Regional and Age-Related Variations in Blood Calcium Levels among Patients with Plasmodium falciparum and P. vivax malaria: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Outcomes
2.3. Systematic Review Question
2.4. Search Strategy
2.5. Inclusion and Exclusion Criteria
2.6. Study Selection and Data Extraction
2.7. Quality Assessment of Included Studies
2.8. Data Syntheses
3. Results
3.1. Search Results
3.2. Characteristics of Included Studies
3.3. Quality of Included Studies
3.4. Thematic Synthesis
3.5. Meta-Analysis of the Difference in Calcium Levels in Relation to Malaria
3.6. Meta-Analysis of the Difference in Calcium Levels in Relation to Severe Malaria
3.7. Meta-Analysis of the Difference in Calcium Levels in Relation to Fatal Malaria
3.8. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. World Malaria Report 2022; World Health Organization: Geneva, Swizerland, 2022. [Google Scholar]
- Sato, S. Plasmodium-a brief introduction to the parasites causing human malaria and their basic biology. J. Physiol. Anthropol. 2021, 40, 1. [Google Scholar] [CrossRef]
- Maier, A.G.; Matuschewski, K.; Zhang, M.; Rug, M. Plasmodium falciparum. Trends Parasitol. 2019, 35, 481–482. [Google Scholar] [CrossRef]
- White, N.J. Severe malaria. Malar. J. 2022, 21, 284. [Google Scholar] [CrossRef]
- Drake, T.M.; Gupta, V. Calcium; StatPearls: Tampa, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557683/ (accessed on 23 September 2023).
- Weaver, C.M.; Peacock, M. Calcium. Adv. Nutr. 2019, 10, 546–548. [Google Scholar] [CrossRef]
- Reid, I.R.; Bristow, S.M. Calcium and bone. Handb. Exp. Pharmacol. 2020, 262, 259–280. [Google Scholar] [CrossRef] [PubMed]
- Leung, E.K.Y. Parathyroid hormone. Adv. Clin. Chem. 2021, 101, 41–93. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, M.B.; Awosika, A.O.; Jialal, I. Calcitonin; StatPearls: Tampa, FL, USA, Treasure Island (FL) Ineligible Companies. 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK537269/ (accessed on 23 September 2023).
- Norman, A.W. Vitamin D metabolism and calcium absorption. Am. J. Med. 1979, 67, 989–998. [Google Scholar] [CrossRef]
- Eisenreich, W.; Rudel, T.; Heesemann, J.; Goebel, W. How viral and intracellular bacterial pathogens reprogram the metabolism of host cells to allow their intracellular replication. Front. Cell Infect. Microbiol. 2019, 9, 42. [Google Scholar] [CrossRef]
- Chen, X.; Cao, R.; Zhong, W. Host calcium channels and pumps in viral infections. Cells 2019, 9, 94. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Sun, Y.; Yang, Z.; Ding, C. Calcium ions signaling: Targets for attack and utilization by viruses. Front. Microbiol. 2022, 13, 889374. [Google Scholar] [CrossRef]
- Arrizabalaga, G.; Boothroyd, J.C. Role of calcium during Toxoplasma gondii invasion and egress. Int. J. Parasitol. 2004, 34, 361–368. [Google Scholar] [CrossRef]
- Treamtrakanpon, W.; Kanjanabuch, T.; Eiam-Ong, S. Hypercalcemia and refractory peritonitis alert the condition of tuberculous peritonitis: A case report and review literature. J. Med. Assoc. Thai 2011, 94 (Suppl. S4), S148–S152. [Google Scholar]
- Waness, A.; Al Shohaib, S. Tuberculous peritonitis associated with peritoneal dialysis. Saudi J. Kidney Dis. Transpl. 2012, 23, 44–47. [Google Scholar]
