No Changes in Body Composition and Adherence to the Mediterranean Diet after a 12-Week Aerobic Training Intervention in Women with Systemic Lupus Erythematosus: The EJERCITA-LES Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Participants
2.2. Procedure
2.3. Interventions
2.3.1. Comparison Group
2.3.2. Experimental Group
2.4. Dependent Outcomes
2.4.1. Anthropometry and Body Composition
2.4.2. Adherence to the Mediterranean Diet
2.4.3. Other Assessments
2.5. Patient Allocation and Blinding
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Limitations and Strengths
4.2. Future Research Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Golder, V.; Hoi, A. Systemic lupus erythematosus: An update. Med. J. Aust. 2017, 206, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Zhang, D.; Yao, X.; Huang, Y.; Lu, Q. Global epidemiology of systemic lupus erythematosus: A comprehensive systematic analysis and modelling study. Ann. Rheum. Dis. 2023, 82, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Giannelou, M.; Mavragani, C.P. Cardiovascular disease in systemic lupus erythematosus: A comprehensive update. J. Autoimmun. 2017, 82, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Negrín, H.; Ricci, M.; Mancebo-Sevilla, J.J.; Sanz-Cánovas, J.; López-Sampalo, A.; Cobos-Palacios, L.; Romero-Gómez, C.; Pérez de Pedro, I.; Ayala-Gutiérrez, M.d.M.; Gómez-Huelgas, R.; et al. Obesity, Diabetes, and Cardiovascular Risk Burden in Systemic Lupus Erythematosus: Current Approaches and Knowledge Gaps—A Rapid Scoping Review. Int. J. Environ. Res. Public Health 2022, 19, 14768. [Google Scholar] [CrossRef] [PubMed]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and Cardiovascular Disease A Scientific Statement From the American Heart Association. Circulation 2021, 143, E984–E1010. [Google Scholar] [CrossRef] [PubMed]
- Damigou, E.; Matina, K.; Demosthenes, P. The role of skeletal muscle mass on cardiovascular disease risk: An emerging role on modulating lipid profile. Curr. Opin. Cardiol. 2023, 38, 352–357. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, H.; Zhao, C.; He, H. Effect of Exercise Training on Body Composition and Inflammatory Cytokine Levels in Overweight and Obese Individuals: A Systematic Review and Network Meta-Analysis. Front. Immunol. 2022, 13, 921085. [Google Scholar] [CrossRef]
- Khalafi, M.; Habibi Maleki, A.; Sakhaei, M.H.; Rosenkranz, S.K.; Pourvaghar, M.J.; Ehsanifar, M.; Bayat, H.; Korivi, M.; Liu, Y. The effects of exercise training on body composition in postmenopausal women: A systematic review and meta-analysis. Front. Endocrinol. 2023, 14, 1183765. [Google Scholar] [CrossRef]
- O’Donoghue, G.; Blake, C.; Cunningham, C.; Lennon, O.; Perrotta, C. What exercise prescription is optimal to improve body composition and cardiorespiratory fitness in adults living with obesity? A network meta-analysis. Obes. Rev. 2021, 22, e13137. [Google Scholar] [CrossRef]
