Development of a Semi-Quantitative Food Frequency Questionnaire to Estimate Macronutrient Intake among Type 2 Diabetes Mellitus Patients in Malaysia
Abstract
:1. Introduction
2. Material and Methods
2.1. First Stage of the Development Phase
2.2. Second Stage of the Development Phase
2.3. Pre-Test of the FFQ
2.4. Data Analysis
3. Results
3.1. First Stage of the Development Phase
3.2. Second Stage of the Development Phase
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farooqi, A.; Khunti, K.; Abner, S.; Gillies, C.; Morriss, R.; Seidu, S. Comorbid Depression and Risk of Cardiac Events and Cardiac Mortality in People with Diabetes: A Systematic Review and Meta-Analysis. Diabetes Res. Clin. Pract. 2019, 156, 107816. [Google Scholar] [CrossRef] [PubMed]
- Ogurtsova, K.; da Rocha Fernandes, J.D.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.H.; Cavan, D.; Shaw, J.E.; Makaroff, L.E. IDF Diabetes Atlas: Global Estimates for the Prevalence of Diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 2017, 128, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Chan, M. Global Report on Diabetes. WHO 2016, 978, 6–86. [Google Scholar]
- Institute for Public Health (IPH). National Health and Morbidity Survey (NHMS) 2019: Vol. 1: NCDs-Non-Communicable Diseases: Risk Factors and Other Health Problems; Institute for Public Health, Ministry of Health, Malaysia: Kuala Lumpur, Malaysia, 2019; ISBN 9789671815922.
- Fowler, M.J. Microvascular and Macrovascular Complications of Diabetes. Clin. Diabetes 2011, 29, 116–122. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Ding, Y.; Tanaka, Y.; Zhang, W. Risk Factors Contributing to Type 2 Diabetes and Recent Advances in the Treatment and Prevention. Int. J. Med. Sci. 2014, 11, 1185–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, S.; Hasan, M.K.; Neaz, S.; Hussain, N.; Hossain, M.F.; Rahman, T. Diabetes Mellitus: Insights from Epidemiology, Biochemistry, Risk Factors, Diagnosis, Complications and Comprehensive Management. Diabetology 2021, 2, 36–50. [Google Scholar] [CrossRef]
- Iradukunda, A.; Kembabazi, S.; Ssewante, N.; Kazibwe, A.; Kabakambira, J.D. Diabetic Complications and Associated Factors: A 5-Year Facility-Based Retrospective Study at a Tertiary Hospital in Rwanda. Diabetes Metab. Syndr. Obes. Targets Ther. 2021, 14, 4801–4810. [Google Scholar] [CrossRef]
- Gebre, B.B.; Assefa, Z.M. Magnitude and Associated Factors of Diabetic Complication among Diabetic Patients Attending Gurage Zone Hospitals, South West Ethiopia. BMC Res. Notes 2019, 12, 780. [Google Scholar] [CrossRef] [Green Version]
- Forouhi, N.G.; Misra, A.; Mohan, V.; Taylor, R.; Yancy, W. Dietary and Nutritional Approaches for Prevention and Management of Type 2 Diabetes. BMJ 2018, 361, k2234. [Google Scholar] [CrossRef] [Green Version]
- Rajput, S.A.; Ashraff, S.; Siddiqui, M. Diet and Management of Type II Diabetes Mellitus in the United Kingdom: A Narrative Review. Diabetology 2022, 3, 72–78. [Google Scholar] [CrossRef]
- Ghaemi, F.; Firouzabadi, F.D.; Moosaie, F.; Shadnoush, M.; Poopak, A.; Kermanchi, J.; Abhari, S.M.F.; Forouzanfar, R.; Mansournia, M.A.; Khosravi, A.; et al. Effects of a Mediterranean Diet on the Development of Diabetic Complications: A Longitudinal Study from the Nationwide Diabetes Report of the National Program for Prevention and Control of Diabetes (NPPCD 2016-2020). Maturitas 2021, 153, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.Y.Z.; Man, R.E.K.; Fenwick, E.K.; Gupta, P.; Li, L.J.; van Dam, R.M.; Chong, M.F.; Lamoureux, E.L. Dietary Intake and Diabetic Retinopathy: A Systematic Review. PLoS ONE 2018, 13, e0186582. [Google Scholar] [CrossRef] [Green Version]
