Ultra-Processed Food Consumption and Depressive Symptoms in a Mediterranean Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Background Data
2.3. Dietary Information and UPF Calculation
2.4. Depressive Symptoms
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef]
- Mozaffarian, D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: A comprehensive review. Circulation 2016, 133, 187–225. [Google Scholar] [CrossRef]
- Godos, J.; Currenti, W.; Angelino, D.; Mena, P.; Castellano, S.; Caraci, F.; Galvano, F.; Del Rio, D.; Ferri, R.; Grosso, G. Diet and mental health: Review of the recent updates on molecular mechanisms. Antioxidants 2020, 9, 346. [Google Scholar] [CrossRef] [Green Version]
- GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef] [Green Version]
- Imamura, F.; Micha, R.; Khatibzadeh, S.; Fahimi, S.; Shi, P.; Powles, J.; Mozaffarian, D. Global Burden of Diseases Nutrition and Chronic Diseases Expert Group (NutriCoDE) Dietary quality among men and women in 187 countries in 1990 and 2010: A systematic assessment. Lancet Glob. Health 2015, 3, e132–e142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteiro, C.A.; Cannon, G.; Moubarac, J.-C.; Levy, R.B.; Louzada, M.L.C.; Jaime, P.C. The UN Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutr. 2018, 21, 5–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martini, D.; Godos, J.; Bonaccio, M.; Vitaglione, P.; Grosso, G. Ultra-Processed Foods and Nutritional Dietary Profile: A Meta-Analysis of Nationally Representative Samples. Nutrients 2021, 13, 3390. [Google Scholar] [CrossRef]
- Marino, M.; Puppo, F.; Del Bo’, C.; Vinelli, V.; Riso, P.; Porrini, M.; Martini, D. A Systematic Review of Worldwide Consumption of Ultra-Processed Foods: Findings and Criticisms. Nutrients 2021, 13, 2778. [Google Scholar] [CrossRef]
- Poti, J.M.; Braga, B.; Qin, B. Ultra-processed Food Intake and Obesity: What Really Matters for Health-Processing or Nutrient Content? Curr. Obes. Rep. 2017, 6, 420–431. [Google Scholar] [CrossRef] [PubMed]
- Bonaccio, M.; Di Castelnuovo, A.; Ruggiero, E.; Costanzo, S.; Grosso, G.; De Curtis, A.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; Iacoviello, L. Joint association of food nutritional profile by Nutri-Score front-of-pack label and ultra-processed food intake with mortality: Moli-sani prospective cohort study. BMJ 2022, e070688. [Google Scholar] [CrossRef]
- Elizabeth, L.; Machado, P.; Zinöcker, M.; Baker, P.; Lawrence, M. Ultra-Processed Foods and Health Outcomes: A Narrative Review. Nutrients 2020, 12, 1955. [Google Scholar] [CrossRef]
- Lane, M.M.; Davis, J.A.; Beattie, S.; Gómez-Donoso, C.; Loughman, A.; O’Neil, A.; Jacka, F.; Berk, M.; Page, R.; Marx, W.; et al. Ultraprocessed food and chronic noncommunicable diseases: A systematic review and meta-analysis of 43 observational studies. Obes. Rev. 2021, 22, e13146. [Google Scholar] [CrossRef] [PubMed]