- Parodis, I.; Gomez, A.; Tsoi, A.; Chow, J.W.; Pezzella, D.; Girard, C.; Stamm, T.A.; Boström, C. Systematic literature review informing the EULAR recommendations for the pharmacological management of systemic lupus erythematosus and systemic sclerosis. RMD Open 2023, 9, e003297. [Google Scholar] [CrossRef]
- Benatti, F.B.; Miossi, R.; Passareli, M.; Nakandakare, E.R.; Perandini, L.; Lima, F.R.; Roschel, H.; Borba, E.; Bonfá, E.; Gualano, B.; et al. The effects of exercise on lipid profile in systemic lupus erythematosus and healthy individuals: A randomized trial. Rheumatol. Int. 2015, 35, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Benatti, F.B.; Miyake, C.N.H.; Dantas, W.S.; Zambelli, V.O.; Shinjo, S.K.; Pereira, R.M.R.; Silva, M.E.R.; Sá-Pinto, A.L.; Borba, E.; Bonfá, E.; et al. Exercise increases insulin sensitivity and skeletal muscle AMPK expression in systemic lupus erythematosus: A randomized controlled trial. Front. Immunol. 2018, 9, 906. [Google Scholar] [CrossRef] [PubMed]
- Perandini, L.A.; Sales-De-Oliveira, D.; Mello, S.B.V.; Camara, N.O.; Benatti, F.B.; Lima, F.R.; Borba, E.; Bonfa, E.; Sá-Pinto, A.L.; Roschel, H.; et al. Exercise training can attenuate the inflammatory milieu in women with systemic lupus erythematosus. J. Appl. Physiol. 2014, 117, 639–647. [Google Scholar] [CrossRef] [PubMed]
- dos Reis-Neto, E.T.; da Silva, A.E.; Monteiro, C.M.d.C.; de Camargo, L.M.; Sato, E.I. Supervised physical exercise improves endothelial function in patients with systemic lupus erythematosus. Rheumatology 2013, 52, 2187–2195. [Google Scholar] [CrossRef]
- Goessler, K.F.; Gualano, B.; Nonino, C.B.; Bonfá, E.; Nicoletti, C.F. Lifestyle Interventions and Weight Management in Systemic Lupus Erythematosus Patients: A Systematic Literature Review and Metanalysis. J. Lifestyle Med. 2022, 12, 37–46. [Google Scholar] [CrossRef]
- Slade, S.C.; Dionne, C.E.; Underwood, M.; Buchbinder, R. Consensus on Exercise Reporting Template (CERT): Explanation and elaboration statement. Br. J. Sports Med. 2016, 50, 1428–1437. [Google Scholar] [CrossRef]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.-M.; Nieman, D.C.; Swain, D.P. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sport. Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef]
- Pesqueda-Cendejas, K.; Rivera-Escoto, M.; Meza-Meza, M.R.; Campos-López, B.; Parra-Rojas, I.; Montoya-Buelna, M.; De la Cruz-Mosso, U. Nutritional Approaches to Modulate Cardiovascular Disease Risk in Systemic Lupus Erythematosus: A Literature Review. Nutrients 2023, 15, 1036. [Google Scholar] [CrossRef]
- Laffond, A.; Rivera-Picón, C.; Rodríguez-Muñoz, P.M.; Juárez-Vela, R.; Ruiz de Viñaspre-Hernández, R.; Navas-Echazarreta, N.; Sánchez-González, J.L. Mediterranean Diet for Primary and Secondary Prevention of Cardiovascular Disease and Mortality: An Updated Systematic Review. Nutrients 2023, 15, 3356. [Google Scholar] [CrossRef]
- Davis, C.; Bryan, J.; Hodgson, J.; Murphy, K. Definition of the mediterranean diet: A literature review. Nutrients 2015, 7, 9139–9153. [Google Scholar] [CrossRef]
