Unraveling the Connection between Fatty Liver Severity with Gender, Lifestyle, and Health Risks among Workers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Committee Review
2.2. Design and Participants of the Study
2.3. Assessment of Health-Related Lifestyle Habits
2.4. Fatty Liver Severity Determination
2.5. Evaluation of Metabolic Risk Factors
2.6. Inflammatory and Cardiovascular Markers Detection
2.7. Liver Functional Parameters Measurement
2.8. Statistical Analysis
3. Results
3.1. Characteristics of Participants by Gender
3.2. Correlation between the Lifestyle Habits and Fatty Liver Levels
3.3. Mean or Percentage of Metabolic Parameters, Inflammatory Markers, and Liver Functional Parameters by Fatty Liver Levels
3.4. The Odds Ratio of Metabolic Irregularity, Inflammation, and Liver Impairment Based on the Severity of Fatty Liver
4. Discussion
4.1. The Prevalence of Fatty Liver Disease
4.2. Gender Differences in Fatty Liver Status and Lifestyle Habits
4.3. The Correlation between the Severity of Fatty Liver and Lifestyle Behaviors
4.4. The Correlation between the Severity of Fatty Liver and Metabolic Abnormalities, Inflammation, and Liver Dysfunction
4.5. Achievements and Implications
4.6. Limitations and Prospective
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fang, X.; Song, J.; Zhou, K.; Zi, X.; Sun, B.; Bao, H.; Li, L. Molecular Mechanism Pathways of Natural Compounds for the Treatment of Non-Alcoholic Fatty Liver Disease. Molecules 2023, 28, 5645. [Google Scholar] [CrossRef]
- Teng, M.L.; Ng, C.H.; Huang, D.Q.; Chan, K.E.; Tan, D.J.; Lim, W.H.; Yang, J.D.; Tan, E.; Muthiah, M.D. Global incidence and prevalence of nonalcoholic fatty liver disease. Clin. Mol. Hepatol. 2023, 29, S32–S42. [Google Scholar] [CrossRef] [PubMed]
- Riazi, K.; Azhari, H.; Charette, J.H.; Underwood, F.E.; King, J.A.; Afshar, E.E.; Swain, M.G.; Congly, S.E.; Kaplan, G.G.; Shaheen, A.A. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2022, 7, 851–861. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lee, Y.H.; Kim, S.U.; Kim, H.C. Metabolic Dysfunction-Associated Fatty Liver Disease and Incident Cardiovascular Disease Risk: A Nationwide Cohort Study. Clin. Gastroenterol. Hepatol. 2021, 19, 2138–2147.e2110. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.C.; Chou, S.C.; Huang, P.T.; Chiou, H.Y. Risk factors and predictors of non-alcoholic fatty liver disease in Taiwan. Ann. Hepatol. 2011, 10, 125–132. [Google Scholar] [CrossRef]
- Bilson, J.; Sethi, J.K.; Byrne, C.D. Non-alcoholic fatty liver disease: A multi-system disease influenced by ageing and sex, and affected by adipose tissue and intestinal function. Proc. Nutr. Soc. 2022, 81, 146–161. [Google Scholar] [CrossRef]
- Hsu, C.S.; Kao, J.H. Non-alcoholic fatty liver disease: An emerging liver disease in Taiwan. J. Formos. Med. Assoc. 2012, 111, 527–535. [Google Scholar] [CrossRef]
- Juanola, O.; Martinez-Lopez, S.; Frances, R.; Gomez-Hurtado, I. Non-Alcoholic Fatty Liver Disease: Metabolic, Genetic, Epigenetic and Environmental Risk Factors. Int. J. Env. Res. Public Health 2021, 18, 5227. [Google Scholar] [CrossRef]
- Farhud, D.D. Impact of Lifestyle on Health. Iran J. Public Health 2015, 44, 1442–1444. [Google Scholar]
- Rutten-Jacobs, L.C.; Larsson, S.C.; Malik, R.; Rannikmae, K.; Consortium, M.; International Stroke Genetics, C.; Sudlow, C.L.; Dichgans, M.; Markus, H.S.; Traylor, M. Genetic risk, incident stroke, and the benefits of adhering to a healthy lifestyle: Cohort study of 306 473 UK Biobank participants. BMJ 2018, 363, k4168. [Google Scholar] [CrossRef]