- Marx, W.; Moseley, G.; Berk, M.; Jacka, F. Nutritional psychiatry: The present state of the evidence. Proc. Nutr. Soc. 2017, 76, 427–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adan, R.A.H.; van der Beek, E.M.; Buitelaar, J.K.; Cryan, J.F.; Hebebrand, J.; Higgs, S.; Schellekens, H.; Dickson, S.L. Nutritional psychiatry: Towards improving mental health by what you eat. Eur. Neuropsychopharmacol. 2019, 29, 1321–1332. [Google Scholar] [CrossRef] [PubMed]
- Marx, W.; Lane, M.; Hockey, M.; Aslam, H.; Berk, M.; Walder, K.; Borsini, A.; Firth, J.; Pariante, C.M.; Berding, K.; et al. Diet and depression: Exploring the biological mechanisms of action. Mol. Psychiatry 2021, 26, 134–150. [Google Scholar] [CrossRef]
- González Olmo, B.M.; Butler, M.J.; Barrientos, R.M. Evolution of the human diet and its impact on gut microbiota, immune responses, and brain health. Nutrients 2021, 13, 196. [Google Scholar] [CrossRef] [PubMed]
- Lane, M.M.; Gamage, E.; Travica, N.; Dissanayaka, T.; Ashtree, D.N.; Gauci, S.; Lotfaliany, M.; O’Neil, A.; Jacka, F.N.; Marx, W. Ultra-Processed Food Consumption and Mental Health: A Systematic Review and Meta-Analysis of Observational Studies. Nutrients 2022, 14, 2568. [Google Scholar] [CrossRef]
- Mazloomi, S.N.; Talebi, S.; Mehrabani, S.; Bagheri, R.; Ghavami, A.; Zarpoosh, M.; Mohammadi, H.; Wong, A.; Nordvall, M.; Kermani, M.A.H.; et al. The association of ultra-processed food consumption with adult mental health disorders: A systematic review and dose-response meta-analysis of 260,385 participants. Nutr. Neurosci. 2022, 1–19. [Google Scholar] [CrossRef]
- Grosso, G.; Marventano, S.; D’Urso, M.; Mistretta, A.; Galvano, F. The Mediterranean healthy eating, ageing, and lifestyle (MEAL) study: Rationale and study design. Int. J. Food Sci. Nutr. 2017, 68, 577–586. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef]
- Marventano, S.; Mistretta, A.; Platania, A.; Galvano, F.; Grosso, G. Reliability and relative validity of a food frequency questionnaire for Italian adults living in Sicily, Southern Italy. Int. J. Food Sci. Nutr. 2016, 67, 857–864. [Google Scholar] [CrossRef]
- Buscemi, S.; Rosafio, G.; Vasto, S.; Massenti, F.M.; Grosso, G.; Galvano, F.; Rini, N.; Barile, A.M.; Maniaci, V.; Cosentino, L.; et al. Validation of a food frequency questionnaire for use in Italian adults living in Sicily. Int. J. Food Sci. Nutr. 2015, 66, 426–438. [Google Scholar] [CrossRef] [PubMed]
- Tabelle Composizione Degli Alimenti CREA. Available online: https://www.crea.gov.it/-/tabella-di-composizione-degli-alimenti (accessed on 12 May 2021).
- Marventano, S.; Godos, J.; Platania, A.; Galvano, F.; Mistretta, A.; Grosso, G. Mediterranean diet adherence in the Mediterranean healthy eating, aging and lifestyle (MEAL) study cohort. Int. J. Food Sci. Nutr. 2018, 69, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Sofi, F.; Macchi, C.; Abbate, R.; Gensini, G.F.; Casini, A. Mediterranean diet and health status: An updated meta-analysis and a proposal for a literature-based adherence score. Public Health Nutr. 2014, 17, 2769–2782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godos, J.; Giampieri, F.; Al-Qahtani, W.H.; Scazzina, F.; Bonaccio, M.; Grosso, G. Ultra-Processed Food Consumption and Relation with Diet Quality and Mediterranean Diet in Southern Italy. Int. J. Environ. Res. Public Health 2022, 19, 11360. [Google Scholar] [CrossRef] [PubMed]