- Pocovi-Gerardino, G.; Correa-Rodríguez, M.; Callejas-Rubio, J.L.; Ríos-Fernández, R.; Martín-Amada, M.; Cruz-Caparros, M.G.; Rueda-Medina, B.; Ortego-Centeno, N. Beneficial effect of Mediterranean diet on disease activity and cardiovascular risk in systemic lupus erythematosus patients: A cross-sectional study. Rheumatology 2021, 60, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Inauen, J.; Radtke, T.; Rennie, L.; Scholz, U.; Orbell, S. Transfer or Compensation? An Experiment Testing the Effects of Actual and Imagined Exercise on Eating Behavior. Swiss J. Psychol. 2018, 77, 59–67. [Google Scholar] [CrossRef]
- Hajat, C.; Kotzen, D.; Stein, E.; Yach, D. Physical activity is associated with improvements in other lifestyle behaviours. BMJ Open Sport Exerc. Med. 2019, 5, e000500. [Google Scholar] [CrossRef] [PubMed]
- Fleig, L.; Lippke, S.; Pomp, S.; Schwarzer, R. Intervention effects of exercise self-regulation on physical exercise and eating fruits and vegetables: A longitudinal study in orthopedic and cardiac rehabilitation. Prev. Med. 2011, 53, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Sagbo, H.; Ekouevi, D.K.; Ranjandriarison, D.T.; Niangoran, S.; Bakai, T.A.; Afanvi, A.; Dieudonné, S.; Kassankogno, Y.; Vanhems, P.; Khanafer, N. Prevalence and factors associated with overweight and obesity among children from primary schools in urban areas of Lomé, Togo. Public Health Nutr. 2018, 21, 1048–1056. [Google Scholar] [CrossRef] [PubMed]
- Sjöblom, L.; Bonn, S.E.; Alexandrou, C.; Dahlgren, A.; Eke, H.; Trolle Lagerros, Y. Dietary habits after a physical activity mHealth intervention: A randomized controlled trial. BMC Nutr. 2023, 9, 23. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Hochberg, M.C. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997, 40, 1725. [Google Scholar] [CrossRef]
- Soriano-Maldonado, A.; Morillas-de-Laguno, P.; Sabio, M.; Gavilán-Carrera, B.; Rosales-Castillo, A.; Montalbán-Méndez, C.; Sáez-Urán, L.M.; Callejas-Rubio, J.L.; Vargas-Hitos, J.A. Effects of 12-week Aerobic Exercise on Arterial Stiffness, Inflammation, and Cardiorespiratory Fitness in Women with Systemic Lupus Erythematosus: Non-Randomized Controlled Trial. J. Clin. Med. 2018, 7, 477. [Google Scholar] [CrossRef]
- Tanaka, H.; Monahan, K.D.; Seals, D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001, 37, 153–156. [Google Scholar] [CrossRef]
- Haddad, M.; Stylianides, G.; Djaoui, L.; Dellal, A.; Chamari, K. Session-RPE method for training load monitoring: Validity, ecological usefulness, and influencing factors. Front. Neurosci. 2017, 11, 612. [Google Scholar] [CrossRef] [PubMed]
- Panagiotakos, D.B.; Pitsavos, C.; Stefanadis, C. Dietary patterns: A Mediterranean diet score and its relation to clinical and biological markers of cardiovascular disease risk. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, B.; Mosca, M.; Gordon, C. Assessment of patients with systemic lupus erythematosus and the use of lupus disease activity indices. Best Pract. Res. Clin. Rheumatol. 2005, 19, 685–708. [Google Scholar] [CrossRef] [PubMed]
