Association between Micronutrient-Related Dietary Pattern and Cognitive Function among Persons 55 Years and Older in China: A Longitudinal Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Cognitive Function Measurements
2.3. Dietary Measurements
2.4. Covariates
2.5. Statistical Analysis
3. Results
3.1. Micronutrient-Related Dietary Pattern
3.2. Baseline Characteristics by Quartiles of Dietary Pattern Score
3.3. Associations between Dietary Pattern and Cognitive Function
3.4. Associations between Dietary Pattern and Poor Cognitive Function
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Collaborators, G.D. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 88–106. [Google Scholar] [CrossRef] [Green Version]
- National Bureau of Statistics of China. 2021 China Statistical Yearbook. 2021. Available online: http://www.stats.gov.cn/tjsj/ndsj/2021/indexeh.htm (accessed on 18 December 2022).
- Jia, L.; Du, Y.; Chu, L.; Zhang, Z.; Li, F.; Lyu, D.; Li, Y.; Li, Y.; Zhu, M.; Jiao, H.; et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: A cross-sectional study. Lancet Public Health 2020, 5, e661–e671. [Google Scholar] [CrossRef]
- Moore, K.; Hughes, C.F.; Ward, M.; Hoey, L.; McNulty, H. Diet, nutrition and the ageing brain: Current evidence and new directions. Proc. Nutr. Soc. 2018, 77, 152–163. [Google Scholar] [CrossRef]
- Solfrizzi, V.; Custodero, C.; Lozupone, M.; Imbimbo, B.P.; Valiani, V.; Agosti, P.; Schilardi, A.; D’Introno, A.; La Montagna, M.; Calvani, M.; et al. Relationships of Dietary Patterns, Foods, and Micro- and Macronutrients with Alzheimer’s Disease and Late-Life Cognitive Disorders: A Systematic Review. J. Alzheimers Dis. 2017, 59, 815–849. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.M.; Jia, X.F.; Wang, L.S.; Wang, Z.H. Recent Advances On The Association Between Dietary Nutrition And Alzheimer’s Disease. Acta Nutrimenta Sinica 2019, 41, 95–98+101. [Google Scholar] [CrossRef]
- Li, S.; Sun, W.; Zhang, D. Association of Zinc, Iron, Copper, and Selenium Intakes with Low Cognitive Performance in Older Adults: A Cross-Sectional Study from National Health and Nutrition Examination Survey (NHANES). J. Alzheimers Dis. 2019, 72, 1145–1157. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Kyrozis, A.; Rossi, M.; Katsoulis, M.; Trichopoulos, D.; La Vecchia, C.; Lagiou, P. Mediterranean diet and cognitive decline over time in an elderly Mediterranean population. Eur. J. Nutr. 2015, 54, 1311–1321. [Google Scholar] [CrossRef]
- van de Rest, O.; Berendsen, A.A.; Haveman-Nies, A.; de Groot, L.C. Dietary patterns, cognitive decline, and dementia: A systematic review. Adv. Nutr. 2015, 6, 154–168. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.A.-O.X.; Lee, K.A.-O.; Kim, M.H.; Kim, H.J.; An, Y.S.; Chung, H.K. Identifying Dietary Patterns Associated with Mild Cognitive Impairment in Older Korean Adults Using Reduced Rank Regression. Int. J. Environ. Res. Public Health 2018, 15, 100. [Google Scholar] [CrossRef] [Green Version]