- Moubarac, J.-C.; Parra, D.C.; Cannon, G.; Monteiro, C.A. Food classification systems based on food processing: Significance and implications for policies and actions: A systematic literature review and assessment. Curr. Obes. Rep. 2014, 3, 256–272. [Google Scholar] [CrossRef]
- Radloff, L.S. The use of the Center for Epidemiologic Studies Depression Scale in adolescents and young adults. J. Youth Adolesc. 1991, 20, 149–166. [Google Scholar] [CrossRef]
- Adjibade, M.; Julia, C.; Allès, B.; Touvier, M.; Lemogne, C.; Srour, B.; Hercberg, S.; Galan, P.; Assmann, K.E.; Kesse-Guyot, E. Prospective association between ultra-processed food consumption and incident depressive symptoms in the French NutriNet-Santé cohort. BMC Med. 2019, 17, 78. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Donoso, C.; Sánchez-Villegas, A.; Martínez-González, M.A.; Gea, A.; Mendonça, R.d.D.; Lahortiga-Ramos, F.; Bes-Rastrollo, M. Ultra-processed food consumption and the incidence of depression in a Mediterranean cohort: The SUN Project. Eur. J. Nutr. 2020, 59, 1093–1103. [Google Scholar] [CrossRef]
- Zheng, L.; Sun, J.; Yu, X.; Zhang, D. Ultra-Processed Food Is Positively Associated with Depressive Symptoms Among United States Adults. Front. Nutr. 2020, 7, 600449. [Google Scholar] [CrossRef]
- Hecht, E.M.; Rabil, A.; Martinez Steele, E.; Abrams, G.A.; Ware, D.; Landy, D.C.; Hennekens, C.H. Cross-sectional examination of ultra-processed food consumption and adverse mental health symptoms. Public Health Nutr. 2022, 25, 3225–3234. [Google Scholar] [CrossRef] [PubMed]
- Akbaraly, T.N.; Brunner, E.J.; Ferrie, J.E.; Marmot, M.G.; Kivimaki, M.; Singh-Manoux, A. Dietary pattern and depressive symptoms in middle age. Br. J. Psychiatry 2009, 195, 408–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faisal-Cury, A.; Leite, M.A.; Escuder, M.M.L.; Levy, R.B.; Peres, M.F.T. The relationship between ultra-processed food consumption and internalising symptoms among adolescents from São Paulo city, Southeast Brazil. Public Health Nutr. 2022, 25, 2498–2506. [Google Scholar] [CrossRef]
- Werneck, A.O.; Vancampfort, D.; Oyeyemi, A.L.; Stubbs, B.; Silva, D.R. Joint association of ultra-processed food and sedentary behavior with anxiety-induced sleep disturbance among Brazilian adolescents. J. Affect. Disord. 2020, 266, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Werneck, A.O.; Hoare, E.; Silva, D.R. Do TV viewing and frequency of ultra-processed food consumption share mediators in relation to adolescent anxiety-induced sleep disturbance? Public Health Nutr. 2021, 24, 5491–5497. [Google Scholar] [CrossRef] [PubMed]