- Verweij, L.M.; Terwee, C.B.; Proper, K.I.; Hulshof, C.T.; Mechelen, W. Van Measurement error of waist circumference: Gaps in knowledge. Public Health Nutr. 2013, 16, 281–288. [Google Scholar] [CrossRef]
- Sebo, P.; Herrmann, F.R.; Haller, D.M. Accuracy of anthropometric measurements by general practitioners in overweight and obese patients. BMC Obes. 2017, 4, 23. [Google Scholar] [CrossRef]
- Beaulieu, K.; Hopkins, M.; Blundell, J.; Finlayson, G. Homeostatic and non-homeostatic appetite control along the spectrum of physical activity levels: An updated perspective. Physiol. Behav. 2018, 192, 23–29. [Google Scholar] [CrossRef]
- Mansfeldt, J.M.; Magkos, F. Compensatory Responses to Exercise Training As Barriers to Weight Loss: Changes in Energy Intake and Non-exercise Physical Activity. Curr. Nutr. Rep. 2023, 12, 327–337. [Google Scholar] [CrossRef]
- Coll-Risco, I.; De La Flor Alemany, M.; Acosta-Manzano, P.; Borges-Cosic, M.; Camiletti-Moirón, D.; Baena-García, L.; Aparicio, V.A. The influence of an exercise program in middle-aged women on dietary habits. the FLAMENCO project. Menopause 2022, 29, 1416–1422. [Google Scholar] [CrossRef]
- Ferriter, M.; Huband, N.; Healthcare, N. Does the non-randomized controlled study have a place in the systematic review? A pilot study. Crim. Behav. Ment. Health 2005, 15, 111–120. [Google Scholar] [CrossRef]
- Carneiro-Barrera, A.; Amaro-Gahete, F.J.; Guillén-Riquelme, A.; Jurado-Fasoli, L.; Sáez-Roca, G.; Martín-Carrasco, C.; Buela-Casal, G.; Ruiz, J.R. Effect of an Interdisciplinary Weight Loss and Lifestyle Intervention on Obstructive Sleep Apnea Severity: The INTERAPNEA Randomized Clinical Trial. JAMA Netw. Open 2022, 5, e228212. [Google Scholar] [CrossRef]
- Singh, N.; Stewart, R.A.H.; Benatar, J.R. Intensity and duration of lifestyle interventions for long-term weight loss and association with mortality: A meta-analysis of randomised trials. BMJ Open 2019, 9, e029966. [Google Scholar] [CrossRef] [PubMed]
- Ahern, A.L.; Wheeler, G.M.; Aveyard, P.; Boyland, E.J.; Halford, J.C.G.; Mander, A.P.; Woolston, J.; Thomson, A.M.; Tsiountsioura, M.; Cole, D.; et al. Extended and standard duration weight-loss programme referrals for adults in primary care (WRAP): A randomised controlled trial. Lancet 2017, 389, 2214–2225. [Google Scholar] [CrossRef] [PubMed]
- McLester, C.N.; Nickerson, B.S.; Kliszczewicz, B.M.; McLester, J.R. Reliability and Agreement of Various InBody Body Composition Analyzers as Compared to Dual-Energy X-ray Absorptiometry in Healthy Men and Women. J. Clin. Densitom. 2020, 23, 443–450. [Google Scholar] [CrossRef] [PubMed]
All (n = 58) | Exercise (n = 26) | Comparison (n = 32) | p | |
---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | ||
Age, years | 44.0 (13.9) | 43.0 (15.1) | 44.8 (13.1) | 0.618 |
Disease duration, years | 15.4 (10.5) | 14.5 (10.4) | 16.1 (10.6) | 0.570 |