- Di Daniele, N. The Role of Preventive Nutrition in Chronic Non-Communicable Diseases. Nutrients 2019, 11, 1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welch, A.A. Dietary Intake Measurement: Methodology. Encycl. Hum. Nutr. 2012, 2–4, 65–73. [Google Scholar] [CrossRef]
- Shim, J.-S.; Oh, K.; Kim, H.C. Dietary Assessment Methods in Epidemiologic Studies. Epidemiol. Health 2014, 36, 302–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahar, D.; Shai, I.; Vardi, H.; Brener-Azrad, A.; Fraser, D. Development of a Semi-Quantitative Food Frequency Questionnaire (FFQ) to Assess Dietary Intake of Multiethnic Populations. Eur. J. Epidemiol. 2003, 8, 855–861. [Google Scholar] [CrossRef]
- Fernández-Cao, J.C.; Aparicio, E. Design, Development and Validation of Food Frequency Questionnaires for the Diabetic Population: Protocol for a Systematic Review and Meta-Analysis. BMJ Open 2022, 12, e058831. [Google Scholar] [CrossRef] [PubMed]
- Ruwaida, L.; Zainuddin, M.; Suhaili, C.; Taha, C.; Shahril, M.R. Design and Validation of Web-Based or Online Food Frequency Questionnaire for Adults: A Scoping Review. Malays. J. Med. Health Sci. 2021, 17, 320–331. [Google Scholar]
- Cade, J.E.; Burley, V.J.; Warm, D.L.; Thompson, R.L.; Margetts, B.M. Food-Frequency Questionnaires: A Review of Their Design, Validation and Utilisation. Nutr. Res. Rev. 2004, 17, 5–22. [Google Scholar] [CrossRef] [Green Version]
- Cade, J.; Thompson, R.; Burley, V.; Warm, D. Development, Validation and Utilisation of Food-Frequency Questionnaires—A Review. Public Health Nutr. 2002, 5, 567–587. [Google Scholar] [CrossRef] [Green Version]
- Shahar, S.; Shahril, M.R.; Abdullah, N.; Borhanuddin, B.; Kamaruddin, M.A.; Yusuf, N.A.M.; Dauni, A.; Rosli, H.; Zainuddin, N.S.; Jamal, R. Development and Relative Validity of a Semiquantitative Food Frequency Questionnaire to Estimate Dietary Intake among a Multi-Ethnic Population in the Malaysian Cohort Project. Nutrients 2021, 13, 1163. [Google Scholar] [CrossRef] [PubMed]
- Nothlings, U.; Boeing, H.; Maskarinec, G.; Sluik, D.; Teucher, B. Food Intake of Individuals with and without Diabetes across Different Countries and Ethnic Groups. Eur. J. Clin. Nutr. 2011, 65, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Casagrande, S.S.; Cowie, C.C. Trends in Dietary Intake among Adults with Type 2 Diabetes: NHANES 1988–2012. J. Hum. Nutr. Diet. 2017, 30, 479–489. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.-C.; Lin, K.-D.; Chen, H.-J.; Wu, Y.-J.; Chang, C.-I.; Shin, S.-J.; Hung, H.-C.; Lee, C.-H.; Huang, Y.-F.; Hsu, C.-C. Validity of a Short Food Frequency Questionnaire Assessing Macronutrient and Fiber Intakes in Patients of Han Chinese Descent with Type 2 Diabetes. Int. J. Environ. Res. Public Health 2018, 15, 1142. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Choi, Y.; Lee, H.-J.; Kim, S.H.; Oe, Y.; Lee, S.Y.; Nam, M.; Kim, Y.S. Development and Validation of a Semi-Quantitative Food Frequency Questionnaire to Assess Diets of Korean Type 2 Diabetic Patients. Korean Diabetes J. 2010, 34, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Riley, M.D.; Blizzard, L. Comparative Validity of a Food Frequency Questionnaire for Adults With IDDM. Diabetes Care 1995, 18, 1249–1254. [Google Scholar] [CrossRef]
- Coulibaly, A.; O’Brien, H.T.; Galibois, I. Validation of an FFQ to Assess Dietary Protein Intake in Type 2 Diabetic Subjects Attending Primary Health-Care Services in Mali. Public Health Nutr. 2009, 12, 644–650. [Google Scholar] [CrossRef] [Green Version]
- Department of Statistics Malaysia Press Release: Current Population Estimates, Malaysia, 2018–2019. 2019. Available online: https://www.dosm.gov.my/v1/index.php?r=column/cthemeByCat&cat=155&bul_id=aWJZRkJ4UEdKcUZpT2tVT090Snpydz09&menu_id=L0pheU43NWJwRWVSZklWdzQ4TlhUUT09 (accessed on 15 January 2023).