- Popkin BM, D.S.; Zhai, F.; Zhang, B. Cohort Profile: The China Health and Nutrition Survey--monitoring and understanding socio-economic and health change in China, 1989-2011. Int. J. Epidemiol. 2010, 39, 1435–1440. [Google Scholar] [CrossRef]
- Plassman, B.L.; Welsh, K.A.; Helms, M.; Brandt, J.; Page, W.F.; Breitner, J.C.S. Intelligence and education as predictors of cognitive state in late life: A 50-year follow-up. Neurology 1995, 45, 1446–1450. [Google Scholar] [CrossRef]
- Qin, B.; Fau-Plassman, B.L.A.L.; Fau-Batis, C.P.B.; Fau-Edwards, L.J.B.C.; Fau-Popkin, B.M.E.L.; Fau-Mendez, M.A.P.B.; Mendez, M.A. Dietary Patterns and Cognitive Decline Among Chinese Older Adults. Epidemiology 2015, 26, 758–768. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; El-Obeid, T.; Li, M.; Xu, X.; Liu, J. Iron-related dietary pattern increases the risk of poor cognition. Nutr. J. 2019, 18, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, M.; Lichtenstein, A.H.; Roberts, S.B.; Ma, G.; Gao, S.; Tucker, K.L.; McCrory, M.A. Relative influence of diet and physical activity on cardiovascular risk factors in urban Chinese adults. Int. J. Obes. Relat. Metab. Disord. 2003, 27, 920–932. [Google Scholar] [CrossRef] [Green Version]
- Zhai, F.; Popkin, B.M.; Ma, L.; Yu, W. The evaluation of the 24-hour individual dietary recall method in China. J. Hyg. Res. 1996, 17, 51–56. [Google Scholar]
- Du, S.; Neiman, A.; Batis, C.; Wang, H.; Zhang, B.; Zhang, J.; Popkin, B.M. Understanding the patterns and trends of sodium intake, potassium intake, and sodium to potassium ratio and their effect on hypertension in China. Am. J. Clin. Nutr. 2014, 99, 334–343. [Google Scholar] [CrossRef] [Green Version]
- Jones-Smith, J.C.; Popkin, B.M. Understanding community context and adult health changes in China: Development of an urbanicity scale. Soc. Sci. Med. 2010, 71, 1436–1446. [Google Scholar] [CrossRef] [Green Version]
- Writing Group of 2018 Chinese Guidelines for the Management of Hypertension; Chinese Hypertension League; Chinese Society of Cardiology; Chinese Medical Doctor Association Hypertension Committee; Hypertension Branch of China International Exchange and Promotive Association for Medical and Health Care; Hypertension Branch of Chinese Geriatric Medical Association. 2018 Chinese guidelines for the management of hypertension. Chin. J. Cardiovasc. Med. 2019, 24, 24–56. [Google Scholar] [CrossRef]
- Su, X.; Zhang, J.; Wang, W.; Ni, C.; Hu, S.; Shao, P.; Li, C.; Hua, Y.; Lang, H.; Wan, Y. Dietary patterns and risk of mild cognitive impairment among Chinese elderly: A cross-sectional study. PLoS ONE 2020, 15, e0235974. [Google Scholar] [CrossRef]