Marital status (single/married/divorced; %) | 44.8/50.0/5.2 | 53.8/42.3/3.9 | 37.5/56.3/6.2 | 0.455 |
Educational level (No studies/primary/secondary/university; %) | 3.4/36.3/22.4/37.9 | 0/38.5/26.9/34.6 | 6.3/34.4/18.7/40.6 | 0.521 |
Occupational status (working/housewife/not working; %) | 41.4/24.1/34.5 | 42.3/19.2/38.5 | 40.6/28.1/31.3 | 0.706 |
Anthropometry | ||||
Weight, kg | 64.8 (11.9) | 66.2 (8.7) | 63.7 (14.0) | 0.426 |
Waist circumference, cm | 79.4 (10.9) | 80.2 (9.7) | 78.8 (11.8) | 0.623 |
Body Composition | ||||
Waist-to-hip ratio | 0.83 (0.1) | 0.84 (0.07) | 0.83 (0.07) | 0.391 |
Fat percentage (%) | 33.9 (7.5) | 35.9 (5.7) | 32.2 (8.4) | 0.059 |
Lean mass percentage (%) | 35.8 (4.0) | 34.8 (3.2) | 36.6 (4.4) | 0.094 |
BMI, kg/m2 | 25.2 (4.7) | 25.9 (3.4) | 24.7 (5.6) | 0.336 |
Lean mass, kg | 22.9 (2.8) | 22.9 (2.7) | 22.9 (3.0) | 0.968 |
Adherence to the Mediterranean Diet (0–55) | 29.4 (6.3) | 29.2 (6.4) | 29.5 (6.2) | 0.887 |
SLEDAI (0–105) | 0.22 (0.9) | 0.04 (0.2) | 0.38 (1.18) | 0.158 |
SDI (0–46) | 0.47 (1.11) | 0.19 (0.63) | 0.69 (1.35) | 0.092 |
Immunosupressant intake (Yes/No; %) | 44.8/55.2 | 46.2/53.8 | 43.8/56.2 | 0.855 |
Corticosteroid intake (Yes/No; %) | 62.1/37.9 | 57.7/42.3 | 65.6/34.4 | 0.536 |
Hydroxicloroquine intake (Yes/No; %) | 89.7/10.3 | 96.2/3.8 | 84.4/15.6 | 0.143 |
Smoke (Non-smoker/Current smoker/Former smoker; %) | 63.8/25.9/10.3 | 76.9/15.4/7.7 | 53.1/34.4/12.5 | 0.166 |
Alcohol (Yes/No; %) | 5.2/94.8 | 7.7/92.3 | 3.1/96.9 | 0.435 |
Diabetes (Yes/No; %) | 1.7/98.3 | 0/100.0 | 3.1/96.9 | 0.363 |
Systolic Blood Pressure, mm/Hg | 117.7 (10.3) | 116.8 (10.0) | 118.4 (10.6) | 0.567 |
Diastolic Blood Pressure, mm/Hg | 75.5 (9.5) | 75.6 (8.8) | 75.4 (10.1) | 0.936 |
Mean Blood Pressure, mm/Hg | 94.8 (8.8) | 94.5 (8.3) | 95.0 (9.3) | 0.821 |
Dyslipidemia (Yes/No; %) | 17.2/82.8 | 19.2/80.8 | 15.6/84.4 | 0.718 |
Menopause (Yes/No; %) | 39.7/60.3 | 38.5/61.5 | 40.6/59.4 | 0.867 |
Change from Baseline at Week 12 (Final–Baseline) | ||||||||
---|---|---|---|---|---|---|---|---|
Exercise (n = 22) | Comparison (n = 28) | Exercise vs. Comparison | ||||||
Mean | SE | Mean | SE | Mean Difference | (95% CI) | p | ||
Weight (kg) | −0.9 | 0.5 | −1.5 | 0.4 | 0.7 | −0.6 | 1.9 | 0.297 |
BMI (kg/m2) | −0.4 | 0.2 | −0.5 | 0.2 | 0.1 | −0.4 | 0.6 | 0.604 |
Waist circumference (cm) | 0.4 | 1.5 | −3.5 | 1.3 | 3.9 | −0.1 | 7.9 | 0.057 |
Waist-to-hip ratio | −0.04 | 0.01 | −0.03 | 0.01 | −0.01 | −0.1 | 0.0 | 0.675 |
Fat percentage (%) | −1.8 | 0.8 | −1.7 | 0.8 | −0.1 | −2.4 | 2.2 | 0.958 |
Lean mass (kg) | −0.1 | 0.4 | 0.2 | 0.3 | −0.3 | −1.3 | 0.7 | 0.569 |
Lean mass percentage (%) | 0.4 | 0.6 | 1.1 | 0.5 | −0.7 | −2.4 | 0.9 | 0.375 |
Adherence to the Mediterranean Diet (0–55) | 1.8 | 1.2 | −0.5 | 1.1 | 2.2 | −1.1 | 5.5 | 0.178 |
Change from Baseline at Week 12 (Final–Baseline) | ||||||||
---|---|---|---|---|---|---|---|---|
Exercise (n = 26) | Comparison (n = 32) | Exercise vs. Comparison | ||||||