- Minasi, A.; Andreadi, A.; Maiorino, A.; Giudice, L.; De Taddeo, S.; D’Ippolito, I.; de Guido, I.; Laitano, R.; Romano, M.; Ruotolo, V.; et al. Hypocalcemia is associated with adverse outcomes in patients hospitalized with COVID-19. Endocrine 2023, 79, 577–586. [Google Scholar] [CrossRef]
- Torres, B.; Alcubilla, P.; Gonzalez-Cordon, A.; Inciarte, A.; Chumbita, M.; Cardozo, C.; Meira, F.; Gimenez, M.; de Hollanda, A.; Soriano, A.; et al. Impact of low serum calcium at hospital admission on SARS-CoV-2 infection outcome. Int. J. Infect. Dis. 2021, 104, 164–168. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, D.; Wang, L.; Zhao, Y.; Wei, L.; Chen, Z.; Yang, B. Low serum calcium: A new, important indicator of COVID-19 patients from mild/moderate to severe/critical. Biosci. Rep. 2020, 40, BSR20202690. [Google Scholar] [CrossRef]
- Abdelsalam, K.E.A. Effect of Plasmodium falciparum infection on serum levels of calcium, magnesium, zinc and iron among adult Sudanese patients. Asian J. Sci. Res. 2016, 9, 122–125. [Google Scholar] [CrossRef]
- Okon, A.U.; Eze, B.I.; Emmanuel, U.A.; Marcus, I.W.; Adanna, U.C. Correlation of parasite density and biochemical parameters in children with malaria infection in Calabar, South-South Nigeria. Egypt. Pediatr. Assoc. Gaz. 2022, 70, 27. [Google Scholar] [CrossRef]
- Tyagi, R.A.; Tyagi, A.G.; Ram Choudhary, P.; Shekhawat, J.S. Study of cation imbalance in patients of malaria. Physiol. Pharmacol. 2017, 21, 175–184. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Morgan, R.L.; Whaley, P.; Thayer, K.A.; Schunemann, H.J. Identifying the PECO: A framework for formulating good questions to explore the association of environmental and other exposures with health outcomes. Environ. Int. 2018, 121, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Moola, S.; Munn, Z.; Tufanaru, C.; Aromataris, E.; Sears, K.; Sfetcu, R.; Currie, M.; Qureshi, R.; Mattis, P.; Lisy, K.; et al. Chapter 7: Systematic reviews of etiology and risk. In JBI Manual for Evidence Synthesis; JBI: Adelaide, Australia, 2020. [Google Scholar]
- Thomas, J.; Harden, A. Methods for the thematic synthesis of qualitative research in systematic reviews. BMC Med. Res. Methodol. 2008, 8, 45. [Google Scholar] [CrossRef] [PubMed]
- Hozo, S.P.; Djulbegovic, B.; Hozo, I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med. Res. Methodol. 2005, 5, 13. [Google Scholar] [CrossRef] [PubMed]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef]
- Willis, B.H.; Riley, R.D. Measuring the statistical validity of summary meta-analysis and meta-regression results for use in clinical practice. Stat. Med. 2017, 36, 3283–3301. [Google Scholar] [CrossRef]
- Asaolu, M.F.; Igbaakin, P.A. Serum levels of micronutrients and antioxidants during malaria in pregnant women in Ado-Ekiti, Ekiti State, Nigeria. Int. J. Med. Med. Sci. 2009, 1, 523–526. [Google Scholar]
- Ayoola, O.O.; Fawole, O.I.; Omotade, O.O. Calcium and phosphate levels in Nigerian children with malaria. Ann. Trop. Paediatr. 2005, 25, 303–306. [Google Scholar] [CrossRef]
- Davis, T.M.; Li, G.Q.; Guo, X.B.; Spencer, J.L.; St John, A. Serum ionized calcium, serum and intracellular phosphate, and serum parathormone concentrations in acute malaria. Trans. R. Soc. Trop. Med. Hyg. 1993, 87, 49–53. [Google Scholar] [CrossRef]
- Davis, T.M.; Pukrittayakamee, S.; Woodhead, J.S.; Holloway, P.; Chaivisuth, B.; White, N.J. Calcium and phosphate metabolism in acute falciparum malaria. Clin. Sci. 1991, 81, 297–304. [Google Scholar] [CrossRef]