- Schulze, M.B.; Hoffmann, K. Methodological approaches to study dietary patterns in relation to risk of coronary heart disease and stroke. Br. J. Nutr. 2006, 95, 860–869. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Z.; Gao, Q.; Zhao, H.; Chen, S.; Huang, L.; Wang, W.; Wang, T. A review of statistical methods for dietary pattern analysis. Nutr. J. 2021, 20, 37. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, K.; Schulze, M.B.; Schienkiewitz, A.; Nöthlings, U.; Boeing, H. Application of a new statistical method to derive dietary patterns in nutritional epidemiology. Am. J. Epidemiol. 2004, 159, 935–944. [Google Scholar] [CrossRef]
- Solfrizzi, V.; Panza, F. Mediterranean diet and cognitive decline. A lesson from the whole-diet approach: What challenges lie ahead? J. Alzheimers Dis. 2014, 39, 283–286. [Google Scholar] [CrossRef] [PubMed]
- Tangney, C.C.; Li, H.; Wang, Y.; Barnes, L.; Schneider, J.A.; Bennett, D.A.; Morris, M.C. Relation of DASH- and Mediterranean-like dietary patterns to cognitive decline in older persons. Neurology 2014, 83, 1410–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, M.C.; Tangney, C.C.; Wang, Y.; Sacks, F.M.; Bennett, D.A.; Aggarwal, N.T. MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimers Dement 2015, 11, 1007–1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, M.C.; Tangney, C.C.; Wang, Y.; Sacks, F.M.; Barnes, L.L.; Bennett, D.A.; Aggarwal, N.T. MIND diet slows cognitive decline with aging. Alzheimers Dement 2015, 11, 1015–1022. [Google Scholar] [CrossRef] [Green Version]
- Qin, B.; Plassman, B.L.; Edwards, L.J.; Popkin, B.M.; Adair, L.S.; Mendez, M.A. Fish intake is associated with slower cognitive decline in Chinese older adults. J. Nutr. 2014, 144, 1579–1585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, L.; Xiao, R.; Cai, C.; Xu, Z.; Wang, S.; Pan, L.; Yuan, L. Diet, lifestyle and cognitive function in old Chinese adults. Arch. Gerontol. Geriatr. 2016, 63, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Pastor-Valero, M.; Furlan-Viebig, R.; Menezes, P.R.; da Silva, S.A.; Vallada, H.; Scazufca, M. Education and WHO recommendations for fruit and vegetable intake are associated with better cognitive function in a disadvantaged Brazilian elderly population: A population-based cross-sectional study. PLoS ONE 2014, 9, e94042. [Google Scholar] [CrossRef]
- O’Brien, J.; Okereke, O.; Devore, E.; Rosner, B.; Breteler, M.; Grodstein, F. Long-term intake of nuts in relation to cognitive function in older women. J. Nutr. Health Aging 2014, 18, 496–502. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Liu, Z.; Sachdev, P.S.; Kochan, N.A.; O’Leary, F.; Brodaty, H. Dietary Patterns and Cognitive Health in Older Adults: Findings from the Sydney Memory and Ageing Study. J. Nutr. Health Aging 2021, 25, 255–262. [Google Scholar] [CrossRef]
