Proposition of an Energy Intake Estimating Scale through Item Response Theory
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cruz, F.; Ramos, E.; Lopes, C.; Araújo, J. Tracking of food and nutrient intake from adolescence into early adulthood. Nutrition 2018, 55–56, 84–90. [Google Scholar] [CrossRef]
- Bawajeeh, A.O.; Albar, S.A.; Zhang, H.; Zulyniak, M.A.; Evans, C.E.L.; Cade, J.E. Impact of Taste on Food Choices in Adolescence—Systematic Review and Meta-Analysis. Nutrients 2020, 12, 1985. Available online: https://www.mdpi.com/2072-6643/12/7/1985 (accessed on 13 July 2022). [CrossRef]
- Costa, C.S.; Del-Ponte, B.; Assunção, M.C.F.; Santos, I.S. Consumption of ultra-processed foods and body fat during childhood and adolescence: A systematic review. Public Health Nutr. 2018, 21, 148–159. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Z.; Yang, H.; Qiu, P.; Wang, H.; Wang, F.; Zhao, Q.; Fang, J.; Nie, J. Consumption of ultra-processed foods and health outcomes: A systematic review of epidemiological studies (Consumo de alimentos ultraprocessados e resultados para a saúde: Uma revisão sistemática de estudos epidemiológicos). Nutr. J. 2020, 19, 86. [Google Scholar] [CrossRef]
- Kazman, J.B.; Scott, J.M.; Deuster, P.A. Using item response theory to address vulnerabilities in FFQ. Br. J. Nutr. 2017, 118, 383–391. [Google Scholar] [CrossRef]
- Archer, E.; Marlow, M.L.; Lavie, C.J. Controversy and debate: Memory-Based Methods Paper 1: The fatal flaws of food frequency questionnaires and other memory-based dietary assessment methods. J. Clin. Epidemiol. 2018, 104, 113–124. [Google Scholar] [CrossRef]
- Saravia, L.; Miguel-Berges, M.L.; Iglesia, I.; Nascimento-Ferreira, M.V.; Perdomo, G.; Bove, I.; Slater, B.; Moreno, L.A. Relative Validity of FFQ to Assess Food Items, Energy, Macronutrient and Micronutrient Intake in Children and Adolescents: A Systematic Review with Meta-Analysis. Br. J. Nutr. 2021, 125, 792–818. Available online: https://www.cambridge.org/core/product/identifier/S0007114520003220/type/journal_article (accessed on 13 July 2022). [CrossRef]
- Tabacchi, G.; Filippi, A.R.; Amodio, E.; Jemni, M.; Bianco, A.; Firenze, A.; Mammina, C. A meta-analysis of the validity of FFQ targeted to adolescents. Public Health Nutr. 2016, 19, 1168–1183. [Google Scholar] [CrossRef]
- Carter, J.L.; Lewington, S.; Piernas, C.; Bradbury, K.; Key, T.J.; Jebb, S.A.; Arnold, M.; Bennett, D.; Clarke, R. Reproducibility of dietary intakes of macronutrients, specific food groups, and dietary patterns in 211 050 adults in the UK Biobank study. J. Nutr. Sci. 2019, 8, e34. [Google Scholar] [CrossRef]
- de Sousa, L.A.; Braga, A.E. Teoria clássica dos testes e teoria de resposta ao item em avaliação educacional. Rev. Instrum. Modelos Políticas Avaliação Educ. 2020, 1, e020002. [Google Scholar] [CrossRef]
- de Andrade, D.F.; Tavares, H.R.; da Cunha Valle, R. A Teoria da Resposta ao Item: Conceitos e Aplicações; SINAPE: São Paulo, Brazil, 2000; 164p. [Google Scholar]
- Barbetta, P.A.; Trevisan, L.M.V.; Andrade, D.F. Considerações Sobre o Estudo de Dimensionalidade em Instrumentos de Medida Baseados em Itens. In Congresso Brasileiro de Teoria da Resposta ao Item; 2016; pp. 29–48. Available online: http://abave.com.br/ojs/index.php/Conbratri/article/view/367 (accessed on 15 July 2022).
