, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, R.; McFarlane-Anderson, N.; Bennett, F.I.; Wilks, R.; Puras, A.; Tewksbury, D.; Ward, R.; Forrester, T. ACE, angiotensinogen and obesity: A potential pathway leading to hypertension. J. Hum. Hypertens. 1997, 11, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Bruce, E.B.; de Kloet, A.D. The intricacies of the renin-angiotensin-system in metabolic regulation. Physiol. Behav. 2017, 178, 157–165. [Google Scholar] [CrossRef]
- Lawson, E.A.; Olszewski, P.K.; Weller, A.; Blevins, J.E. The role of oxytocin in regulation of appetitive behaviour, body weight and glucose homeostasis. J. Neuroendocrinol. 2020, 32, e12805. [Google Scholar] [CrossRef]
- Zhang, G.; Bai, H.; Zhang, H.; Dean, C.; Wu, Q.; Li, J.; Guariglia, S.; Meng, Q.; Cai, D. Neuropeptide exocytosis involving synaptotagmin-4 and oxytocin in hypothalamic programming of body weight and energy balance. Neuron 2011, 69, 523–535. [Google Scholar] [CrossRef] [Green Version]
- Qian, W.; Zhu, T.; Tang, B.; Yu, S.; Hu, H.; Sun, W.; Pan, R.; Wang, J.; Wang, D.; Yang, L.; et al. Decreased circulating levels of oxytocin in obesity and newly diagnosed type 2 diabetic patients. J. Clin. Endocrinol. Metab. 2014, 99, 4683–4689. [Google Scholar] [CrossRef] [Green Version]
- Aneja, A.; El-Atat, F.; McFarlane, S.I.; Sowers, J.R. Hypertension and obesity. Recent Prog. Horm. Res. 2004, 59, 169–205. [Google Scholar] [CrossRef] [Green Version]
- Seravalle, G.; Grassi, G. Obesity and hypertension. Pharmacol. Res. 2017, 122, 1–7. [Google Scholar] [CrossRef]
- Fallis, N.; Lasagna, L.; Tétreault, L. Gustatory Thresholds in Patients with Hypertension. Nature 1962, 196, 74–75. [Google Scholar] [CrossRef]
- Wotman, S.; Mandel, I.D.; Thompson, R.H.; Laragh, J.H. Salivary electrolytes and salt taste thresholds in hypertension. J. Chronic Dis. 1967, 20, 833–840. [Google Scholar] [CrossRef] [PubMed]
- Bisht, D.B.; Krishnamurthy, M.; Rangaswamy, R. Studies on threshold of taste for salt with special reference to hypertension. Indian Heart J. 1971, 23, 137–140. [Google Scholar] [PubMed]
- Málaga, S.; Díaz, J.J.; Arguelles, J.; Perillán, C.; Málaga, I.; Vijande, M. Blood pressure relates to sodium taste sensitivity and discrimination in adolescents. Pediatr. Nephrol. 2003, 18, 431–434. [Google Scholar] [CrossRef] [PubMed]
- Bernard, R.A.; Doty, R.L.; Engelman, K.; Weiss, R.A. Taste and salt intake in human hypertension. In Biological and Behavioral Aspects of Salt Intake; Elsevier: Amsterdam, The Netherlands, 1980; pp. 397–409. ISBN 9780123977502. [Google Scholar]
- De Jong, W.; Lovenberg, W.; Sjoerdsma, A. Increased plasma renin activity in the spontaneously hypertensive rat. Proc. Soc. Exp. Biol. Med. 1972, 139, 1213–1216. [Google Scholar] [CrossRef]
- Pereira, E.D.; Faria, A.M.; Andrade-Franzé, G.M.F.; Menani, J.V.; De Luca, L.A.; Andrade, C.A.F. Sodium palatability in male spontaneously hypertensive rats. Horm. Behav. 2021, 130, 104952. [Google Scholar] [CrossRef]
- Ostchega, Y.; Fryar, C.D.; Nwankwo, T.; Nguyen, D.T. Hypertension Prevalence among Adults Aged 18 and Over: United States, 2017–2018; NCHS Data Brief; DHHS Publication: Bethesda, MD, USA, 2020; pp. 1–8. [Google Scholar]
- Sinclair, A.J.; Abdelhafiz, A.H. Cardiometabolic disease in the older person: Prediction and prevention for the generalist physician. Cardiovasc. Endocrinol. Metab. 2020, 9, 90–95. [Google Scholar] [CrossRef]
- Mojet, J.; Christ-Hazelhof, E.; Heidema, J. Taste perception with age: Generic or specific losses in threshold sensitivity to the five basic tastes? Chem. Senses 2001, 26, 845–860. [Google Scholar] [CrossRef] [Green Version]
- Fukunaga, A.; Uematsu, H.; Sugimoto, K. Influences of aging on taste perception and oral somatic sensation. J. Gerontol. A Biol. Sci. Med. Sci. 2005, 60, 109–113. [Google Scholar] [CrossRef]
- Grzegorczyk, P.B.; Jones, S.W.; Mistretta, C.M. Age-related differences in salt taste acuity. J. Gerontol. 1979, 34, 834–840. [Google Scholar] [CrossRef]