- Shakersain, B.; Santoni, G.; Larsson, S.C.; Faxén-Irving, G.; Fastbom, J.; Fratiglioni, L.; Xu, W. Prudent diet may attenuate the adverse effects of Western diet on cognitive decline. Alzheimers Dement 2016, 12, 100–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozawa, M.; Shipley, M.; Kivimaki, M.; Singh-Manoux, A.; Brunner, E.J. Dietary pattern, inflammation and cognitive decline: The Whitehall II prospective cohort study. Clin. Nutr. 2017, 36, 506–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masuoka, N.; Lei, C.; Li, H.; Hisatsune, T. Influence of Imidazole-Dipeptides on Cognitive Status and Preservation in Elders: A Narrative Review. Nutrients 2021, 13, 397. [Google Scholar] [CrossRef] [PubMed]
- Masuoka, N.; Yoshimine, C.; Hori, M.; Tanaka, M.; Asada, T.; Abe, K.; Hisatsune, T. Effects of Anserine/Carnosine Supplementation on Mild Cognitive Impairment with APOE4. Nutrients 2019, 11, 1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hisatsune, T.; Kaneko, J.; Kurashige, H.; Cao, Y.; Satsu, H.; Totsuka, M.; Katakura, Y.; Imabayashi, E.; Matsuda, H. Effect of Anserine/Carnosine Supplementation on Verbal Episodic Memory in Elderly People. J. Alzheimers Dis. 2016, 50, 149–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rokicki, J.; Li, L.; Imabayashi, E.; Kaneko, J.; Hisatsune, T.; Matsuda, H. Daily Carnosine and Anserine Supplementation Alters Verbal Episodic Memory and Resting State Network Connectivity in Healthy Elderly Adults. Front. Aging Neurosci. 2015, 7, 219. [Google Scholar] [CrossRef] [Green Version]
- Wade, A.T.; Davis, C.R.; Dyer, K.A.; Hodgson, J.M.; Woodman, R.J.; Keage, H.A.D.; Murphy, K.J. A Mediterranean Diet with Fresh, Lean Pork Improves Processing Speed and Mood: Cognitive Findings from the MedPork Randomised Controlled Trial. Nutrients 2019, 11, 1521. [Google Scholar] [CrossRef] [Green Version]
- Katsiardanis, K.; Diamantaras, A.A.; Dessypris, N.; Michelakos, T.; Anastasiou, A.; Katsiardani, K.P.; Kanavidis, P.; Papadopoulos, F.C.; Stefanadis, C.; Panagiotakos, D.B.; et al. Cognitive impairment and dietary habits among elders: The Velestino Study. J. Med. Food 2013, 16, 343–350. [Google Scholar] [CrossRef]
- Samieri, C.; Jutand, M.A.; Féart, C.; Capuron, L.; Letenneur, L.; Barberger-Gateau, P. Dietary patterns derived by hybrid clustering method in older people: Association with cognition, mood, and self-rated health. J. Am. Diet Assoc. 2008, 108, 1461–1471. [Google Scholar] [CrossRef]