- Guimarães, L.S.P. Estimação da Ingestão Energética Utilizando Modelos da Teoria de Resposta ao Item. Master’s Thesis, Universidade Federal do Rio Grande do Sul, Farroupilha, Brazil, 2012. [Google Scholar]
- Tayama, J.; Ogawa, S.; Takeoka, A.; Kobayashi, M.; Shirabe, S. Item response theory-based validation of a short form of the Eating Behavior Scale for Japanese adults. Medicine 2017, 96, e8334. [Google Scholar] [CrossRef] [PubMed]
- McNamara, J.; Kunicki, Z.J.; Olfert, M.D.; Byrd-Bredbenner, C.; Greene, G. Revision and Psychometric Validation of a Survey Tool to Measure Critical Nutrition Literacy in Young Adults. J. Nutr. Educ. Behav. 2020, 52, 726–731. [Google Scholar] [CrossRef] [PubMed]
- McNamara, J.; Kunicki, Z.J.; Neptune, L.; Parsons, K.; Byrd-Bredbenner, C. Development and Validation of the Young Adult Nutrition Literacy Tool. J. Nutr. Educ. Behav. 2022, 54, 691–701. [Google Scholar] [CrossRef]
- Santos, T.S.S.; de Moura Araújo, P.H.; de Andrade, D.F.; da Costa Louzada, M.L.; de Assis, M.A.A.; Slater, B. Two validity evidences of the ESQUADA and Brazilians’ dietary quality levels. Rev. Saúde Pública 2021, 55, 1–14. [Google Scholar]
- Confortin, S.C.; Ribeiro, M.R.C.; Barros, A.J.; Menezes, A.M.B.; Horta, B.L.; Victora, C.G.; Barros, F.C.; Gonçalves, H.; Bettiol, H.; Santos, I.S.D.; et al. RPS Brazilian Birth Cohorts Consortium (Ribeirão Preto, Pelotas and São Luís): History, Objectives and Methods. Cad. Saúde Pública 2021, 37, e00093320. Available online: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2021000400601&tlng=en (accessed on 13 July 2022). [CrossRef]
- World Health Organization. Physical Status: The Use of and Interpretation of Anthropometry, Report of a WHO Expert Committee; WHO: Geneva, Switzerland, 1995. [Google Scholar]
- Schneider, B.C.; Motta, J.V.D.S.; Muniz, L.C.; Bielemann, R.M.; Madruga, S.W.; Orlandi, S.P.; Gigante, D.P.; Assunção, M.C.F. Desenho de um Questionário de Frequência Alimentar Digital Autoaplicado Para Avaliar o Consumo Alimentar de Adolescentes e Adultos Jovens: Coortes de Nascimentos de Pelotas, Rio Grande do Sul. Rev. Bras. Epidemiol. 2016, 19, 419–432. Available online: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-790X2016000200419&lng=pt&tlng=pt (accessed on 13 July 2022). [CrossRef]
- Bogea, E.G.; França, A.K.T.C.; Bragança, M.L.B.M.; Vaz, J.S.; Assunção, M.C.; Barbieri, M.A.; Bettiol, H.; Silva, A.A.M. Relative Validity of a Food Frequency Questionnaire for Adolescents from a Capital in the Northeastern Region of Brazil. Braz. J. Med. Biol. Res. 2021, 54, e9991. Available online: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2021000100608&tlng=en (accessed on 15 July 2022). [CrossRef]
- Revelle, W. psych: Procedures for Personality and Psychological Research; Northwestern University: Evanston, IL, USA, 2021. [Google Scholar]
- Ekström, J. A Generalized Definition of the Polychoric Correlation Coefficient; UCLA Dep Stat Pap: Los Angeles, CA, USA, 2011; p. 36. [Google Scholar]
- Hair, J.; Black, W.; Babin, B.; Anderson, R.; Tatham, R. Análise Multivariada de Dados, 6th ed.; Bookman: Porto Alegre, Brazil, 2009. [Google Scholar]
- Samejima, F. Estimation of latent ability using a response pattern of graded scores. Psychometrika 1970, 35, 139. [Google Scholar] [CrossRef]
- De Ayala, R.J. The Theory and Practice of Item Response Theory, 1st ed.; The Guilford Press: New York, NY, USA, 2008; 448p. [Google Scholar]
- Bortolotti, S.L.V.; Tezza, R.; de Andrade, D.F.; Bornia, A.C.; de Sousa Júnior, A.F. Relevance and advantages of using the item response theory. Qual. Quant. 2013, 47, 2341–2360. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.r-project.org/ (accessed on 13 July 2022).