Mean | SE | Mean | SE | Mean Difference | (95% CI) | p | ||
Weight (kg) | −0.5 | 0.4 | −1.3 | 0.4 | 0.9 | −0.3 | 2.0 | 0.126 |
BMI (kg/m2) | −0.3 | 0.2 | −0.5 | 0.1 | 0.2 | −0.2 | 0.7 | 0.279 |
Waist circumference (cm) | 1.0 | 1.3 | −3.1 | 1.2 | 4.1 | 0.5 | 7.7 | 0.026 * |
Waist-to-hip ratio | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.927 |
Fat percentage | −1.4 | 0.7 | −1.6 | 0.7 | 0.2 | −1.8 | 2.2 | 0.849 |
Lean mass (kg) | −0.1 | 0.3 | 0.2 | 0.3 | −0.3 | −1.1 | 0.6 | 0.535 |
Lean mass percentage | 0.2 | 0.5 | 1.0 | 0.5 | −0.8 | −2.3 | 0.6 | 0.245 |
Adherence to the Mediterranean Diet (0–55) | 1.6 | 1.0 | −0.6 | 0.9 | 2.1 | −0.7 | 4.9 | 0.131 |
Change from Baseline at Week 12 (Final–Baseline) | ||||||||
---|---|---|---|---|---|---|---|---|
Exercise (n = 18) | Comparison (n = 28) | Exercise vs. Comparison | ||||||
Mean | SE | Mean | SE | Mean Difference | (95% CI) | p | ||
Weight (kg) | −1.0 | 0.5 | −1.5 | 0.4 | 0.5 | −0.9 | 1.8 | 0.493 |
BMI (kg/m2) | −0.4 | 0.2 | −0.5 | 0.2 | 0.1 | −0.4 | 0.6 | 0.720 |
Waist circumference (cm) | −0.4 | 1.6 | −3.5 | 1.3 | 3.0 | −1.2 | 7.3 | 0.156 |
Waist-to-hip ratio | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | −0.1 | 0.0 | 0.416 |
Fat percentage | −1.5 | 0.9 | −1.8 | 0.7 | 0.3 | −2.1 | 2.6 | 0.810 |
Lean mass (kg) | −0.1 | 0.4 | 0.2 | 0.4 | −0.3 | −1.5 | 0.8 | 0.557 |
Lean mass percentage | 0.5 | 0.7 | 1.1 | 0.6 | −0.6 | −2.4 | 1.2 | 0.506 |
Adherence to the Mediterranean Diet (0–55) | 1.5 | 1.4 | −0.3 | 1.1 | 1.9 | −1.8 | 5.5 | 0.307 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavilán-Carrera, B.; Ruiz-Cobo, A.; Amaro-Gahete, F.J.; Soriano-Maldonado, A.; Vargas-Hitos, J.A. No Changes in Body Composition and Adherence to the Mediterranean Diet after a 12-Week Aerobic Training Intervention in Women with Systemic Lupus Erythematosus: The EJERCITA-LES Study. Nutrients 2023, 15, 4424. https://doi.org/10.3390/nu15204424
Gavilán-Carrera B, Ruiz-Cobo A, Amaro-Gahete FJ, Soriano-Maldonado A, Vargas-Hitos JA. No Changes in Body Composition and Adherence to the Mediterranean Diet after a 12-Week Aerobic Training Intervention in Women with Systemic Lupus Erythematosus: The EJERCITA-LES Study. Nutrients. 2023; 15(20):4424. https://doi.org/10.3390/nu15204424
Chicago/Turabian StyleGavilán-Carrera, Blanca, Alba Ruiz-Cobo, Francisco José Amaro-Gahete, Alberto Soriano-Maldonado, and José Antonio Vargas-Hitos. 2023. "No Changes in Body Composition and Adherence to the Mediterranean Diet after a 12-Week Aerobic Training Intervention in Women with Systemic Lupus Erythematosus: The EJERCITA-LES Study" Nutrients 15, no. 20: 4424. https://doi.org/10.3390/nu15204424
APA StyleGavilán-Carrera, B., Ruiz-Cobo, A., Amaro-Gahete, F. J., Soriano-Maldonado, A., & Vargas-Hitos, J. A. (2023). No Changes in Body Composition and Adherence to the Mediterranean Diet after a 12-Week Aerobic Training Intervention in Women with Systemic Lupus Erythematosus: The EJERCITA-LES Study. Nutrients, 15(20), 4424. https://doi.org/10.3390/nu15204424