- Lopes Cortes, M.; Andrade Louzado, J.; Galvão Oliveira, M.; Moraes Bezerra, V.; Mistro, S.; Souto Medeiros, D.; Arruda Soares, D.; Oliveira Silva, K.; Nicolaevna Kochergin, C.; Honorato Dos Santos de Carvalho, V.C.; et al. Unhealthy Food and Psychological Stress: The Association between Ultra-Processed Food Consumption and Perceived Stress in Working-Class Young Adults. Int. J. Environ. Res. Public Health 2021, 18, 3863. [Google Scholar] [CrossRef]
- Grosso, G.; Laudisio, D.; Frias-Toral, E.; Barrea, L.; Muscogiuri, G.; Savastano, S.; Colao, A. Anti-Inflammatory Nutrients and Obesity-Associated Metabolic-Inflammation: State of the Art and Future Direction. Nutrients 2022, 14, 1137. [Google Scholar] [CrossRef]
- Lane, M.M.; Lotfaliany, M.; Forbes, M.; Loughman, A.; Rocks, T.; O’Neil, A.; Machado, P.; Jacka, F.N.; Hodge, A.; Marx, W. Higher Ultra-Processed Food Consumption Is Associated with Greater High-Sensitivity C-Reactive Protein Concentration in Adults: Cross-Sectional Results from the Melbourne Collaborative Cohort Study. Nutrients 2022, 14, 3309. [Google Scholar] [CrossRef]
- Gatineau, E.; Polakof, S.; Dardevet, D.; Mosoni, L. Similarities and interactions between the ageing process and high chronic intake of added sugars. Nutr. Res. Rev. 2017, 30, 191–207. [Google Scholar] [CrossRef] [Green Version]
- DiNicolantonio, J.J.; Mehta, V.; Onkaramurthy, N.; O’Keefe, J.H. Fructose-induced inflammation and increased cortisol: A new mechanism for how sugar induces visceral adiposity. Prog. Cardiovasc. Dis. 2018, 61, 3–9. [Google Scholar] [CrossRef]
- Duan, Y.; Zeng, L.; Zheng, C.; Song, B.; Li, F.; Kong, X.; Xu, K. Inflammatory links between high fat diets and diseases. Front. Immunol. 2018, 9, 2649. [Google Scholar] [CrossRef] [Green Version]
- Kumar, J.; Rani, K.; Datt, C. Molecular link between dietary fibre, gut microbiota and health. Mol. Biol. Rep. 2020, 47, 6229–6237. [Google Scholar] [CrossRef] [PubMed]
- Lane, M.; Howland, G.; West, M.; Hockey, M.; Marx, W.; Loughman, A.; O’Hely, M.; Jacka, F.; Rocks, T. The effect of ultra-processed very low-energy diets on gut microbiota and metabolic outcomes in individuals with obesity: A systematic literature review. Obes. Res. Clin. Pract. 2020, 14, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.R.; Osadchiy, V.; Kalani, A.; Mayer, E.A. The Brain-Gut-Microbiome Axis. Cell. Mol. Gastroenterol. Hepatol. 2018, 6, 133–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gershon, M.D. 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr. Opin. Endocrinol. Diabetes Obes. 2013, 20, 14–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lach, G.; Schellekens, H.; Dinan, T.G.; Cryan, J.F. Anxiety, depression, and the microbiome: A role for gut peptides. Neurotherapeutics 2018, 15, 36–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bake, T.; Morgan, D.G.A.; Mercer, J.G. Feeding and metabolic consequences of scheduled consumption of large, binge-type meals of high fat diet in the Sprague-Dawley rat. Physiol. Behav. 2014, 128, 70–79. [Google Scholar] [CrossRef] [Green Version]