- Park, J.W.; Suk, K.T. The effect of moderate alcohol consumption on nonalcoholic fatty liver disease. Clin. Mol. Hepatol. 2023, 29, 408–410. [Google Scholar] [CrossRef] [PubMed]
- Weng, G.; Dunn, W. Effect of alcohol consumption on nonalcoholic fatty liver disease. Transl. Gastroenterol. Hepatol. 2019, 4, 70. [Google Scholar] [CrossRef] [PubMed]
- Nagral, A.; Bangar, M.; Menezes, S.; Bhatia, S.; Butt, N.; Ghosh, J.; Manchanayake, J.H.; Mahtab, M.A.; Singh, S.P. Gender Differences in Nonalcoholic Fatty Liver Disease. Euroasian J. Hepatogastroenterol. 2022, 12 (Suppl. S1), S19–S25. [Google Scholar]
- Health Promotion Administration, Ministry of Health and Welfare in Taiwan. The 4 + 1 Programs of Smart Workplaces. Innovative Services to Increase Health. Available online: https://www.hpa.gov.tw/EngPages/Detail.aspx?nodeid=1038&pid=10534 (accessed on 9 September 2023).
- Liao, Y.L.C.; Park, J.H. Is motorcycle use associated with unhealthy lifestyles? Findings from Taiwan. J. Transp. Health 2019, 15, 100659. [Google Scholar] [CrossRef]
- Grander, C.; Grabherr, F.; Moschen, A.R.; Tilg, H. Non-Alcoholic Fatty Liver Disease: Cause or Effect of Metabolic Syndrome. Visc. Med. 2016, 32, 329–334. [Google Scholar] [CrossRef]
- Uehara, T.; Wakui, H.; Tamura, K. Metabolic dysfunction-associated fatty liver disease reflects a significantly higher risk of hypertension than non-alcoholic fatty liver disease. Hypertens. Res. 2023, 46, 1165–1167. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, J.; Ma, R.; Zhang, X.; Guo, H.; He, J.; Wang, X.; Cao, B.; Maimaitijiang, R.; Li, Y.; et al. Metabolic Dysfunction-Associated Fatty Liver Disease Is Associated with the Risk of Incident Cardiovascular Disease: A Prospective Cohort Study in Xinjiang. Nutrients 2022, 14, 2361. [Google Scholar] [CrossRef]
- Godoy-Matos, A.F.; Silva Junior, W.S.; Valerio, C.M. NAFLD as a continuum: From obesity to metabolic syndrome and diabetes. Diabetol. Metab. Syndr. 2020, 12, 60. [Google Scholar] [CrossRef]
- Padda, J.; Khalid, K.; Khedr, A.; Tasnim, F.; Al-Ewaidat, O.A.; Cooper, A.C.; Jean-Charles, G. Non-Alcoholic Fatty Liver Disease and Its Association With Diabetes Mellitus. Cureus 2021, 13, e17321. [Google Scholar] [CrossRef]
- Singhai, A.; Yadav, V.; Joshi, R.; Malik, R.T.; Kamle, S.; Savitha, B.T. Prevalence, Metabolic Profile, and Associated Risk Factors of Non-alcoholic Fatty Liver Disease in an Adult Population of India. Cureus 2023, 15, e33977. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, Y.; Wang, J.; Liu, Y.; Qi, D.; Yao, W.; Jiang, H.; Li, T.; Huang, K.; Zhang, W.; et al. Prevalence and risk factor analysis for the nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus. Medicine 2021, 100, e24940. [Google Scholar] [CrossRef] [PubMed]
- Pettinelli, P.; Fernandez, T.; Aguirre, C.; Barrera, F.; Riquelme, A.; Fernandez-Verdejo, R. Prevalence of non-alcoholic fatty liver disease and its association with lifestyle habits in adults in Chile: A cross-sectional study from the National Health Survey 2016–2017. Br. J. Nutr. 2023, 130, 1036–1046. [Google Scholar] [CrossRef] [PubMed]
- Walker, S.N.; Sechrist, K.R.; Pender, N.J. The Health-Promoting Lifestyle Profile: Development and psychometric characteristics. Nurs. Res. 1987, 36, 1976–1981. [Google Scholar] [CrossRef]
- Walker, S.N.; Sechrist, K.R.; Pender, N.J. Health Promotion Model—Instruments to Measure Health Promoting Lifestyle: Health-Promoting Lifestyle Profile [HPLP II] (Adult Version). 1995. Available online: https://deepblue.lib.umich.edu/handle/2027.2042/85349 (accessed on 16 March 2017).