- Randall, E.; Marshall, J.; Graham, S.; Brasure, J. Frequency of food use data and the multidimensionality of diet. J. Am. Diet. Assoc. 1989, 89, 1070–1075. [Google Scholar] [CrossRef]
- Giacomelli, S.D.C.; de Assis, M.A.A.; de Andrade, D.F.; Schmitt, J.; Hinnig, P.D.F.; Borgatto, A.F.; Engel, R.; Vieira, F.G.; Fiates, G.M.; Di Pietro, P.F. Development of a Food-Based Diet Quality Scale for Brazilian Schoolchildren Using Item Response Theory. Nutrients 2021, 13, 3175. Available online: https://www.mdpi.com/2072-6643/13/9/3175 (accessed on 13 July 2022). [CrossRef] [PubMed]
- Engel, S.G.; Wittrock, D.A.; Crosby, R.D.; Wonderlich, S.A.; Mitchell, J.E.; Kolotkin, R.L. Development and Psychometric Validation of an Eating Disorder-Specific Health-Related Quality of Life Instrument. Int. J. Eat. Disord. 2006, 39, 62–71. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/eat.20200 (accessed on 6 May 2022). [CrossRef] [PubMed]
- Santos, T.S.S.; Julián, C.; Vincenzi, S.L.; De Andrade, D.F.; Slater, B.; De Assis, M.A.A.; Kafatos, A.; De Henauw, S.; Gottrand, F.; Androutsos, O.; et al. A New Measure of Health Motivation Influencing Food Choices and Its Association with Food Intakes and Nutritional Biomarkers in European Adolescents. Public Health Nutr. 2021, 24, 685–695. Available online: https://www.cambridge.org/core/journals/public-health-nutrition/article/new-measure-of-health-motivation-influencing-food-choices-and-its-association-with-food-intakes-and-nutritional-biomarkers-in-european-adolescents/0D90FE38048DF59525AB2B68833A4C8E (accessed on 6 May 2022). [CrossRef] [PubMed]
- Arruda, S.P.M.; Da Silva, A.A.M.; Kac, G.; Goldani, M.Z.; Bettiol, H.; Barbieri, M.A. Socioeconomic and Demographic Factors Are Associated with Dietary Patterns in a Cohort of Young Brazilian Adults. BMC Public Health 2014, 14, 654. Available online: https://pubmed.ncbi.nlm.nih.gov/24969831/ (accessed on 6 May 2022). [CrossRef]
- Borges, C.A.; Marchioni, D.M.L.; Levy, R.B.; Slater, B. Dietary patterns associated with overweight among Brazilian adolescents. Appetite 2018, 123, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Hassan, B.K.; Cunha, D.B.; de Oliveira Santos, R.; Baltar, V.T. Breakfast Patterns and Weight Status among Adolescents: A Study on the Brazilian National Dietary Survey 2008–2009. Br. J. Nutr. 2022, 127, 1549–1556. Available online: https://www.cambridge.org/core/journals/british-journal-of-nutrition/article/abs/breakfast-patterns-and-weight-status-among-adolescents-a-study-on-the-brazilian-national-dietary-survey-20082009/DD44FEE9AD9A34C01DB9FA848139BFC1 (accessed on 7 May 2022). [CrossRef]
- Barros, N.E.R.P.; Moreno, L.A.; Arruda, S.P.M.; de Assis, R.C.; Celedonio, R.F.; Silva, F.R.A.; Pinto, F.J.M.; Maia, C.S.C. Association between Eating Patterns and Excess Body Weight in Adolescents. Child. Obes. 2021, 17, 400–407. Available online: https://www.liebertpub.com/doi/abs/10.1089/chi.2020.0265 (accessed on 7 May 2022). [CrossRef]
- Sherk, A.; Naimi, T.S.; Stockwell, T.; Hobin, E. Calorie Intake from Alcohol in Canada: Why New Labelling Requirements are Necessary. Can. J. Diet. Pract. Res. 2019, 80, 111–115. Available online: https://dcjournal.ca/doi/abs/10.3148/cjdpr-2018-046 (accessed on 7 May 2022). [CrossRef]