- Bake, T.; Murphy, M.; Morgan, D.G.A.; Mercer, J.G. Large, binge-type meals of high fat diet change feeding behaviour and entrain food anticipatory activity in mice. Appetite 2014, 77, 60–71. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, S.; Fukasawa, K.; Gotoh, M.; Murakami-Murofushi, K.; Kunugi, H. Saturated fatty acid is a principal cause of anxiety-like behavior in diet-induced obese rats in relation to serum lysophosphatidyl choline level. Int. J. Obes. 2020, 44, 727–738. [Google Scholar] [CrossRef]
- Andrich, D.E.; Melbouci, L.; Ou, Y.; Leduc-Gaudet, J.-P.; Chabot, F.; Lalonde, F.; Lira, F.S.; Gaylinn, B.D.; Gouspillou, G.; Danialou, G.; et al. Altered Feeding Behaviors and Adiposity Precede Observable Weight Gain in Young Rats Submitted to a Short-Term High-Fat Diet. J. Nutr. Metab. 2018, 2018, 1498150. [Google Scholar] [CrossRef]
- Medina-Reyes, E.I.; Rodríguez-Ibarra, C.; Déciga-Alcaraz, A.; Díaz-Urbina, D.; Chirino, Y.I.; Pedraza-Chaverri, J. Food additives containing nanoparticles induce gastrotoxicity, hepatotoxicity and alterations in animal behavior: The unknown role of oxidative stress. Food Chem. Toxicol. 2020, 146, 111814. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.M.; Reboredo, F.H.; Lidon, F.C. Food colour additives: A synoptical overview on their chemical properties, applications in food products, and health side effects. Foods 2022, 11, 379. [Google Scholar] [CrossRef] [PubMed]
- Rinninella, E.; Cintoni, M.; Raoul, P.; Gasbarrini, A.; Mele, M.C. Food additives, gut microbiota, and irritable bowel syndrome: A hidden track. Int. J. Environ. Res. Public Health 2020, 17, 8816. [Google Scholar] [CrossRef]
- Contreras-Rodriguez, O.; Solanas, M.; Escorihuela, R.M. Dissecting ultra-processed foods and drinks: Do they have a potential to impact the brain? Rev. Endocr. Metab. Disord. 2022, 23, 697–717. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Aquilina, G.; Cubadda, F.; Marcon, F. Risk-Benefit Assessment of Feed Additives in the One Health Perspective. Front. Nutr. 2022, 9, 843124. [Google Scholar] [CrossRef]
- Lau, K.; McLean, W.G.; Williams, D.P.; Howard, C.V. Synergistic interactions between commonly used food additives in a developmental neurotoxicity test. Toxicol. Sci. 2006, 90, 178–187. [Google Scholar] [CrossRef]
- Konduracka, E. A link between environmental pollution and civilization disorders: A mini review. Rev. Environ. Health 2019, 34, 227–233. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, B.; Deng, L. The Mechanism of Acrylamide-Induced Neurotoxicity: Current Status and Future Perspectives. Front. Nutr. 2022, 9, 859189. [Google Scholar] [CrossRef]
- Igarashi, K.; Uemura, T.; Kashiwagi, K. Acrolein toxicity at advanced age: Present and future. Amino Acids 2018, 50, 217–228. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Barrea, L.; Laudisio, D.; Savastano, S.; Colao, A. Obesogenic endocrine disruptors and obesity: Myths and truths. Arch. Toxicol. 2017, 91, 3469–3475. [Google Scholar] [CrossRef]
UPF Consumption | p-Value | ||||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | ||
Age, mean (SD) | 28.6 (5.7) | 29.8 (6.0) | 29.6 (5.5) | 28.7 (5.9) | 0.189 |
Sex, n (%) | 0.699 | ||||