- Yang, K.C.; Liao, Y.Y.; Tsui, P.H.; Yeh, C.K. Ultrasound imaging in nonalcoholic liver disease: Current applications and future developments. Quant. Imaging Med. Surg. 2019, 9, 546–551. [Google Scholar] [CrossRef] [PubMed]
- Ferraioli, G.; Soares Monteiro, L.B. Ultrasound-based techniques for the diagnosis of liver steatosis. World J. Gastroenterol. 2019, 25, 6053–6062. [Google Scholar] [CrossRef] [PubMed]
- Saadeh, S.; Younossi, Z.M.; Remer, E.M.; Gramlich, T.; Ong, J.P.; Hurley, M.; Mullen, K.D.; Cooper, J.N.; Sheridan, M.J. The utility of radiological imaging in nonalcoholic fatty liver disease. Gastroenterology 2002, 123, 745–750. [Google Scholar] [CrossRef]
- Health Promotion Administration, Ministry of Health and Welfare in Taiwan. Metabolic Symdrome. Available online: https://www.hpa.gov.tw/pages/list.aspx?nodeid=221 (accessed on 26 November 2022).
- Pearson, T.A.; Mensah, G.A.; Alexander, R.W.; Anderson, J.L.; Cannon, R.O., 3rd; Criqui, M.; Fadl, Y.Y.; Fortmann, S.P.; Hong, Y.; Myers, G.L.; et al. Markers of inflammation and cardiovascular disease: Application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 2003, 107, 499–511. [Google Scholar] [CrossRef]
- Rondina, M.T.; Weyrich, A.S.; Zimmerman, G.A. Platelets as cellular effectors of inflammation in vascular diseases. Circ. Res. 2013, 112, 1506–1519. [Google Scholar] [CrossRef]
- Madjid, M.; Fatemi, O. Components of the complete blood count as risk predictors for coronary heart disease: In-depth review and update. Tex. Heart Inst. J. 2013, 40, 17–29. [Google Scholar]
- Byrne, B.M. Structural Equation Modeling With AMOS: Basic Concepts, Applications, and Programming, 2nd ed.; L. E. A. Publishers: Mahwah, NJ, USA, 2010. [Google Scholar]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 7th ed.; Pearson: New York, NY, USA, 2010. [Google Scholar]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 3rd ed.; The Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Le, M.H.; Yeo, Y.H.; Li, X.; Li, J.; Zou, B.; Wu, Y.; Ye, Q.; Huang, D.Q.; Zhao, C.; Zhang, J.; et al. 2019 Global NAFLD Prevalence: A Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 2022, 20, 2809–2817.e2828. [Google Scholar] [CrossRef]
- Wang, J.; Chiu, W.H.; Chen, R.C.; Chen, F.L.; Tung, T.H. The clinical investigation of disparity of nonalcoholic fatty liver disease in a Chinese occupational population in Taipei, Taiwan: Experience at a teaching hospital. Asia Pac. J. Public Health 2015, 27, NP1793–NP1804. [Google Scholar] [CrossRef] [PubMed]
