Neurobehavioral Mechanisms of Sodium Appetite
Abstract
:1. Introduction
1.1. Sodium Homeostasis
1.2. Sodium Preference and Sodium Appetite
1.3. Sodium in the Environment
“In large areas of the planet, as a result of meteorological conditions, there is very little sodium. Accordingly, for a wide diversity of animal species in different ecological niches, there is great survival value in the possession of effective mechanisms for acquisition of salt, and of endocrine mechanisms for its retention in the body”(Denton, 1982, p1)
1.4. Procedures That Induce Sodium Appetite
2. Materials and Methods
2.1. Brain Mechanisms and Sodium Appetite
2.2. Hindbrain Mechanisms
2.3. Forebrain Mechanisms
2.4. Integration of Brain Systems
3. Summary and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAV | Adeno-associated virus |
ACTH | Adrenocorticotrophic hormone |
ADH | Antidiuretic hormone |
ANG II | Angiotensin II |
AP | Area postrema |
AT1R | Angiotensin II type 1 receptor |
BNST | Bed nucleus of the stria terminalis |
CeA | Central nucleus of amygdala |
CNO | Clozapine-N-oxide |
ECF | Extracellular fluid |
EPSP | Excitatory postsynaptic potential |
Fos-ir | Fos-like immunoreactivity |
HSD2 | Hydroxysteroid dehydrogenase type 2 |
ICF | Intracellular fluid |
LC | Locus coeruleus |
MnPO | Median preoptic nucleus |
NST | Nucleus of the solitary tract |
OVLT | Organum vasculosum of the lamina terminalis |
PBN | Parabrachial nucleus |
PRA | Plasma renin activity |
PVN | Paraventricular nucleus of the hypothalamus |
SDD | Sodium deficient diet |
SFO | Subfornical organ |
References
- Rowland, N.E. Thirst and Body Fluid Regulation: From Nephron to Neuron; Cambridge University Press: Cambridge, UK, 2022; 274p. [Google Scholar]
- Bourque, C.W. Central mechanisms of osmosensation and systemic osmoregulation. Nat. Rev. Neurosci. 2008, 9, 519–531. [Google Scholar] [CrossRef] [PubMed]
- Balzer, M.S.; Rohacs, T.; Susztak, K. How Many Cell Types Are in the Kidney and What Do They Do? Annu. Rev. Physiol. 2022, 84, 507–531. [Google Scholar] [CrossRef] [PubMed]
- Fyhrquist, F.; Saijonmaa, O. Renin-angiotensin system revisited. J. Intern. Med. 2008, 264, 224–236. [Google Scholar] [CrossRef] [PubMed]
- Baker, L.B. Physiology of sweat gland function: The roles of sweating and sweat composition in human health. Temperature 2019, 6, 211–259. [Google Scholar] [CrossRef] [Green Version]
- Fregly, M.J.; Rowland, N.E. Role of renin-angiotensin-aldosterone system in NaCl appetite of rats. Am. J. Physiol. Integr. Comp. Physiol. 1985, 248, R1–R11. [Google Scholar] [CrossRef]
- Stricker, E.M.; Wolf, G. Behavioral control of intravascular fluid volume: Thirst and sodium appetite. Ann. New York Acad. Sci. 1969, 157, 553–568. [Google Scholar] [CrossRef]
- Denton, D.A. The Hunger for Salt: An Anthropological, Physiological and Medical Analysis; Springer: Berlin/Heidelberg, Germany, 1982; 650p. [Google Scholar]
- Rodgers, W.L. Specificity of specific hungers. J. Comp. Physiol. Psychol. 1967, 64, 49–58. [Google Scholar] [CrossRef]
- Bertino, M.; Tordoff, M.G. Sodium depletion increases rats’ preferences for salted food. Behav. Neurosci. 1988, 102, 565–573. [Google Scholar] [CrossRef]
- Jalowiec, J.E. Sodium appetite elicited by furosemide: Effects of differential dietary maintenance. Behav. Biol. 1974, 10, 313–327. [Google Scholar] [CrossRef]