- Robinson, E.; Humphreys, G.; Jones, A. Alcohol, Calories, and Obesity: A Rapid Systematic Review and Meta-Analysis of Consumer Knowledge, Support, and Behavioral Effects of Energy Labeling on Alcoholic Drinks. Obes. Rev. 2021, 22, e13198. Available online: https://onlinelibrary.wiley.com/doi/full/10.1111/obr.13198 (accessed on 7 May 2022). [CrossRef]
- Weihrauch-Blüher, S.; Kromeyer-Hauschild, K.; Graf, C.; Widhalm, K.; Korsten-Reck, U.; Jödicke, B.; Markert, J.; Müller, M.J.; Moss, A.; Wabitsch, M.; et al. Current Guidelines for Obesity Prevention in Childhood and Adolescence. Obes. Facts 2018, 11, 263–276. Available online: https://www.karger.com/Article/FullText/486512 (accessed on 7 May 2022). [CrossRef]
- Verduci, E.; Bronsky, J.; Embleton, N.; Gerasimidis, K.; Indrio, F.; Köglmeier, J.; de Koning, B.; Lapillonne, A.; Moltu, S.J.; Norsa, L.; et al. Role of Dietary Factors, Food Habits, and Lifestyle in Childhood Obesity Development: A Position Paper from the European Society for Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2021, 72, 769–783. Available online: https://journals.lww.com/jpgn/Fulltext/2021/05000/Role_of_Dietary_Factors,_Food_Habits,_and.30.aspx (accessed on 7 May 2022). [CrossRef] [PubMed]
- Donini, L.M.; Pinto, A.; Giusti, A.M.; Lenzi, A.; Poggiogalle, E. Obesity or BMI Paradox? Beneath the Tip of the Iceberg. Front Nutr. 2020, 7, 53. [Google Scholar] [CrossRef] [PubMed]
- Luciana De Araújo, M.; Rodrigues Nascimento, D.; Souza Lopes, M.; Mendes Dos Passos, C.; Cristine Souza Lopes, A. Condições de Vida de Famílias Brasileiras: Estimativa da Insegurança Alimentar. Rev. Bras. Estud. Popul. 2020, 37, 2020. Available online: http://www.scielo.br/j/rbepop/a/sZBVzPSsRYkT4JQY3XRVLYF/?format=html (accessed on 7 May 2022).
- de Aguiar, D.R.D.; da Costa, G.N. Avaliação da Situação Nutricional No Brasil: Efeitos Regionais e da Renda. Rev. Econ. Agronegócio 2019, 17, 8–29. Available online: https://periodicos.ufv.br/rea/article/view/7944 (accessed on 7 May 2022). [CrossRef]
- Ferraz, D.; de Oliveira, F.C.R.; Moralles, H.F.; do Nascimento Rebelatto, D.A. Os Determinantes do Consumo Alimentar Domiciliar: Uma Comparação Entre Estratos de Renda No Brasil Pelos Dados da POF de 2008/2009. Segurança Aliment. Nutr. 2018, 25, 38–50. Available online: https://periodicos.sbu.unicamp.br/ojs/index.php/san/article/view/8649989 (accessed on 7 May 2022). [CrossRef]
- Murayama, N.; Ishida, H.; Yamamoto, T.; Hazano, S.; Nakanishi, A.; Arai, Y.; Nozue, M.; Yoshioka, Y.; Saito, S.; Abe, A. Household Income Is Associated with Food and Nutrient Intake in Japanese Schoolchildren, Especially on Days without School Lunch. Public Health Nutr. 2017, 20, 2946–2958. Available online: https://www.cambridge.org/core/product/identifier/S1368980017001100/type/journal_article (accessed on 7 May 2022). [CrossRef]
- Piaggi, P. Metabolic Determinants of Weight Gain in Humans. Obesity 2019, 27, 691–699. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/oby.22456 (accessed on 7 May 2022). [CrossRef]