- Summart, U.; Thinkhamrop, B.; Chamadol, N.; Khuntikeo, N.; Songthamwat, M.; Kim, C.S. Gender differences in the prevalence of nonalcoholic fatty liver disease in the Northeast of Thailand: A population-based cross-sectional study. F1000Research 2017, 6, 1630. [Google Scholar] [CrossRef] [PubMed]
- Salvoza, N.C.; Claudio, P.J.; Tiribelli, C.; Rosso, N. Sex differences in non-alcoholic fatty liver disease: Hints for future management of the disease. Explor. Med. 2020, 1, 51–74. [Google Scholar] [CrossRef]
- Pender, N.J.; Walker, S.N.; Sechrist, K.R.; Frank-Stromborg, M. Predicting health-promoting lifestyles in the workplace. Nurs. Res. 1990, 39, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Lusk, S.L.; Kerr, M.J.; Ronis, D.L. Health-promoting lifestyles of blue-collar, skilled trade, and white-collar workers. Nurs. Res. 1995, 44, 20–24. [Google Scholar] [CrossRef]
- Hallsworth, K.; Adams, L.A. Lifestyle modification in NAFLD/NASH: Facts and figures. JHEP Rep. 2019, 1, 468–479. [Google Scholar] [CrossRef]
- Jahromi, M.K.; Daftari, G.; Farhadnejad, H.; Tehrani, A.N.; Teymoori, F.; Salehi-Sahlabadi, A.; Mirmiran, P. The association of healthy lifestyle score and risk of non-alcoholic fatty liver disease. BMC Public Health 2023, 23, 973. [Google Scholar] [CrossRef]
- Lu, F.B.; Hu, E.D.; Xu, L.M.; Chen, L.; Wu, J.L.; Li, H.; Chen, D.Z.; Chen, Y.P. The relationship between obesity and the severity of non-alcoholic fatty liver disease: Systematic review and meta-analysis. Expert Rev. Gastroenterol. Hepatol. 2018, 12, 491–502. [Google Scholar] [CrossRef]
- Adams, L.A.; Anstee, Q.M.; Tilg, H.; Targher, G. Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other extrahepatic diseases. Gut 2017, 66, 1138–1153. [Google Scholar] [CrossRef]
- Wang, C.C.; Tseng, T.C.; Hsieh, T.C.; Hsu, C.S.; Wang, P.C.; Lin, H.H.; Kao, J.H. Severity of fatty liver on ultrasound correlates with metabolic and cardiovascular risk. Kaohsiung J. Med. Sci. 2012, 28, 151–160. [Google Scholar] [CrossRef]
Gender | ||||
---|---|---|---|---|
Variables | Total (n = 2936) | Male (n = 2469) | Female (n = 467) | p |
Age (y) | 42.5 ± 10.0 | 41.8 ± 10.2 | 46.0 ± 7.4 | <0.001 |
Lifestyle habits | ||||
Nutritional health behavior | 2.5 ± 0.4 | 2.4 ± 0.4 | 2.7 ± 0.4 | <0.001 |
Exercise health behavior | 2.0 ± 0.6 | 1.9 ± 0.6 | 2.0 ± 0.6 | 0.344 |
Smoking | ||||
Current smokers | 656 (22.3) | 654 (26.5) | 2 (0.4) | <0.001 |
Non-smokers | 2280 (77.7) | 1815 (73.5) | 465 (99.6) | |
Alcohol consumption | ||||
Current alcohol drinkers | 1363 (46.4) | 1265 (51.2) | 98 (21.0) | <0.001 |