- Dondorp, A.M.; Chau, T.T.; Phu, N.H.; Mai, N.T.; Loc, P.P.; Chuong, L.V.; Sinh, D.X.; Taylor, A.; Hien, T.T.; White, N.J.; et al. Unidentified acids of strong prognostic significance in severe malaria. Crit. Care Med. 2004, 32, 1683–1688. [Google Scholar] [CrossRef]
- Inocent, G.; Gustave, L.L.; Issa, T.S.; Yolande, M.; Bertand, P.M.J.; Richard, E.A.; Felicité, T.M. Influence of malaria on the serum levels of vitamin A, zinc and calcium of children in Douala-Cameroon. Afr. J. Biotechnol. 2007, 6, 871–876. [Google Scholar]
- Maitland, K.; Pamba, A.; Fegan, G.; Njuguna, P.; Nadel, S.; Newton, C.R.J.C.; Lowe, B. Perturbations in electrolyte levels in Kenyan children with severe malaria complicated by acidosis. Clin. Infect. Dis. 2005, 40, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Mfonkeu, J.B.; Gouado, I.; Kuate, H.F.; Zambou, O.; Combes, V.; Grau, G.E.; Zollo, P.H. Biochemical markers of nutritional status and childhood malaria severity in Cameroon. Br. J. Nutr. 2010, 104, 886–892. [Google Scholar] [CrossRef]
- Mishra, S. Malaria-precipitated hypocalcaemia and related complications. J. Pharm. Innov. 2013, 2, 162–168. [Google Scholar]
- Prabha, M.R.; Pereira, P.; Chowta, N.; Hegde, B.M. Clinical implications of hypocalcemia in malaria. Indian J. Med. Res. 1998, 108, 62–65. [Google Scholar] [PubMed]
- John, A.; Davis, T.M.E.; Binh, T.Q.; Thu, L.T.A.; Dyer, J.R.; Anh, T.K. Mineral homoeostasis in acute renal failure complicating severe falciparum malaria. J. Clin. Endocrinol. Metab. 1995, 80, 2761–2767. [Google Scholar] [CrossRef]
- Luong, K.V.; Nguyen, L.T. The role of vitamin D in malaria. J. Infect. Dev. Ctries. 2015, 9, 8–19. [Google Scholar] [CrossRef]
- Ndako, J.A.; Olisa, J.A.; Ozoadibe, O.Y.; Dojumo, V.T.; Fajobi, V.O.; Akinwumi, J.A. Evaluation of the association between malaria infection and electrolyte variation in patients: Use of Pearson correlation analytical technique. Inform. Med. Unlocked 2020, 21, 100437. [Google Scholar] [CrossRef]
- Krishna, S.; Ng, L.L. Cation metabolism in malaria-infected red cells. Exp. Parasitol. 1989, 69, 402–406. [Google Scholar] [CrossRef] [PubMed]
- Mogire, R.M.; Mutua, A.; Kimita, W.; Kamau, A.; Bejon, P.; Pettifor, J.M.; Adeyemo, A.; Williams, T.N.; Atkinson, S.H. Prevalence of vitamin D deficiency in Africa: A systematic review and meta-analysis. Lancet Glob. Health 2020, 8, e134–e142. [Google Scholar] [CrossRef] [PubMed]
- Bouillon, R. Vitamin D status in Africa is worse than in other continents. Lancet Glob. Health 2020, 8, e20–e21. [Google Scholar] [CrossRef]
- Prentice, A.; Schoenmakers, I.; Jones, K.S.; Jarjou, L.M.; Goldberg, G.R. Vitamin D deficiency and its health consequences in Africa. Clin. Rev. Bone Miner. Metab. 2009, 7, 94–106. [Google Scholar] [CrossRef] [PubMed]
- Brooker, S.; Akhwale, W.; Pullan, R.; Estambale, B.; Clarke, S.E.; Snow, R.W.; Hotez, P.J. Epidemiology of Plasmodium-helminth co-infection in Africa: Populations at risk, potential impact on anemia, and prospects for combining control. Am. J. Trop. Med. Hyg. 2007, 77, 88–98. [Google Scholar] [CrossRef]
- Kaswa, R.; de Villiers, M. Prevalence of hepatitis-B virus co-infection among people living with HIV in Mthatha region of South Africa. Afr. Health Sci. 2023, 23, 149–156. [Google Scholar] [CrossRef]
- Osakunor, D.N.M.; Sengeh, D.M.; Mutapi, F. Coinfections and comorbidities in African health systems: At the interface of infectious and noninfectious diseases. PLoS Negl. Trop. Dis. 2018, 12, e0006711. [Google Scholar] [CrossRef] [PubMed]