- Beslay, M.; Srour, B.; Méjean, C.; Allès, B.; Fiolet, T.; Debras, C.; Chazelas, E.; Deschasaux, M.; Wendeu-Foyet, M.G.; Hercberg, S.; et al. Ultra-Processed Food Intake in Association with BMI Change and Risk of Overweight and Obesity: A Prospective Analysis of the French NutriNet-Santé Cohort. PLOS Med. 2020, 17, e1003256. Available online: https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1003256 (accessed on 7 May 2022). [CrossRef]
- Pineda, K.L.L.; Gonzalez-Suarez, C.; Espino, R.V.; Escuadra, C.J.; Balid-Attwell, S.A.; Devora, K.; Mendoza, D. Eating Habits of College Students in Relation to Obesity. J. Med. Univ. St. Tomas 2020, 4, 500–509. Available online: https://www.jmust.org/elib/journal/doi/10.35460/2546-1621.2019-0018/full (accessed on 7 May 2022). [CrossRef]
- Drewnowski, A. Nutrient Density: Addressing the Challenge of Obesity. Br. J. Nutr. 2018, 120, S8–S14. Available online: https://www.cambridge.org/core/journals/british-journal-of-nutrition/article/nutrient-density-addressing-the-challenge-of-obesity/8CB6A990C157ABDF64B360F5044E3F59 (accessed on 7 May 2022). [CrossRef]
- Gupta, S.; Hawk, T.; Aggarwal, A.; Drewnowski, A. Characterizing ultra-processed foods by energy density, nutrient density, and cost. Front. Nutr. 2019, 6, 70. [Google Scholar] [CrossRef] [PubMed]
- Kant, A.K. Consumption of Energy-Dense, Nutrient-Poor Foods by Adult Americans: Nutritional and Health Implications. The Third National Health and Nutrition Examination Survey, 1988–1994. Am. J. Clin. Nutr. 2000, 72, 929–936. Available online: https://academic.oup.com/ajcn/article/72/4/929/4729370 (accessed on 7 May 2022). [CrossRef] [PubMed]
- Kwok, A.; Dordevic, A.L.; Paton, G.; Page, M.J.; Truby, H. Effect of Alcohol Consumption on Food Energy Intake: A Systematic Review and Meta-Analysis. Br. J. Nutr. 2019, 121, 481–495. Available online: https://pubmed.ncbi.nlm.nih.gov/30630543/ (accessed on 7 May 2022). [CrossRef] [PubMed]
- von Philipsborn, P.; Stratil, J.M.; Burns, J.; Busert, L.K.; Pfadenhauer, L.M.; Polus, S.; Holzapfel, C.; Hauner, H.; Rehfuess, E. Environmental Interventions to Reduce the Consumption of Sugar-Sweetened Beverages and Their Effects on Health. Cochrane Database Syst. Rev. 2016, 12, CD012292. Available online: https://doi.wiley.com/10.1002/14651858.CD012292 (accessed on 15 July 2022). [CrossRef]
- Vartanian, L.R.; Schwartz, M.B.; Brownell, K.D. Effects of Soft Drink Consumption on Nutrition and Health: A Systematic Review and Meta-Analysis. Am. J. Public Health 2007, 97, 667–675. Available online: http://ajph.aphapublications.org/doi/10.2105/AJPH.2005.083782 (accessed on 15 July 2022). [CrossRef]
- Stelmach-Mardas, M.; Kleiser, C.; Uzhova, I.; Peñalvo, J.L.; La Torre, G.; Palys, W.; Lojko, D.; Nimptsch, K.; Suwalska, A.; Linseisen, J.; et al. Seasonality of food groups and total energy intake: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2016, 70, 700–708. [Google Scholar] [CrossRef]
- Santos, T.S.S.; Julian, C.; de Andrade, D.F.; Villar, B.S.; Piccinelli, R.; González-Gross, M.; Gottrand, F.; Androutsos, O.; Kersting, M.; Michels, N.; et al. Measuring nutritional knowledge using Item Response Theory and its validity in European adolescents. Public Health Nutr. 2019, 22, 419–430. [Google Scholar] [CrossRef]
Item | FFQ Food Items |
---|---|