Non-alcohol drinkers | 1573 (53.6) | 1204 (48.8) | 369 (79.0) | |
Fatty liver levels | ||||
No | 1601 (54.5) | 1271 (51.5) | 330 (70.7) | <0.001 |
Mild | 1006 (34.3) | 892 (36.1) | 114 (24.4) | |
Mod | 288 (9.8) | 267 (10.8) | 21 (4.5) | |
Severe | 41 (1.4) | 39 (1.6) | 2 (0.4) |
Fatty Liver Levels | |||||
---|---|---|---|---|---|
Variables | No (n = 1601) | Mild (n = 1006) | Mod (n = 288) | Severe (n = 41) | p |
Nutritional health behavior | 2.48 (2.45–2.50) | 2.43 (2.41–2.46) | 2.46 (2.41–2.50) | 2.44 (2.31–2.57) | 0.104 |
Exercise health behavior | 1.99 (1.96–2.02) | 1.93 (1.90–1.96) | 1.86 (1.81–1.92) | 1.74 (1.55–1.92) | <0.001 |
Smoking | |||||
Current smokers | 329 (20.5) | 252 (25.0) | 65 (22.6) | 10 (24.4) | 0.062 |
Non-smokers | 1272 (79.5) | 754 (75.0) | 223 (77.4) | 31 (75.6) | |
Alcohol consumption | |||||
Current alcohol drinkers | 721 (45.0) | 487 (48.4) | 129 (44.8) | 26 (63.4) | 0.048 |
Non-alcohol drinkers | 880 (55.0) | 519 (51.6) | 159 (55.2) | 15 (36.6) |
Fatty Liver Levels | ANOVA 1 F, p | p for Linear Trend 1 | ||||
---|---|---|---|---|---|---|
Variables 3 | No (n = 1601) | Mild (n = 1006) | Mod (n = 288) | Severe (n = 41) | ||
Metabolic parameters | ||||||
Waist circumference (cm) a,b,c,d,e,f | 77.7 (77.3–78.1) | 85.1 (84.6–85.5) | 92.4 (91.4–93.3) | 99.3 (96.6–101.9) | 471.3, <0.001 | <0.001 |
FBG (mg/dL) a,b,c,d | 91.3 (90.6–92.1) | 95.4 (94.1–96.8) | 100.0 (97.4–102.7) | 103.3 (95.3–111.3) | 26.2, <0.001 | <0.001 |
Triglycerides (mg/dL) a,b,c,d,e | 108.6 (104.6–112.6) | 149.8 (143.7–155.9) | 202.2 (183.7–220.7) | 221.2 (165.6–276.9) | 99.8, <0.001 | <0.001 |
HDL-C (mg/dL) a,b,c,d | 56.4 (55.8–57.0) | 49.4 (48.7–50.1) | 44.9 (43.9–45.9) | 41.5 (38.6–44.4) | 128.8, <0.001 | <0.001 |
Systolic BP (mm Hg) a,b,c,d | 119.8 (119.1–120.5) | 124.5 (113.6–125.5) | 129.8 (128.0–131.5) | 131.1 (125.9–136.3) | 50.7, <0.001 | <0.001 |
Diastolic BP (mm Hg) a,b,c,d | 76.4 (75.9–77.0) | 79.6 (78.9–80.2) | 83.9 (82.5–85.2) | 82.1 (77.8–86.5) | 45.9, <0.001 | <0.001 |
Metabolic syndrome | ||||||
Yes (p < 0.001) | 70 (4.4) | 175 (17.4) | 123 (42.7) | 26 (63.4) | ||
No | 1531 (95.6) | 831 (82.6) | 165 (57.3) | 15 (36.6) | ||
Inflammatory markers 1 | ||||||
WBC (109 cells/L) a,b,c,d,e,f | 6.4 (6.3–6.5) | 6.9 (6.8–7.0) | 7.3 (7.1–7.5) | 8.2 (7.6–8.7) | 38.6, <0.001 | <0.001 |
Platelet (109/L) a,b,c | 246.8 (243.9–249.6) | 255.4 (251.9–258.9) | 260.2 (254.0–266.4) | 276.4 (257.0–295.8) | 10.1, <0.001 | 0.001 |
Liver functional parameters | ||||||
GOT (U/L) b,c,d,e | 20.2 (18.7–20.9) | 20.8 (20.2–21.3) | 26.7 (25.2–28.3) | 32.6 (28.5–36.7) | 16.7, <0.001 | <0.001 |