- Wolf, G.; Schulkin, J.; Simson, P.E. Multiple factors in the satiation of salt appetite. Behav. Neurosci. 1984, 98, 661–673. [Google Scholar] [CrossRef]
- Colbert, C.L.; Rowland, N.E. Sodium preference and appetite in rats in an operant protocol. Physiol. Behav. 2005, 83, 715–721. [Google Scholar] [CrossRef]
- Rowland, N.E.; Farnbauch, L.J.; Crews, E.C. Sodium deficiency and salt appetite in ICR:CD1 mice. Physiol. Behav. 2004, 80, 629–635. [Google Scholar] [CrossRef]
- Lundy, R.F.; Blair, M.; Horvath, N.; Norgren, R. Furosemide, sodium appetite, and ingestive behavior. Physiol. Behav. 2003, 78, 449–458. [Google Scholar] [CrossRef]
- Rowland, N.E.; Morian, K.R. Roles of aldosterone and angiotensin in maturation of sodium appetite in furosemide-treated rats. Am. J. Physiol. Integr. Comp. Physiol. 1999, 276, R1453–R1460. [Google Scholar] [CrossRef]
- Lopes-Menezes, V.C.; Dos-Santos, R.C.; Felintro, V.; Monteiro, L.R.N.; Paes-Leme, B.; Lustrino, D.; Casartelli, E.A.; Vivas, L.; Mecawi, A.S.; Reis, L.C. Acute body sodium depletion induces skin sodium mobilization in female Wistar rats. Exp. Physiol. 2019, 104, 1754–1761. [Google Scholar] [CrossRef]
- Hew-Butler, T.; Stuempfle, K.; Hoffman, M. Bone: An Acute Buffer of Plasma Sodium During Exhaustive Exercise? Horm. Metab. Res. 2013, 45, 697–700. [Google Scholar] [CrossRef] [Green Version]
- Rowland, N.E.; Fregly, M.J. Repletion of acute sodium deficit in rats drinking either low or high concentrations of sodium chloride solution. Am. J. Physiol. Integr. Comp. Physiol. 1992, 262, R419–R425. [Google Scholar] [CrossRef]
- Starr, L.J.; Rowland, N.E. Characteristics of salt appetite in chronically sodium-depleted rats using a progressive ratio schedule of procurement. Physiol. Behav. 2006, 88, 433–442. [Google Scholar] [CrossRef]
- Epstein, A.N. Mineralocorticoids and cerebral angiotensin may act together to produce sodium appetite. Peptides 1982, 3, 493–494. [Google Scholar] [CrossRef]
- Fluharty, S.J.; Epstein, A.N. Sodium appetite elicited by intracerebroventricular infusion of angiotensin II in the rat: II. Synergistic interaction with systemic mineralocorticoids. Behav. Neurosci. 1983, 97, 746–758. [Google Scholar] [CrossRef]
- Fitts, D.A.; Tjepkes, D.S.; Bright, R.O. Salt appetite and lesions of the ventral part of the ventral median preoptic nucleus. Behav. Neurosci. 1990, 104, 818–827. [Google Scholar] [CrossRef] [PubMed]
- Starbuck, E.M.; Lane, J.R.; Fitts, D.A. Interaction of hydration and subfornical organ lesions in sodium-depletion induced salt appetite. Behav. Neurosci. 1997, 111, 206–213. [Google Scholar] [CrossRef]
- Weisinger, R.; Denton, D.; Di Nicolantonio, R.; Hards, D.; McKinley, M.; Oldfield, B.; Osborne, P. Subfornical organ lesion decreases sodium appetite in the sodium-depleted rat. Brain Res. 1990, 526, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Ruhf, A.; Starbuck, E.M.; A Fitts, D. Effects of SFO lesions on salt appetite during multiple sodium depletions. Physiol. Behav. 2001, 74, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Grill, H.J.; Schulkin, J.; Flynn, F.W. Sodium homeostasis in chronic decerebrate rats. Behav. Neurosci. 1986, 100, 536–543. [Google Scholar] [CrossRef] [PubMed]