Cereals and tubers | Rice, whole grain bread, white bread, instant noodles, pasta, cassava flour, biscuits, cakes, potatoes, tapioca, beans |
Dairy products | Milk, sugary milk, yoghourts, cheese, cream cheese |
Fruits, vegetables, and greens | Orange, banana, papaya, apple, or pear, açaí, watermelon, pineapple, grapes |
Seasonal fruits, vegetables, and greens | Avocado, mango, guava, lettuce, tomato, chayote, cabbage, West Indian gherkin, pumpkin, cucumber, pea pod, beet, onion |
Meat and eggs | Beef, pork, poultry, fish, canned fish, sashimi, sushi, shrimp, crab, offal, hamburger, sausage, mortadella, bacon, eggs, butter, margarine, mayonnaise |
Candies | Ice cream, candies, milk cream, fruit jams, chocolate bars, cocoa, stuffed cake |
Sugar-Sweetened Beverages | Soda, artificial juices, fruit juices, soft drinks, coffee, sugary coffee, guarana of Amazônia |
Alcoholic beverages | Energy drink, beer, wine, sugar cane rum |
Various foods | Savoury, pizza, sandwich, kebab, popcorn, preserves, ketchup, breakfast cereals, cereal bars, nuts. |
Variables | n = 2515 1 |
---|---|
Currently studying | |
No | 767 (30.50%) |
Yes | 1748 (69.50%) |
Number of residents in household | 4.00 (3.00–5.00) |
Gender | |
Female | 1319 (52.45%) |
Male | 1196 (47.55%) |
Respondent marital status | |
With partner | 93 (3.70%) |
Single | 2422 (96.30%) |
Skin colour | |
White | 495 (19.78%) |
Non-white | 2007 (80.22%) |
Respondent’s parents’ marital status | |
Married | 1290 (51.29%) |
Divorced | 1225 (48.71%) |
BMI | 21.2 (19.1–24.0) |
Percentage of body fat | 21 (12–30) |
Total Cholesterol | 155 (135–176) |
HDL-c | 48 (41–56) |
LDL-c | 87 (71–105) |
Triglycerides | 79 (60–106) |
Beneficiary of government program | |
Yes | 524 (20.83%) |
No | 1991 (79.17%) |
Per capita family income | |
<¼ of minimum wage | 735 (29.25%) |
≥¼ of minimum wage | 1778 (70.75%) |
Eat breakfast daily | |
Yes | 1942 (77.52%) |
No | 563 (22.48%) |
Eat lunch daily | |
Yes | 2398 (95.77%) |
No | 106 (4.23%) |
Go to restaurant daily | |
Yes | 17 (0.68%) |
No | 2488 (99.32%) |
Replace breakfast with snack | |
No | 1762 (70.34%) |
Yes | 743 (29.66%) |
Replace lunch with snack | |
No | 1797 (71.74%) |
Yes | 708 (28.26%) |
Use supplement for weight gain | |
No | 2302 (91.53%) |
Yes | 213 (8.47%) |
Use supplement for weight loss | |
No | 2483 (98.73%) |
Yes | 32 (1.27%) |
Diet for weight gain | |
No | 2411 (95.86%) |
Yes | 104 (4.14%) |
Diet for weight loss | |
No | 2285 (90.85%) |
Yes | 230 (9.15%) |
Exercise for weight gain | |
No | 2281 (90.70%) |
Yes | 234 (9.30%) |
Exercise for weight loss | |
No | 2191 (87.12%) |
Yes | 324 (12.88%) |
Item | Mean (SD) | ai (SE) | b1 (SE) | b2 (SE) |
---|---|---|---|---|
Cereals and tubers | 0.94 (0.38) | 1.68 (0.10) | −1.81 (0.08) | 2.48 (0.11) |
Dairy products | 0.63 (0.50) | 1.30 (0.08) | −0.50 (0.05) | 4.43 (0.27) |
Fruits, vegetables, and greens | 0.78 (0.56) | 1.23 (0.07) | −0.93 (0.06) | 2.52 (0.12) |
Seasonal fruits, vegetables, and greens | 0.63 (0.52) | 1.14 (0.07) | −0.51 (0.05) | 4.13 (0.24) |
Meat and eggs | 0.78 (0.44) | 2.25 (0.14) | −0.93 (0.04) | 2.98 (0.13) |
Candies | 0.73 (0.57) | 1.84 (0.10) | −0.60 (0.04) | 2.14 (0.08) |
Sugar-sweetened Beverages | 0.74 (0.47) | 1.12 (0.07) | −1.06 (0.07) | 4.25 (0.26) |