- Drehmer, M.; Odegaard, A.O.; Schmidt, M.I.; Duncan, B.B.; de Oliveira Cardoso, L.; Matos, S.M.; Maria del Carmen, B.M.; Barreto, S.M.; Pereira, M.A. Brazilian Dietary Patterns and the Dietary Approaches to Stop Hypertension (DASH) Diet-Relationship with Metabolic Syndrome and Newly Diagnosed Diabetes in the ELSA-Brasil Study. Diabetol. Metab. Syndr. 2017, 9, 13. [Google Scholar] [CrossRef] [Green Version]
- Zaleha, M.I.; Khadijah, S.; Noriklil Bukhary, I.B.; Khor, G.L.; Zaleha, A.M.; Haslinda, H.; Noor Sharifatul Hana, Y.; Hasanain Faisal, G. Development and Validation of a Food Frequency Questionnaire for Vitamin D Intake among Urban Pregnant Women in Malaysia. Malays. J. Nutr. 2015, 21, 179–190. [Google Scholar]
- Hafizah, Y.N.; Ang, L.C.; Yap, F.; Najwa, W.N.; Cheah, W.L.; Ruzita, A.T.; Jumuddin, F.A.; Koh, D.; Lee, J.A.C.; Essau, C.A.; et al. Validity and Reliability of a Food Frequency Questionnaire (FFQ) to Assess Dietary Intake of Preschool Children. Int. J. Environ. Res. Public Health 2019, 16, 4722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fatihah, F.; Ng, B.K.; Hazwanie, H.; Karim Norimah, A.; Shanita, S.N.; Ruzita, A.T.; Poh, B.K. Development and Validation of a Food Frequency Questionnaire for Dietary Intake Assessment among Multi-Ethnic Primary School-Aged Children. Singap. Med. J. 2015, 56, 687–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, K.; Tin, T.S.; Jalaludin, M.Y.; Al-Sadat, N.; Majid, H.A. Comparative Validity of a Food Frequency Questionnaire (MyUM Adolescent FFQ) to Estimate the Habitual Dietary Intake of Adolescents in Malaysia. Asia Pac. J. Clin. Nutr. 2018, 27, 898–907. [Google Scholar] [CrossRef] [PubMed]
- Nik Shanita, S.; Norimah, N.; Abu Hanifah, S. Development and Validation of a Food Frequency Questionnaire (FFQ) for Assessing Sugar Consumption among Adults in Klang Valley, Malaysia. Malays. J. Nutr. 2012, 18, 283–293. [Google Scholar]
- Moy, F.M.; Eng, J.Y.; Shiow, T.; Lew, Y.; Rampal, S.; Ali, A. Relative Validity of a Food Frequency Questionnaire among Multi-Ethnic Working Population in Malaysia. ASM Sci. J. 2020, 13, 30–38. [Google Scholar]
- Sarmento, R.A.; Riboldi, B.P.; Da Costa Rodrigues, T.; De Azevedo, M.J.; De Almeida, J.C. Development of a Quantitative Food Frequency Questionnaire for Brazilian Patients with Type 2 Diabetes. BMC Public Health 2013, 13, 740. [Google Scholar] [CrossRef]
- Godois, A.D.M.; Coelho-Ravagnani, C.D.F.; Raizel, R.; Verly-Junior, E. Development of a Food Frequency Questionnaire for Brazilian Athletes. Nutr. Diet. 2020, 77, 260–267. [Google Scholar] [CrossRef]
- Ministry of Health Malaysian Food Composition Database (MyFCD). Available online: https://myfcd.moh.gov.my/ (accessed on 26 November 2022).
- Shahar, S.; Safil, N.S.; Abdul Manaf, Z.; Haron, H. The Atlas of Food Exchange and Portion Size: 3rd Edition. Available online: https://mdcpublishers.com/the-atlas-of-food-exchange-and-portion-sizesatlas-makanan-saiz-pertukaran-and-porsi-3rd-edition/ (accessed on 26 November 2022).