- Lucas, L.R.; Grillo, C.A.; McEwen, B.S. Involvement of Mesolimbic Structures in Short-Term Sodium Depletion: In situ Hybridization and Ligand-Binding Analyses. Neuroendocrinology 2003, 77, 406–415. [Google Scholar] [CrossRef]
- Lucas, L.R.; Grillo, C.A.; McEwen, B.S. Salt Appetite in Sodium-Depleted or Sodium-Replete Conditions: Possible Role of Opioid Receptors. Neuroendocrinology 2007, 85, 139–147. [Google Scholar] [CrossRef]
- Voorhies, A.C.; Bernstein, I.L. Induction and expression of salt appetite: Effects on Fos expression in nucleus accumbens. Behav. Brain Res. 2006, 172, 90–96. [Google Scholar] [CrossRef]
- Leshem, M.; Kavushansky, A.; Devys, J.-M.; Thornton, S. Enhancement revisited: The effects of multiple depletions on sodium intake in rats vary with strain, substrain, and gender. Physiol. Behav. 2004, 82, 571–580. [Google Scholar] [CrossRef]
- Roitman, M.F.; Na, E.; Anderson, G.; James, T.A.; Bernstein, I.L. Induction of a salt appetite alters dendritic morphology in nucleus accumbens and sensitizes rats to amphetamine. J. Neurosci. 2002, 22, 225. [Google Scholar] [CrossRef]
- Geerling, J.C.; Kawata, M.; Loewy, A.D. Aldosterone-sensitive neurons in the rat central nervous system. J. Comp. Neurol. 2006, 494, 515–527. [Google Scholar] [CrossRef]
- Geerling, J.C. Aldosterone Target Neurons in the Nucleus Tractus Solitarius Drive Sodium Appetite. J. Neurosci. 2006, 26, 411–417. [Google Scholar] [CrossRef] [Green Version]
- Formenti, S.; Bassi, M.; Nakamura, N.B.; Schoorlemmer, G.; Menani, J.V.; Colombari, E. Hindbrain mineralocorticoid mechanisms on sodium appetite. Am. J. Physiol. Integr. Comp. Physiol. 2013, 304, R252–R259. [Google Scholar] [CrossRef] [Green Version]
- Jarvie, B.C.; Palmiter, R.D. HSD2 neurons in the hindbrain drive sodium appetite. Nat. Neurosci. 2017, 20, 167–169. [Google Scholar] [CrossRef]
- Resch, J.M.; Fenselau, H.; Madara, J.C.; Wu, C.; Campbell, J.N.; Lyubetskaya, A.; Dawes, B.A.; Tsai, L.T.; Li, M.M.; Livneh, Y.; et al. Aldosterone-Sensing Neurons in the NTS Exhibit State-Dependent Pacemaker Activity and Drive Sodium Appetite via Synergy with Angiotensin II Signaling. Neuron 2017, 96, 190–206.e7. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, T.; Hiyama, T.; Niimura, F.; Matsusaka, T.; Fukamizu, A.; Kobayashi, K.; Kobayashi, K.; Noda, M. Distinct neural mechanisms for the control of thirst and salt appetite in the subfornical organ. Nat. Neurosci. 2017, 20, 230–241. [Google Scholar] [CrossRef]
- Rowland, N.E.; Rozelle, A.; Riley, P.J.; Fregly, M.J. Effect of nonpeptide angiotensin receptor antagonists on water intake and salt appetite in rats. Brain Res. Bull. 1992, 29, 389–393. [Google Scholar] [CrossRef]
- Rowland, N.E. Brain mechanisms of mammalian fluid homeostasis: Insights from use of immediate early gene mapping. Neurosci. Biobehav. Rev. 1998, 23, 49–63. [Google Scholar] [CrossRef]
- Rowland, N.E.; Goldstein, B.E.; Robertson, K.L. Role of angiotensin in body fluid homeostasis of mice: Fluid intake, plasma hormones, and brain Fos. Am. J. Physiol. Integr. Comp. Physiol. 2003, 284, R1586–R1594. [Google Scholar] [CrossRef] [Green Version]
- Vivas, L.; Pastuskovas, C.V.; Tonelli, L. Sodium depletion induces Fos immunoreactivity in circumventricular organs of the lamina terminalis. Brain Res. 1995, 679, 34–41. [Google Scholar] [CrossRef]