Alcoholic beverages | 0.31 (0.61) | 0.63 (0.06) | 2.09 (0.20) | 4.14 (0.39) |
Various foods | 0.67 (0.51) | 2.01 (0.11) | −0.52 (0.04) | 2.82 (0.12) |
Variables | Block 1 | Block 2 | Block 3 | Final Model | ||||
---|---|---|---|---|---|---|---|---|
β | p | β | p | β | p | β | p | |
Currently studying | 0.664 | 0.86 | - | - | - | - | - | - |
Number of residents in household | 0.536 | 0.64 | - | - | - | - | - | - |
Male gender | 10.609 | 0.003 | −9.589 | 0.21 | - | - | - | - |
Respondent is single | 4.183 | 0.65 | - | - | - | - | - | - |
Non-white skin colour | 0.234 | 0.96 | - | - | - | - | - | - |
Respondent’s parents divorced | −2.271 | 0.52 | - | - | - | - | - | - |
Not beneficiary of government program | 4.631 | 0.29 | - | - | - | - | - | - |
Per capita family income ≥¼ of minimum wage | 13.327 | 0.001 | 13.375 | 0.001 | 12.139 | 0.003 | 12.560 | 0.002 |
BMI | - | - | −2.688 | 0.009 | −1.577 | 0.006 | −1.544 | 0.005 |
Percentage of body fat | - | - | −0.037 | 0.92 | - | - | - | - |
Percentage of free fat mass | 1.366 | 0.003 | 0.838 | <0.001 | 0.851 | <0.001 | ||
Total cholesterol | - | - | −0.041 | 0.86 | - | - | - | - |
HDL-c | - | - | 0.373 | 0.20 | 0.303 | 0.06 | 0.306 | 0.06 |
LDL-c | - | - | 0.075 | 0.75 | - | - | - | - |
VLDL-c | - | - | 0.574 | 0.36 | - | - | - | - |
Triglycerides | - | - | −0.047 | 0.73 | - | - | - | - |
Do not eat breakfast daily | - | - | - | - | −4.881 | 0.27 | - | - |
Do not eat lunch daily | - | - | - | - | −13.410 | 0.15 | −14.850 | 0.10 |
Do not go to restaurant daily | - | - | - | - | 21.797 | 0.29 | - | - |
Replace lunch with snack | - | - | - | - | 18.948 | <0.001 | 19.074 | <0.001 |
Replace breakfast with snack | - | - | - | - | 12.975 | 0.002 | 12.101 | 0.003 |
Use supplement for weight gain | - | - | - | - | −0.064 | 0.99 | - | - |
Use supplement for weight loss | - | - | - | - | −12.083 | 0.51 | - | - |
Diet for weight gain | - | - | - | - | 25.017 | 0.008 | 24.333 | 0.009 |
Diet for weight loss | - | - | - | - | −11.993 | 0.08 | −10.370 | 0.11 |
Exercise for weight gain | - | - | - | - | 12.225 | 0.08 | 12.232 | 0.06 |
Exercise for weight loss | - | - | - | - | 5.890 | 0.33 | - | - |
Response Category | Low | Moderate | High | ||||||
---|---|---|---|---|---|---|---|---|---|
0 | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | |
1—One portion | CT | DP FVG SFVG ME SSB | C VF | AB | |||||
2—More than one portion | FVG C | CT ME AB VF | DP SFVG SSB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silveira, V.N.d.C.; França, A.K.T.d.C.; Campelo, C.L.; Machado, P.M.A.; Santos, A.M.d. Proposition of an Energy Intake Estimating Scale through Item Response Theory. Nutrients 2023, 15, 4511. https://doi.org/10.3390/nu15214511
Silveira VNdC, França AKTdC, Campelo CL, Machado PMA, Santos AMd. Proposition of an Energy Intake Estimating Scale through Item Response Theory. Nutrients. 2023; 15(21):4511. https://doi.org/10.3390/nu15214511
Chicago/Turabian StyleSilveira, Victor Nogueira da Cruz, Ana Karina Teixeira da Cunha França, Cleber Lopes Campelo, Patrícia Maria Abreu Machado, and Alcione Miranda dos Santos. 2023. "Proposition of an Energy Intake Estimating Scale through Item Response Theory" Nutrients 15, no. 21: 4511. https://doi.org/10.3390/nu15214511