- Tokudome, S.; Ikeda, M.; Tokudome, Y.; Imaeda, N.; Kitagawa, I.; Fujiwara, N. Development of Data-Based Semi-Quantitative Food Frequency Questionnaire for Dietary Studies in Middle-Aged Japanese. Jpn. J. Clin. Oncol. 1998, 28, 679–687. [Google Scholar] [CrossRef] [Green Version]
- Block, G.; Anne, M.H.; Connie, M.D.; Margaret, D.C.; Janet, G.; Lilly, G. A Data Based Approach to Diet Questionnaire Design and Testing. Am. J. Epidemiol. 1986, 124, 453–469. [Google Scholar] [CrossRef]
- Ali, M.S.M.; Yeak, Z.W.; Khor, B.H.; Sahathevan, S.; Sualeheen, A.; Lim, J.H.; Adanan, N.I.H.; Gafor, A.H.A.; Zakaria, N.F.; Khosla, P.; et al. HD-FFQ to Detect Nutrient Deficiencies and Toxicities for a Multiethnic Asian Dialysis Population. Nutrients 2020, 12, 1585. [Google Scholar] [CrossRef]
- Bharathi, A.V.; Kurpad, A.V.; Thomas, T.; Yusuf, S.; Saraswathi, G.; Vaz, M. Development of Food Frequency Questionnaires and a Nutrient Database for the Prospective Urban and Rural Epidemiological (PURE) Pilot Study in South India: Methodological Issues. Asia Pac. J. Clin. Nutr. 2008, 17, 178–185. [Google Scholar] [PubMed]
- Abdullah, N.F.; Teo, P.S.; Foo, L.H. Ethnic Differences in the Food Intake Patterns and Its Associated Factors of Adolescents in Kelantan, Malaysia. Nutrients 2016, 8, 551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheng, T.Y.; Shamsudin, M.N.; Mohamed, Z.A.; Abdullah, A.M.; Radam, A. Food Consumption Behavior of the Malays. IIUM J. Econ. Manag. 2008, 16, 209–219. [Google Scholar]
- Firdaus, R.B.R.; Leong Tan, M.; Rahmat, S.R.; Senevi Gunaratne, M. Paddy, Rice and Food Security in Malaysia: A Review of Climate Change Impacts. Cogent Soc. Sci. 2020, 6, 1818373. [Google Scholar] [CrossRef]
- Bin Kamaruzaman, M.Y.; Ab Karim, S.; Ishak, F.A.B.C.; Bin Arshad, M.M. The Diversity of Traditional Malay Kuih in Malaysia and Its Potentials. J. Ethn. Foods 2020, 7, 22. [Google Scholar] [CrossRef]
- Almajwal, A.; AL-zahrani, S.; Abulmeaty, M.; Alam, I.; Razzak, S.; Alqahtani, A. Development of Food Frequency Questionnaire (FFQ) for the Assessment of Dietary Intake among Overweight and Obese Saudi Young Children. Nutrire 2018, 43, 29. [Google Scholar] [CrossRef]
- Mohamad Nawawi, F.N.; Ahmad Fadzly, I.S.; Noor Safiqah Ain Safingi, N.S.A.; Mustafa Khalid, N.; Md Noh, M.F.; Azlan, A. Sugar Composition and in Vitro Glycaemic Response of Selected Sugars, Rice-Based Meals and Traditional Kuih. Food Res. 2020, 4, 187–195. [Google Scholar] [CrossRef]
- Norimah, A.K.; Safiah, M.; Jamal, K.; Siti, H.; Zuhaida, H.; Rohida, S.; Fatimah, S.; Siti, N.; Poh, B.K.; Kandiah, M.; et al. Food Consumption Patterns: Findings from the Malaysian Adult Nutrition Survey (MANS). Malays. J. Nutr. 2008, 14, 25–39. [Google Scholar]
- Pritchard, J.M.; Seechurn, T.; Atkinson, S.A. A Food Frequency Questionnaire for the Assessment of Calcium, Vitamin D and Vitamin K: A Pilot Validation Study. Nutrients 2010, 2, 805–819. [Google Scholar] [CrossRef]
Demographic Characteristics | n (%) | Mean (SD) |
---|---|---|
Age (Years) | 52.30 (6.70) | |
Gender | ||
Male | 65 (43.3) | |
Female | 85 (56.7) | |
Ethnicity | ||
Malay | 100 (66.7) | |
Chinese | 30 (20.0) | |
Indian | 20 (13.3) | |
Body Mass Index (BMI) * | ||
Normal | 35 (23.3) | |
Overweight | 50 (33.3) | |
Obese | 65 (43.4) |
Parameters | Mean (SD) |
---|---|
Total energy (kcal/day) | 1610.60 (358.32) |
Carbohydrates (g/day) | 281.52 (31.54) |