- Crews, E.C.; Rowland, N.E. Role of angiotensin in body fluid homeostasis of mice: Effect of losartan on water and NaCl intakes. Am. J. Physiol. Integr. Comp. Physiol. 2005, 288, R638–R644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, R.F.; Beltz, T.G.; Thunhorst, R.L.; Johnson, A.K. Investigations on the physiological controls of water and saline intake in C57BL/6 mice. Am. J. Physiol. Integr. Comp. Physiol. 2003, 285, R394–R403. [Google Scholar] [CrossRef] [PubMed]
- Rowland, N.E.; Fregly, M.J. Characteristics of thirst and sodium appetite in mice (Mus musculus). Behav. Neurosci. 1988, 102, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Gasparini, S.; Resch, J.M.; Gore, A.M.; Peltekian, L.; Geerling, J.C. Pre-locus coeruleus neurons in rat and mouse. Am. J. Physiol. Integr. Comp. Physiol. 2021, 320, R342–R361. [Google Scholar] [CrossRef]
- Lee, S.; Augustine, V.; Zhao, Y.; Ebisu, H.; Ho, B.; Okay, Y. Chemosensory modulation of neural circuits for sodium appetite. Nature 2019, 568, 93–97. [Google Scholar] [CrossRef]
- Davern, P.J.; McKinley, M.J. Forebrain regions affected by lateral parabrachial nucleus serotonergic mechanisms that influence sodium appetite. Brain Res. 2010, 1339, 41–48. [Google Scholar] [CrossRef]
- Menani, J.V.; De Luca, L.A.; Johnson, A.K. Role of the lateral parabrachial nucleus in the control of sodium appetite. Am. J. Physiol. Integr. Comp. Physiol. 2014, 306, R201–R210. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Williams, K.W.; Liu, C.; Sohn, J.-W. A neural basis for tonic suppression of sodium appetite. Nat. Neurosci. 2020, 23, 423–432. [Google Scholar] [CrossRef]
Salt Level b | Depleted | Non-Depleted |
---|---|---|
0.5% | 4.2 (78%) c | 1.2 (37%) |
1% | 3.8 (79%) | 1.2 (40%) |
2% | 3.1 (82%) | 0.8 (29%) |
4% | 2.0 (67%) | 0.8 (25%) |
8% | 1.8 (60%) | 0.1 (4%) |
Time (h) Since Furosemide | 0 b | 3 | 12 | 24 |
---|---|---|---|---|
Plasma aldosterone (pg/mL) | 220 | 510 * | 1200 * | 1050 * |
Plasma renin activity (ng AI/mL/h) | 1 | 33 * | 14 * | 10 * |
Plasma protein (g/dL) | 8.6 | 9.2 * | 9.0 * | 8.8 |
Fos-ir in SFO (max. cells/section) | 0 | 220 * | 140 * | 200 * |
Fos-ir in OVLT (max. cells/section) | 0 | 125 * | 60 * | 150 * |
Intake (ml) 0.3M NaCl in 1 h | 1.5 | 4.0 * | 6.0 * | 10.0 * |
Treatment Group | ||||
---|---|---|---|---|
Chow-Vehicle | SDD-Vehicle | Chow-Furosemide | SDD-Furosemide | |
Initial sodium balance (mEq) | −1.0 | 0 | −2.6 | −1.5 |
Initial Urinary K/Na | 2 | 70 | 16 | 45 |
1 h intake (mEq) 0.51 M NaCl | 0.2 | 0.5 | 1.5 | 3.5 |
Sodium balance @ 1 h (mEq) | −0.8 | 0.5 | −1.1 | 2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rowland, N.E. Neurobehavioral Mechanisms of Sodium Appetite. Nutrients 2023, 15, 620. https://doi.org/10.3390/nu15030620
Rowland NE. Neurobehavioral Mechanisms of Sodium Appetite. Nutrients. 2023; 15(3):620. https://doi.org/10.3390/nu15030620
Chicago/Turabian StyleRowland, Neil E. 2023. "Neurobehavioral Mechanisms of Sodium Appetite" Nutrients 15, no. 3: 620. https://doi.org/10.3390/nu15030620
APA StyleRowland, N. E. (2023). Neurobehavioral Mechanisms of Sodium Appetite. Nutrients, 15(3), 620. https://doi.org/10.3390/nu15030620