Men | 33 (40.2) | 46 (35.7) | 76 (42.0) | 84 (41.2) | |
Women | 49 (59.8) | 83 (64.3) | 105 (58.0) | 120 (58.8) | |
Marital status, n (%) | 0.006 | ||||
Unmarried/widowed | 51 (62.2) | 68 (52.7) | 114 (63.0) | 146 (71.6) | |
Married | 31 (37.8) | 61 (47.3) | 67 (37.0) | 58 (28.4) | |
Smoking status, n (%) | 0.587 | ||||
Never | 49 (59.8) | 90 (69.8) | 120 (66.3) | 137 (67.2) | |
Current | 29 (35.4) | 31 (24.0) | 53 (29.3) | 53 (26.0) | |
Former | 4 (4.9) | 8 (6.2) | 8 (4.4) | 14 (6.9) | |
Educational level, n (%) | 0.059 | ||||
Low | 17 (20.7) | 19 (14.7) | 13 (7.2) | 32 (15.7) | |
Medium | 35 (42.7) | 49 (38.0) | 79 (43.6) | 82 (40.2) | |
High | 30 (36.6) | 61 (47.3) | 89 (49.2) | 90 (44.1) | |
Occupational level, n (%) | 0.153 | ||||
Unemployed | 21 (28.8) | 32 (27.8) | 37 (25.7) | 66 (39.8) | |
Low | 11 (15.1) | 13 (11.3) | 15 (10.4) | 16 (9.6) | |
Medium | 16 (21.9) | 19 (16.5) | 35 (24.3) | 25 (15.1) | |
High | 25 (34.2) | 51 (44.3) | 57 (39.6) | 59 (35.5) | |
Physical activity level, n (%) | 0.004 | ||||
Low | 19 (23.2) | 21 (16.3) | 19 (10.5) | 27 (13.2) | |
Medium | 28 (34.1) | 72 (55.8) | 85 (47.0) | 110 (53.9) | |
High | 35 (42.7) | 36 (27.9) | 77 (42.5) | 67 (32.8) | |
Eating habits, n (%) | |||||
Skipping breakfast | 17 (20.7) | 31 (24.0) | 52 (28.7) | 53 (26.0) | 0.546 |
Daily snacking | 12 (14.6) | 17 (13.2) | 23 (12.7) | 26 (12.7) | 0.975 |
Skipping dinner | 9 (11.0) | 12 (9.3) | 22 (12.2) | 34 (16.7) | 0.220 |
Adherence to Mediterranean diet, n (%) | <0.001 | ||||
Low | 30 (36.3) | 70 (54.3) | 103 (56.9) | 147 (72.1) | |
Medium | 46 (56.1) | 46 (35.7) | 44 (24.3) | 50 (24.5) | |
High | 6 (7.3) | 13 (10.1) | 34 (18.8) | 7 (3.4) |
UPF Consumption | p-Value | ||||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | ||
mean (SD) | |||||
Energy intake (kcal/d) | 2045.88 (873.58) | 2067.57 (738.74) | 2008.67 (821.52) | 2283.99 (1105.62) * | 0.019 |
Energy intake (kJ/d) | 8230.25 (3651.25) | 8378.72 (3084.12) | 8186.26 (3446.88) | 9275.7 (4593.52) * | 0.023 |
Macronutrients | |||||
Carbohydrates (g/d) | 304.47 (141.20) | 315.29 (124.31) | 294.34 (128.04) | 313.02 (152.21) | 0.493 |
Fiber (g/d) | 39.42 (31.57) | 33.75 (15.72) | 31.34 (15.98) | 31.05 (19.5) * | 0.008 |
Protein (g/d) | 92.86 (53.88) | 89.59 (34.09) | 86.08 (40.07) | 94.05 (47.70) | 0.324 |
Fat (g/d) | 54.51 (24.17) | 55.69 (20.12) | 59.07 (23.87) | 77.84 (41.13) ** | <0.001 |
Cholesterol (mg/d) | 173.69 (129.47) | 178.7 (80.11) | 190.19 (112.56) | 244.64 (131.42) ** | <0.001 |
SFA | 19.93 (8.74) | 21.35 (8.02) | 22.49 (8.60) | 31.50 (16.31) ** | <0.001 |
MUFA | 23.74 (9.41) | 24.07 (8.32) | 25.23 (10.66) | 31.15 (15.85) ** | <0.001 |
PUFA | 11.17 (5.89) | 10.68 (4.41) | 11.36 (7.11) | 12.91 (8.23) * | 0.019 |
Total Omega-3 | 1.73 (0.96) | 1.66 (0,78) | 1.57 (0.73) | 1.61 (0.77) | 0.509 |
Micronutrients | |||||
Vitamin A (Retinol) | 950.29 (571.75) | 942.28 (449.58) | 868.43 (425.27) | 898.99 (491.21) | 0.452 |
Vitamin C (mg/d) | 195.19 (185.64) | 178.35 (108.56) | 164.96 (101.98) | 155.92 (106.05) | 0.062 |