- D’Amico, D.; Parrott, M.D.; Greenwood, C.E.; Ferland, G.; Gaudreau, P.; Belleville, S.; Laurin, D.; Anderson, N.D.; Kergoat, M.J.; Morais, J.A.; et al. Sex differences in the relationship between dietary pattern adherence and cognitive function among older adults: Findings from the NuAge study. Nutr. J. 2020, 19, 58. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Yang, M.; Hao, Q.; Yue, J.; Dong, B. Cross-sectional study examining the association between metabolic syndrome and cognitive function among the oldest old. J. Am. Med. Dir. Assoc. 2013, 14, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Yao, M.; McCrory, M.A.; Ma, G.; Li, Y.; Roberts, S.B.; Tucker, K.L. Dietary pattern is associated with homocysteine and B vitamin status in an urban Chinese population. J. Nutr. 2003, 133, 3636–3642. [Google Scholar] [CrossRef] [PubMed]
Food Groups 1 | Dietary Pattern 1 2 | Dietary Pattern 2 | Dietary Pattern 3 | Dietary Pattern 4 | Dietary Pattern 5 | Dietary Pattern 6 |
---|---|---|---|---|---|---|
Rice | 0.16 | −0.13 | 0.18 | −0.67 | 0.26 | 0.09 |
Wheat | 0.21 | −0.08 | −0.22 | 0.34 | −0.26 | 0.53 |
Other cereal | 0.15 | 0.05 | −0.07 | −0.12 | −0.40 | 0.05 |
Tuber | 0.16 | 0.22 | 0.37 | 0.14 | −0.08 | −0.01 |
Legume products | 0.28 | 0.16 | 0.00 | −0.21 | −0.37 | −0.03 |
Vegetables | 0.45 | 0.15 | 0.57 | 0.08 | 0.26 | 0.15 |
Fruits | 0.29 | 0.16 | 0.27 | 0.19 | −0.18 | −0.34 |
Salted vegetables | 0.07 | 0.01 | −0.02 | −0.14 | −0.10 | 0.16 |
Nuts | 0.25 | 0.08 | −0.01 | −0.01 | −0.28 | −0.33 |
Pork | 0.32 | −0.34 | 0.05 | −0.21 | 0.44 | −0.21 |
Other livestock meat | 0.20 | −0.23 | −0.05 | −0.21 | 0.02 | −0.37 |
Poultry | 0.15 | −0.13 | −0.06 | 0.02 | 0.08 | 0.03 |
Milk | 0.10 | −0.05 | −0.01 | 0.03 | −0.03 | −0.08 |
Eggs | 0.23 | −0.09 | −0.07 | 0.24 | −0.09 | 0.14 |
Fish | 0.29 | −0.35 | −0.23 | 0.38 | 0.07 | −0.27 |
Plant oil | 0.31 | 0.68 | −0.50 | −0.01 | 0.31 | 0.03 |
Animal oil | −0.01 | −0.04 | 0.15 | −0.09 | 0.19 | 0.27 |
Sugar | 0.04 | 0.03 | −0.12 | 0.00 | −0.10 | −0.10 |
Salt | 0.22 | 0.27 | −0.15 | −0.07 | 0.10 | 0.26 |
Explained variation in: | ||||||
Food groups (%) | 7.65 | 5.38 | 5.08 | 5.61 | 7.06 | 5.56 |
Responses (%) | 37.39 | 8.38 | 5.62 | 2.39 | 0.74 | 0.33 |
Parameters | Q1(n = 1466) | Q2(n = 1651) | Q3(n = 1568) | Q4(n = 1623) | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
n | % | n | % | n | % | n | % | ||
Survey year | |||||||||
1997 | 242 | 16.5 | 225 | 13.6 | 212 | 13.5 | 238 | 14.7 | 0.19 |
2000 | 151 | 10.3 | 220 | 13.3 | 172 | 11 | 159 | 9.8 | |
2004 | 233 | 15.9 | 275 | 16.7 | 287 | 18.3 | 256 | 15.8 | |
2006 | 99 | 6.7 | 119 | 7.2 | 137 | 8.7 | 105 | 6.5 | |
2015 | 741 | 50.6 | 812 | 49.2 | 760 | 48.5 | 865 | 53.3 | |
Age (years) | |||||||||
55–64 | 944 | 64.4 | 1155 | 69.9 | 1152 | 73.5 | 1209 | 74.5 | <0.001 |
65–74 | 408 | 27.8 | 399 | 24.2 | 328 | 20.9 | 353 | 21.7 | |
≥75 | 114 | 7.8 | 97 | 5.9 | 88 | 5.6 | 61 | 3.8 | |
Gender | |||||||||
Male | 587 | 40.0 | 769 | 46.6 | 776 | 49.5 | 888 | 54.7 | <0.001 |
Female | 879 | 60.0 | 882 | 53.4 | 792 | 50.5 | 735 | 45.3 | |
Region | |||||||||
North | 783 | 53.4 | 642 | 38.9 | 481 | 30.7 | 434 | 26.7 | <0.001 |