GPT (U/L) a,b,c,d,e,f | 21.7 (20.0–22.0) | 28.7 (27.3–30.1) | 42.4 (39.2–45.6) | 64.1 (53.2–75.1) | 120.6, <0.001 | <0.001 |
Variables 2 | Fatty Liver Levels | Odds Comparison between Four Groups | |||
---|---|---|---|---|---|
No (n = 1601) | Mild (n = 1006) | Mod (n = 288) | Severe (n = 41) | ||
Metabolic abnormality | |||||
Waist circumference (cm) ≥90 for men or ≥80 for women (obese) | 1.00 | 5.3 (4.2–6.7) | 24.7 (18.1–33.9) | 270.0 (64.1–1137.9) | No < Mild < Mod < Severe |
p | <0.001 | <0.001 | <0.001 | ||
FBG > 100 mg/dL | 1.00 | 2.0 (1.4–2.8) | 4.3 (2.8–6.5) | 9.7 (4.6–20.7) | No < Mild < Mod < Severe |
p | <0.001 | <0.001 | <0.001 | ||
Triglycerides ≥ 150 mg/dL | 1.00 | 2.7 (2.2–3.2) | 5.7 (4.3–7.5) | 7.0 (3.7–13.4) | No < Mild < Mod ≒ Severe |
p | <0.001 | <0.001 | <0.001 | ||
Low HDL-C | 1.00 | 2.9 (2.3–3.6) | 5.0 (3.6–6.8) | 8.3 (4.3–16.0) | No < Mild < Mod ≒ Severe |
p | <0.001 | <0.001 | <0.001 | ||
BP (mm Hg) Systolic BP ≥ 130 and diastolic BP ≥ 85 | 1.00 | 1.7 (1.5–2.1) | 3.8 (2.9–5.0) | 4.5 (2.3–8.8) | No < Mild < Mod ≒ Severe |
p | <0.001 | <0.001 | <0.001 | ||
Metabolic syndrome | 1.00 | 4.4 (3.3–5.9) | 16.3 (11.54–22.9) | 44.5 (22.1–89.6) | No < Mild < Mod < Severe |
p | <0.001 | <0.001 | <0.001 | ||
Inflammation 3 | |||||
WBC ≥ 7.16 × 109/L | 1.00 | 1.6 (1.4–1.9) | 2.7 (2.1–3.6) | 5.5 (2.8–10.9) | No < Mild < Mod ≒ Severe |
p | <0.001 | <0.001 | <0.001 | ||
Platelet ≥ 271 × 109/L | 1.00 | 1.4 (1.2–1.7) | 1.9 (1.4–2.4) | 2.5 (1.3–4.8) | No < Mild < Mod ≒ Severe |
p | <0.001 | <0.001 | 0.007 | ||
Liver dysfunction | |||||
GPT > 35 U/L | 1.00 | 2.3 (1.8–2.8) | 8.4 (6.2–11.3) | 28.3 (12.8–62.7) | No < Mild < Mod < Severe |
p | <0.001 | <0.001 | <0.001 | ||
GOT > 40 U/L | 1.00 | 1.2 (0.7–1.9) | 3.7 (2.2–6.3) | 16.9 (8.0–35.8) | No ≒ Mild < Mod < Severe |
p | 0.498 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, F.-C.; Li, R.-H.; Huang, J.-H. Unraveling the Connection between Fatty Liver Severity with Gender, Lifestyle, and Health Risks among Workers. Nutrients 2023, 15, 4765. https://doi.org/10.3390/nu15224765
Tang F-C, Li R-H, Huang J-H. Unraveling the Connection between Fatty Liver Severity with Gender, Lifestyle, and Health Risks among Workers. Nutrients. 2023; 15(22):4765. https://doi.org/10.3390/nu15224765
Chicago/Turabian StyleTang, Feng-Cheng, Ren-Hau Li, and Jui-Hua Huang. 2023. "Unraveling the Connection between Fatty Liver Severity with Gender, Lifestyle, and Health Risks among Workers" Nutrients 15, no. 22: 4765. https://doi.org/10.3390/nu15224765