- Stagi, S.; Cavalli, L.; Iurato, C.; Seminara, S.; Brandi, M.L.; de Martino, M. Bone metabolism in children and adolescents: Main characteristics of the determinants of peak bone mass. Clin. Cases Miner. Bone Metab. 2013, 10, 172–179. [Google Scholar]
- Luzolo, A.L.; Ngoyi, D.M. Cerebral malaria. Brain Res. Bull. 2019, 145, 53–58. [Google Scholar] [CrossRef]
- van Stuijvenberg, M.E.; Nel, J.; Schoeman, S.E.; Lombard, C.J.; du Plessis, L.M.; Dhansay, M.A. Low intake of calcium and vitamin D, but not zinc, iron or vitamin A, is associated with stunting in 2- to 5-year-old children. Nutrition 2015, 31, 841–846. [Google Scholar] [CrossRef]
Characteristics | n (14 Studies) | % |
---|---|---|
Publication year | ||
Before 2000 | 4 | 28.57 |
2000–2009 | 5 | 37.71 |
2010–2019 | 4 | 28.54 |
2020–2023 | 1 | 7.14 |
Study designs | ||
Cross-sectional study | 8 | 57.14 |
Case-control study | 4 | 28.57 |
Cohort study | 1 | 7.14 |
Clinical trials | 1 | 7.14 |
Study areas | ||
Asia | 7 | 50.0 |
India | 3 | 21.43 |
Vietnam | 2 | 14.29 |
Thailand | 1 | 7.14 |
China | 1 | 7.14 |
Africa | 7 | 50.0 |
Nigeria | 3 | 21.43 |
Cameroon | 2 | 14.29 |
Sudan | 1 | 7.14 |
Kenya | 1 | 7.14 |
Plasmodium species | ||
P. falciparum | 10 | 71.43 |
P. falciparum, P. vivax, mixed infections | 2 | 14.29 |
P. falciparum, P. vivax | 1 | 7.14 |
Not specified | 1 | 7.14 |
Participants | ||
Children | 5 | 35.71 |
Adults | 7 | 50.0 |
Children and adults | 2 | 14.29 |
Symptom | ||
Symptomatic | 11 | 78.57 |
Not specified | 3 | 21.43 |
Severity status | ||
Severe malaria | 3 | 21.43 |
Severe and non-severe malaria | 6 | 42.86 |
Non-severe malaria (uncomplicated, mild, or asymptomatic malaria) | 1 | 7.14 |
Not specified | 4 | 28.57 |
Methods for malaria detection | ||
Microscopic method | 9 | 64.29 |
Microscopic method, RDT | 2 | 14.29 |
Microscopic method, Quantitative buffy coat | 1 | 7.14 |
Not specified | 2 | 14.29 |
Blood sample for calcium | ||
Serum | 9 | 64.29 |
Plasma | 5 | 35.71 |
No. | Authors | Continent (Country) | Number of Participants Enrolled | Age Range | Plasmodium spp. | Clinical Malaria | Comparison of Calcium Levels in Different Groups of Malaria |
---|---|---|---|---|---|---|---|
1 | Abdelsalam et al., 2016 [20] | Africa (Sudan) | Patients with malaria (n = 75), normal healthy controls (n = 75) | Adults (≥18 years) | P. falciparum | Symptomatic malaria | 1. Significantly decreased levels of calcium were observed in patients with malaria when compared to uninfected controls. 2. Calcium levels were decreased with increasing parasitemia. |
2 | Asaolu et al., 2009 [31] | Africa (Nigeria) | Pregnant women: Patients with malaria (n = 195), uninfected controls (n = 100) | 20–43 years | P. falciparum | Not specified | Significantly decreased levels of calcium were observed in patients with malaria when compared to uninfected controls. |
3 | Ayoola et al., 2005 [32] | Africa (Nigeria) | Patients with malaria (n = 30), uninfected controls (n = 39): | Patients with malaria: 6–108, uninfected controls: 7–108 months | P. falciparum | Symptomatic malaria | Significantly decreased levels of calcium were observed in patients with malaria when compared to uninfected controls. |