South | 683 | 46.6 | 1009 | 61.1 | 1087 | 69.3 | 1189 | 73.3 | |
Education | |||||||||
Elementary and below | 983 | 67.1 | 1008 | 61.1 | 893 | 56.9 | 774 | 47.7 | <0.001 |
Junior high | 277 | 18.9 | 331 | 20.0 | 332 | 21.2 | 398 | 24.5 | |
High school and above | 206 | 14.0 | 312 | 18.9 | 343 | 21.9 | 451 | 27.8 | |
Smoking | |||||||||
Non-smokers | 1068 | 73.3 | 1163 | 70.7 | 1076 | 68.9 | 1084 | 66.9 | <0.001 |
Former smokers | 38 | 2.6 | 69 | 4.2 | 50 | 3.2 | 70 | 4.3 | |
Current smokers | 351 | 24.1 | 412 | 25.1 | 435 | 27.9 | 467 | 28.8 | |
Drinking | |||||||||
None | 1116 | 76.7 | 1184 | 72.1 | 1075 | 68.9 | 1060 | 65.6 | <0.001 |
<3 times/week | 178 | 12.2 | 217 | 13.2 | 215 | 13.8 | 221 | 13.7 | |
≥3 times/week | 161 | 11.1 | 241 | 14.7 | 271 | 17.3 | 335 | 20.7 | |
Employment | |||||||||
No | 960 | 65.7 | 1069 | 64.8 | 1007 | 64.2 | 1018 | 62.8 | 0.400 |
Yes | 502 | 34.3 | 581 | 35.2 | 561 | 35.8 | 603 | 37.2 | |
Urbanization index | |||||||||
Low | 538 | 37.2 | 485 | 29.7 | 353 | 22.8 | 281 | 17.5 | <0.001 |
Medium | 448 | 31.0 | 494 | 30.3 | 509 | 32.8 | 460 | 28.7 | |
High | 459 | 31.8 | 652 | 40.0 | 689 | 44.4 | 862 | 53.8 | |
Family income | |||||||||
Low | 533 | 37.0 | 519 | 32.0 | 381 | 24.5 | 289 | 17.9 | <0.001 |
Medium | 409 | 28.4 | 498 | 30.7 | 534 | 34.3 | 529 | 32.9 | |
High | 497 | 34.5 | 605 | 37.3 | 642 | 41.2 | 792 | 49.2 | |
Physical activity | |||||||||
Low | 653 | 44.6 | 725 | 43.9 | 665 | 42.4 | 716 | 44.2 | 0.199 |
Medium | 374 | 25.5 | 470 | 28.5 | 479 | 30.6 | 532 | 32.8 | |
High | 438 | 29.9 | 456 | 27.6 | 423 | 27.0 | 373 | 23.0 | |
Overweight–obesity | |||||||||
No | 859 | 58.6 | 946 | 57.3 | 848 | 54.1 | 794 | 48.9 | <0.001 |
Yes | 607 | 41.4 | 705 | 42.7 | 720 | 45.9 | 829 | 51.1 | |
Hypertension | |||||||||
No | 804 | 54.8 | 899 | 54.4 | 902 | 57.5 | 868 | 53.5 | 0.124 |
Yes | 662 | 45.2 | 752 | 45.6 | 666 | 42.5 | 755 | 46.5 | |
Diabetes | |||||||||
No | 1372 | 94.0 | 1535 | 94.0 | 1468 | 94.5 | 1505 | 93.4 | 0.590 |
Yes | 87 | 6.0 | 98 | 6.0 | 85 | 5.5 | 107 | 6.6 | |
Myocardial infarction | |||||||||
No | 1445 | 99.0 | 1626 | 99.3 | 1544 | 99.0 | 1604 | 99.1 | 0.832 |
Yes | 14 | 1.0 | 12 | 0.7 | 16 | 1.0 | 14 | 0.9 | |
Stroke | |||||||||
No | 1431 | 98.6 | 1607 | 98.2 | 1532 | 98.4 | 1582 | 98.1 | 0.734 |
Yes | 21 | 1.4 | 30 | 1.8 | 25 | 1.6 | 31 | 1.9 | |
Mean | SD | Mean | SD | Mean | SD | Mean | SD | p-value | |
Global cognitive score | 14.3 | 6.0 | 15.1 | 5.8 | 15.7 | 5.9 | 16.4 | 5.7 | <0.001 |
Verbal memory score | 9.5 | 4.8 | 9.9 | 4.7 | 10.2 | 4.8 | 10.7 | 4.8 | <0.001 |
Dietary energy(kcal/d) | 1760.6 | 618.9 | 1940.8 | 559.8 | 2144.4 | 629.8 | 2592.7 | 752.6 | <0.001 |
Q1(ref) | Q2 | Q3 | Q4 | |
---|---|---|---|---|
Global cognitive score | ||||
Model 1 1 | 0.00 | 0.64(<0.001) | 1.16(<0.001) | 1.73(<0.001) |
Model 2 2 | 0.00 | 0.39(0.001) | 0.67(<0.001) | 0.92(<0.001) |