Vitamin E (mg/d) | 9.30 (4.67) | 8.82 (3.53) | 8.95 (3.85) | 9.87 (5.74) | 0.141 |
Vitamin B12 | 8.34 (18.02) | 6.78 (4.56) | 7.01 (6.56) | 7.99 (6.79) | 0.421 |
Vitamin D | 5.29 (5.52) | 5.60 (4.98) | 5.94 (7.67) | 6.19 (8.41) | 0.769 |
Sodium (mg/d) | 2890.45 (1136.79) | 3151.52 (1158.34) | 2953.90 (985.94) | 3302.72 (1599.08) * | 0.020 |
Potassium (mg/d) | 4299.95 (3013.97) | 3892.82 (1545.45) | 3731.17 (1894.24) | 3948.06 (2143.45) | 0.243 |
Foods | |||||
Cereals (g/d) | 236.26 (144.97) | 256.83 (139.76) | 208.58 (112.36) | 167.70 (121.70) ** | <0.001 |
Vegetables (g/d) | 334.55 (304.85) | 283.70 (143.48) | 257.64 (143,.60) | 256.29 (170.06) * | 0.006 |
Fruit (g/d) | 506.21 (458.81) | 409.42 (343.75) | 406.27 (364.51) | 371.04 (320.63) * | 0.042 |
Legumes (g/d) | 334.55 (304.85) | 283.70 (143.48) | 257.64 (143.60) | 256.29 (170.06) * | 0.009 |
Nuts (total, g/d) | 17.05 (20.58) | 16.64 (20.74) | 18.35 (22.60) | 25.44 (72.74) | 0.253 |
Fish (g/d) | 77.90 (120.38) | 66.18 (66.88) | 78.99 (116.29) | 67.80 (88.37) | 0.569 |
Eggs (g/d) | 1.89 (3.49) | 2.53 (5.12) | 2.80 (5.40) | 2.13 (4.33) | 0.396 |
Meat (total, g/d) | 76.71 (47.87) | 74.43 (47.43) | 66.97 (37.27) | 77.03 (34.53) * | 0.077 |
Red meat (g/d) | 34.23 (22.52) | 35.28 (25.67) | 35.03 (31.88) | 35.81 (22.68) | 0.973 |
Processed Meat (g/d) | 13.05 (12.45) | 17.71 (15.67) | 18.03 (14.09) | 31.45 (31.46) ** | <0.001 |
Dairy products (g/d) | 216.86 (187,86) | 238.17 (166,41) | 176.12 (155,34) | 155,33 (204.18) * | 0.019 |
Alcohol (total, g/d) | 8.15 (13.42) | 5.06 (7.25) | 5.43 (7.54) | 6.30 (9.35) | 0.078 |
Olive oil (ml/d) | 7.10 (3.10) | 7.15 (3.04) | 6.44 (2.91) | 6.22 (3.08) * | 0.018 |
UPF Consumption | ||||
---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | |
OR (95% CI) | ||||
Model 1 | 1 | 1.05 (0.56, 1.96) | 1.17 (0.65, 2.09) | 1.87 (1.06, 3.29) |
Model 2 | 1 | 1.26 (0.62, 2.57) | 0.93 (0.46, 1.89) | 2.04 (1.04, 4.01) |
Model 3 | 1 | 1.44 (0.70, 2.97) | 1.17 (0.56, 2.43) | 2.70 (1.33, 5.51) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godos, J.; Bonaccio, M.; Al-Qahtani, W.H.; Marx, W.; Lane, M.M.; Leggio, G.M.; Grosso, G. Ultra-Processed Food Consumption and Depressive Symptoms in a Mediterranean Cohort. Nutrients 2023, 15, 504. https://doi.org/10.3390/nu15030504
Godos J, Bonaccio M, Al-Qahtani WH, Marx W, Lane MM, Leggio GM, Grosso G. Ultra-Processed Food Consumption and Depressive Symptoms in a Mediterranean Cohort. Nutrients. 2023; 15(3):504. https://doi.org/10.3390/nu15030504
Chicago/Turabian StyleGodos, Justyna, Marialaura Bonaccio, Wahidah H. Al-Qahtani, Wolfgang Marx, Melissa M. Lane, Gian Marco Leggio, and Giuseppe Grosso. 2023. "Ultra-Processed Food Consumption and Depressive Symptoms in a Mediterranean Cohort" Nutrients 15, no. 3: 504. https://doi.org/10.3390/nu15030504
APA StyleGodos, J., Bonaccio, M., Al-Qahtani, W. H., Marx, W., Lane, M. M., Leggio, G. M., & Grosso, G. (2023). Ultra-Processed Food Consumption and Depressive Symptoms in a Mediterranean Cohort. Nutrients, 15(3), 504. https://doi.org/10.3390/nu15030504