4 | Davis et al., 1991 [34] | Asia (Thailand) | Patients with malaria (n = 172) | 14–72 years | P. falciparum | Symptomatic malaria | 1. Significantly increased levels of calcium were observed in patients who died when compared to survivors. 2. No difference in levels of calcium was observed in patients with severe malaria when compared to non-severe malaria. |
5 | Davis et al., 1993 [33] | Asia (China) | P. falciparum (n = 10), P. vivax (n = 8), normal healthy controls (n = 10) | P. falciparum: 11–40, P. vivax: 18–38, normal healthy controls: 20–46 years | P. falciparum, P. vivax | Symptomatic malaria | 1. No difference in levels of calcium was observed in patients with malaria (all species) when compared to uninfected controls. 2. Significantly decreased calcium levels were observed in patients with P. falciparum malaria compared to uninfected controls. 3. No difference in levels of calcium was observed in patients with P. vivax malaria when compared to uninfected controls. |
6 | Dondorp et al., 2004 [35] | Asia (Vietnam) | Fatal cases (n = 46), survivors (n = 222) | Fatal cases: 15–74, survivors: 15–79 years | P. falciparum | Symptomatic malaria | No difference in levels of calcium was observed between fatal cases and survivors. |
7 | Inocent et al., 2007 [36] | Africa (Cameroon) | Patients with malaria (n = 54), healthy controls (n = 62) | ≤6 years | P. falciparum | Not specified | Significantly decreased levels of calcium were observed in patients with malaria when compared to uninfected controls. |
8 | Maitland et al., 2005 [37] | Africa (Kenya) | Kenyan children (n = 56): survivors (n = 42), fatal cases (n = 14) | >2 months | P. falciparum | Symptomatic malaria | No difference in levels of calcium was observed between fatal cases and survivors. |
9 | Mfonke et al., 2010 [38] | Africa (Cameroon) | Children who had come for vaccination or counselling (n = 45), Uncomplicated malaria (n = 94), malaria anemia (n = 73), cerebral malaria (n = 45), cerebral malaria/malaria anemia (n = 13) | 6–168 months | P. falciparum | Symptomatic malaria | 1. No difference in levels of calcium was observed in patients with malaria (uncomplicated, malaria anemia, cerebral malaria) compared to uninfected controls. 2. No difference in levels of calcium between severe (malaria anemia, cerebral malaria) and non-severe malaria. |
10 | Mishra et al., 2013 [39] | Asia (India) | Patients with malaria (n = 70), uninfected controls (not specified number) | 5 to >50 years | P. falciparum, P. vivax, mixed infections | Symptomatic malaria | Significantly decreased levels of calcium were observed in patients with malaria when compared to uninfected controls. |
11 | Okon et al., 2022 [21] | Africa (Nigeria) | Patients with malaria (n = 50), uninfected controls (n = 30) | Children (not specified age range) | P. falciparum | Not specified | 1. No difference in levels of calcium was observed between malaria and uninfected controls. 2. Significantly decreased levels of calcium were observed in patients with severe malaria when compared to mild malaria. 3. Significantly decreased levels of calcium were observed in patients with moderate malaria when compared to mild malaria. 4. No difference in levels of calcium was observed between moderate and severe malaria. |
12 | Prabha et al., 1998 [40] | Asia (India) | Patients with malaria (n = 60) | Adults (not specified age range) | P. falciparum, P. vivax, mixed infections | Symptomatic malaria | Mean levels of calcium in patients with complicated malaria (falciparum or mixed infections) were lower than those with uncomplicated malaria (falciparum or mixed infections). |