Model 3 3 | 0.00 | 0.27(0.030) | 0.45(<0.001) | 0.50(<0.001) |
Verbal memory score | ||||
Model 1 1 | 0.00 | 0.38(<0.001) | 0.66(<0.001) | 1.06(<0.001) |
Model 2 2 | 0.00 | 0.21(0.046) | 0.33(0.002) | 0.50(<0.001) |
Model 3 3 | 0.00 | 0.11(0.291) | 0.13(0.228) | 0.12(0.336) |
Global cognitive function Z score | ||||
Model 1 1 | 0.00 | 0.09(<0.001) | 0.16(<0.001) | 0.23(<0.001) |
Model 2 2 | 0.00 | 0.06(<0.001) | 0.10(<0.001) | 0.13(<0.001) |
Model 3 3 | 0.00 | 0.05(0.002) | 0.08(<0.001) | 0.09(<0.001) |
Verbal memory Z score | ||||
Model 1 1 | 0.00 | 0.15(<0.001) | 0.25(<0.001) | 0.41(<0.001) |
Model 2 2 | 0.00 | 0.08(0.046) | 0.13(0.002) | 0.19(<0.001) |
Model 3 3 | 0.00 | 0.04(0.288) | 0.05(0.230) | 0.05(0.340) |
Q1(ref) | Q2 | Q3 | Q4 | |
---|---|---|---|---|
Overall 1 | 1.00 | 0.82(0.73 to 0.93) | 0.79(0.69 to 0.91) | 0.74(0.63 to 0.86) |
Age (years) 1 | ||||
55–64 | 1.00 | 0.84(0.68 to 1.05) | 0.80(0.64 to 1.01) | 0.83(0.64 to 1.08) |
65–74 | 1.00 | 0.89(0.74 to 1.07) | 0.80(0.65 to 0.98) | 0.68(0.53 to 0.86) |
≥75 | 1.00 | 0.66(0.51 to 0.86) | 0.72(0.54 to 0.96) | 0.71(0.49 to 1.01) |
Gender 2 | ||||
Men | 1.00 | 0.84(0.68 to 1.04) | 0.86(0.69 to 1.07) | 0.83(0.65 to 1.07) |
Women | 1.00 | 0.82(0.71 to 0.96) | 0.76(0.64 to 0.91) | 0.69(0.56 to 0.85) |
Region 2 | ||||
North | 1.00 | 0.94(0.77 to 1.15) | 0.87(0.69 to 1.10) | 0.72(0.54 to 0.96) |
South | 1.00 | 0.75(0.64 to 0.88) | 0.75(0.64 to 0.89) | 0.74(0.61 to 0.90) |
Smoking 2 | ||||
No | 1.00 | 0.90(0.78 to 1.04) | 0.80(0.68 to 0.94) | 0.78(0.64 to 0.93) |
Yes | 1.00 | 0.64(0.49 to 0.83) | 0.79(0.61 to 1.03) | 0.66(0.49 to 0.89) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Huang, F.; Zhang, J.; Wei, Y.; Bai, J.; Wang, H.; Jia, X. Association between Micronutrient-Related Dietary Pattern and Cognitive Function among Persons 55 Years and Older in China: A Longitudinal Study. Nutrients 2023, 15, 481. https://doi.org/10.3390/nu15030481
Zhang X, Huang F, Zhang J, Wei Y, Bai J, Wang H, Jia X. Association between Micronutrient-Related Dietary Pattern and Cognitive Function among Persons 55 Years and Older in China: A Longitudinal Study. Nutrients. 2023; 15(3):481. https://doi.org/10.3390/nu15030481
Chicago/Turabian StyleZhang, Xiaofan, Feifei Huang, Jiguo Zhang, Yanli Wei, Jing Bai, Huijun Wang, and Xiaofang Jia. 2023. "Association between Micronutrient-Related Dietary Pattern and Cognitive Function among Persons 55 Years and Older in China: A Longitudinal Study" Nutrients 15, no. 3: 481. https://doi.org/10.3390/nu15030481
APA StyleZhang, X., Huang, F., Zhang, J., Wei, Y., Bai, J., Wang, H., & Jia, X. (2023). Association between Micronutrient-Related Dietary Pattern and Cognitive Function among Persons 55 Years and Older in China: A Longitudinal Study. Nutrients, 15(3), 481. https://doi.org/10.3390/nu15030481