- Whiddon, Z.D.; Rynberg, S.T.; Mast, T.G.; Breza, J.M. Aging Decreases Chorda-Tympani Nerve Responses to NaCl and Alters Morphology of Fungiform Taste Pores in Rats. Chem. Senses 2018, 43, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Head, G.A. Cardiac baroreflexes and hypertension. Clin. Exp. Pharmacol. Physiol. 1994, 21, 791–802. [Google Scholar] [CrossRef] [PubMed]
- Honzíková, N.; Fiser, B. Baroreflex sensitivity and essential hypertension in adolescents. Physiol. Res. 2009, 58, 605–612. [Google Scholar] [CrossRef]
- Mancia, G.; Grassi, G. The autonomic nervous system and hypertension. Circ. Res. 2014, 114, 1804–1814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buñag, R.D.; Eriksson, L.; Krizsan, D. Baroreceptor reflex impairment and mild hypertension in rats with dietary-induced obesity. Hypertension 1990, 15, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Skrapari, I.; Tentolouris, N.; Perrea, D.; Bakoyiannis, C.; Papazafiropoulou, A.; Katsilambros, N. Baroreflex sensitivity in obesity: Relationship with cardiac autonomic nervous system activity. Obesity 2007, 15, 1685–1693. [Google Scholar] [CrossRef]
- Young, C.N.; Davisson, R.L. Angiotensin-II, the Brain, and Hypertension: An Update. Hypertension 2015, 66, 920–926. [Google Scholar] [CrossRef] [Green Version]
- Saxena, T.; Ali, A.O.; Saxena, M. Pathophysiology of essential hypertension: An update. Expert Rev. Cardiovasc. Ther. 2018, 16, 879–887. [Google Scholar] [CrossRef]
- Shanks, J.; Ramchandra, R. Angiotensin II and the cardiac parasympathetic nervous system in hypertension. Int. J. Mol. Sci. 2021, 22, 12305. [Google Scholar] [CrossRef]
- Gutkind, J.S.; Kurihara, M.; Castren, E.; Saavedra, J.M. Increased concentration of angiotensin II binding sites in selected brain areas of spontaneously hypertensive rats. J. Hypertens. 1988, 6, 79–84. [Google Scholar] [CrossRef]
- Dai, S.-Y.; Peng, W.; Zhang, Y.-P.; Li, J.-D.; Shen, Y.; Sun, X.-F. Brain endogenous angiotensin II receptor type 2 (AT2-R) protects against DOCA/salt-induced hypertension in female rats. J. Neuroinflamm. 2015, 12, 47. [Google Scholar] [CrossRef] [Green Version]
- Geerling, J.C.; Sequeira, S.M.; Loewy, A.D. Increased number of aldosterone-sensitive NTS neurons in Dahl salt-sensitive rats. Brain Res. 2005, 1065, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.; Keller, M.; Sundberg, D.K. Changes in paraventricular vasopressin and oxytocin during the development of spontaneous hypertension. Hypertension 1983, 5, 476–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaida, W.; Lang, R.E.; Kraft, K.; Unger, T.; Ganten, D. Altered neuropeptide concentrations in spontaneously hypertensive rats: Cause or consequence? Clin. Sci. 1985, 68, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.S.; Crescenzi, A.; Stern, J.E.; Bordin, S.; Michelini, L.C. Hypertension and exercise training differentially affect oxytocin and oxytocin receptor expression in the brain. Hypertension 2005, 46, 1004–1009. [Google Scholar] [CrossRef] [PubMed]
- Higa-Taniguchi, K.T.; Felix, J.V.C.; Michelini, L.C. Brainstem oxytocinergic modulation of heart rate control in rats: Effects of hypertension and exercise training. Exp. Physiol. 2009, 94, 1103–1113. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baumer-Harrison, C.; Breza, J.M.; Sumners, C.; Krause, E.G.; de Kloet, A.D. Sodium Intake and Disease: Another Relationship to Consider. Nutrients 2023, 15, 535. https://doi.org/10.3390/nu15030535
Baumer-Harrison C, Breza JM, Sumners C, Krause EG, de Kloet AD. Sodium Intake and Disease: Another Relationship to Consider. Nutrients. 2023; 15(3):535. https://doi.org/10.3390/nu15030535
Chicago/Turabian StyleBaumer-Harrison, Caitlin, Joseph M. Breza, Colin Sumners, Eric G. Krause, and Annette D. de Kloet. 2023. "Sodium Intake and Disease: Another Relationship to Consider" Nutrients 15, no. 3: 535. https://doi.org/10.3390/nu15030535
APA StyleBaumer-Harrison, C., Breza, J. M., Sumners, C., Krause, E. G., & de Kloet, A. D. (2023). Sodium Intake and Disease: Another Relationship to Consider. Nutrients, 15(3), 535. https://doi.org/10.3390/nu15030535