13 | St. John et al., 1995 [41] | Asia (Vietnam) | Patients with severe malaria (n = 25), uninfected controls (n = 10) | 18–63 years | P. falciparum | Symptomatic malaria | Significantly decreased levels of calcium were observed in patients with malaria when compared to uninfected controls. |
14 | Tyagi et al., 2017 [22] | Asia (India) | Patients with malaria (n = 551), uninfected controls (n = 211) | 13–82 years | Not specified | Symptomatic malaria | Significantly decreased levels of calcium were observed in patients with malaria when compared to uninfected controls. |
Subgroup Analyses | p Value | Hedges’ g (95% CI) | I2 (%) | Number of Studies |
---|---|---|---|---|
Publication years | ||||
2020–2023 | N/A | −0.30 (–0.76–0.15) | N/A | 1 |
2010–2019 | 0.17 | −1.96 (–4.77–0.85) | 99.58 | 3 |
2000–2009 | 0.07 | −1.72 (–0.39–0.15) | 98.02 | 3 |
Before 2000 | 0.37 | 1.24 (–1.48–3.97) | 95.75 | 2 |
Study design | ||||
Cross-sectional study | 0.21 | −1.27 (–3.28–0.73) | 99.29 | 5 |
Case-control study | 0.53 | −0.65 (–2.67–1.37) | 98.39 | 4 |
Continent | ||||
Africa | 0.02 | −1.12 (–2.06–(–0.19)) | 96.89 | 6 |
Asia | 0.76 | −0.70 (–5.25–3.86) | 99.41 | 3 |
Age group | ||||
Children | 0.02 | −0.42 (–0.78–(–0.05)) | 69.45 | 4 |
Adults | 0.55 | −0.66 (–2.86–1.53) | 98.34 | 4 |
Children and adults | N/A | −4.55 (–4.83–(–4.27)) | N/A | 1 |
Plasmodium species | ||||
P. falciparum | 0.23 | −0.62 (–1.62–0.38) | 97.36 | 7 |
P. vivax | N/A | −0.14 (–0.89–0.61) | N/A | 1 |
Not specified | N/A | −4.55 (–4.83–4.27) | N/A | 1 |
Symptoms | ||||
Symptomatic | 0.48 | −0.69 (–2.62–1.24) | 99.23 | 6 |
Not specified | 0.11 | −1.60 (–3.54–0.35) | 98.26 | 3 |
Methods for Plasmodium identification | ||||
Microscopic method | 0.23 | −1.09 (–2.87–0.69) | 99.05 | 7 |
Microscopic method, RDT | 0.30 | −0.66 (–1.92–0.60) | 96.46 | 2 |
Blood samples for calcium measurement | ||||
Serum | 0.24 | −0.64 (–1.71–0.43) | 97.05 | 7 |
Plasma | 0.31 | −2.28 (–6.72–2.15) | 99.77 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotepui, K.U.; Mahittikorn, A.; Wilairatana, P.; Masangkay, F.R.; Kotepui, M. Regional and Age-Related Variations in Blood Calcium Levels among Patients with Plasmodium falciparum and P. vivax malaria: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 4522. https://doi.org/10.3390/nu15214522
Kotepui KU, Mahittikorn A, Wilairatana P, Masangkay FR, Kotepui M. Regional and Age-Related Variations in Blood Calcium Levels among Patients with Plasmodium falciparum and P. vivax malaria: A Systematic Review and Meta-Analysis. Nutrients. 2023; 15(21):4522. https://doi.org/10.3390/nu15214522
Chicago/Turabian StyleKotepui, Kwuntida Uthaisar, Aongart Mahittikorn, Polrat Wilairatana, Frederick Ramirez Masangkay, and Manas Kotepui. 2023. "Regional and Age-Related Variations in Blood Calcium Levels among Patients with Plasmodium falciparum and P. vivax malaria: A Systematic Review and Meta-Analysis" Nutrients 15, no. 21: 4522. https://doi.org/10.3390/nu15214522
APA StyleKotepui, K. U., Mahittikorn, A., Wilairatana, P., Masangkay, F. R., & Kotepui, M. (2023). Regional and Age-Related Variations in Blood Calcium Levels among Patients with Plasmodium falciparum and P. vivax malaria: A Systematic Review and Meta-Analysis. Nutrients, 15(21), 4522. https://doi.org/10.3390/nu15214522