Protein (g) | 52.70 (24.74) |
Total fat (g) | 35.32 (16.15) |
Variable | No. * | Food Item | Percentage Contribution to Energy or Macronutrient Intake (%) | Cumulative Percentage (%) |
---|---|---|---|---|
Energy | 1 | Noodles | 17.45 | 17.45 |
2 | Roti canai | 16.51 | 33.96 | |
3 | White Rice | 14.55 | 48.51 | |
4 | Chicken | 13.59 | 62.10 | |
5 | Milk | 10.12 | 72.22 | |
6 | Kuih-muih | 9.43 | 81.65 | |
7 | Egg | 5.22 | 86.87 | |
8 | White bread | 4.60 | 91.47 | |
Carbohydrate | 1 | White Rice | 21.70 | 21.70 |
2 | Roti canai | 16.94 | 38.64 | |
3 | Noodles | 12.77 | 51.41 | |
4 | Biscuit | 10.29 | 61.70 | |
5 | White bread | 8.90 | 70.60 | |
6 | Meats | 6.00 | 76.60 | |
7 | Beverages | 5.32 | 81.92 | |
8 | Kuih muih | 4.88 | 86.80 | |
9 | Fruits | 3.42 | 90.22 | |
Protein | 1 | Chicken | 24.76 | 24.76 |
2 | Meats | 18.78 | 45.54 | |
3 | Fish | 16.36 | 61.90 | |
4 | Noodles | 11.94 | 73.84 | |
5 | Egg | 7.73 | 81.57 | |
6 | White Rice | 7.59 | 89.16 | |
7 | White Bread | 5.31 | 94.47 | |
Fat | 1 | Chicken | 20.71 | 20.71 |
2 | Fish | 19.82 | 40.53 | |
3 | Milk | 14.20 | 54.73 | |
4 | Egg | 14.15 | 68.88 | |
5 | Kuih-muih | 8.52 | 77.40 | |
6 | Biscuit | 7.67 | 85.07 | |
7 | Noodles | 4.28 | 89.35 | |
8 | Meats | 2.86 | 92.21 |
Food Group | Food Items |
---|---|
Cereal and cereal products | White rice, fried rice, rice cooked with coconut milk, plain porridge, fried noodles, noodles with gravy, roti canai, chapati, tosai, white bread, wholemeal bread, bun, biscuit creams, oat |
Meat and poultry | Fried chicken, chicken dishes cooked with coconut milk, cooked in soup, meat cooked in soup, roasted chicken, beef, mutton, |
Fish and seafood | Fried fish, fish cooked with coconut milk, fish cooked without coconut milk, seafood |
Egg and egg dishes | Boiled egg, fried egg, salted egg |
Vegetables | Fried green vegetables, mustard, spinach, swamp cabbage, bean, cucumber, yam, pea, carrots, tomato, salad, corn, mushroom |
Fruits | Banana, guava, papaya, apples (red and green), watermelon |
Traditional Malaysian “ kuih” | Banana fritters, curry puff, cekodok pisang, cucur udang, sri muka, lopes, kuih lapis |
Milk and milk products | Fresh milk, milk powder, krimer, sweetened milk |
Drink and beverages | Teh O, Teh tarik (with milk), coffee ‘O’ (with sugar), coffee with sugar, malt drink, cordial drink, fruit juice |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amsah, N.; Md Isa, Z.; Ahmad, N. Development of a Semi-Quantitative Food Frequency Questionnaire to Estimate Macronutrient Intake among Type 2 Diabetes Mellitus Patients in Malaysia. Nutrients 2023, 15, 506. https://doi.org/10.3390/nu15030506
Amsah N, Md Isa Z, Ahmad N. Development of a Semi-Quantitative Food Frequency Questionnaire to Estimate Macronutrient Intake among Type 2 Diabetes Mellitus Patients in Malaysia. Nutrients. 2023; 15(3):506. https://doi.org/10.3390/nu15030506
Chicago/Turabian StyleAmsah, Norizzati, Zaleha Md Isa, and Norfazilah Ahmad. 2023. "Development of a Semi-Quantitative Food Frequency Questionnaire to Estimate Macronutrient Intake among Type 2 Diabetes Mellitus Patients in Malaysia" Nutrients 15, no. 3: 506. https://doi.org/10.3390/nu15030506
APA StyleAmsah, N., Md Isa, Z., & Ahmad, N. (2023). Development of a Semi-Quantitative Food Frequency Questionnaire to Estimate Macronutrient Intake among Type 2 Diabetes Mellitus Patients in Malaysia. Nutrients, 15(3), 506. https://doi.org/10.3390/nu15030506