Human Milk Processing and Its Effect on Protein and Leptin Concentrations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recruitment
2.2. Study Design
- (i)
- Fresh HM;
- (ii)
- Fresh pasteurized HM;
- (iii)
- Thawed HM;
- (iv)
- Thawed pasteurized HM.
2.3. Human Milk Collection
2.4. Human Milk Processing
- (i).
- Fresh HM: the expressed raw HM samples were stored at +4 to +6 degrees Celsius in the refrigerator for a maximum of 48 h;
- (ii).
- Fresh pasteurized HM: the expressed raw HM samples were stored at +4 to +6 degrees Celsius in the refrigerator for a maximum of 48 h and were pasteurized by heating the samples to +63 degrees Celsius for thirty minutes with the Barkey clinitherm Pasteur XPT (Barkey GmbH & Co. KG, Leopoldshöhe, Germany);
- (iii).
- Thawed HM: the expressed raw HM samples were frozen at −21 to −27 degrees Celsius for a maximum of 12 h, followed by thawing at +4 to +6 degrees Celsius in the refrigerator over twelve hours;
- (iv).
- Thawed pasteurized HM: the expressed raw HM samples were frozen at −21 to −27 degrees Celsius for a maximum of 12 h, followed by thawing at +4 to +6 degrees Celsius in the refrigerator over 12 h, and additionally followed by pasteurization by heating the samples to +63 degrees Celsius for thirty minutes with the Barkey clinitherm Pasteur XPT (Barkey GmbH & Co. KG, Leopoldshöhe, Germany).
2.5. Human Milk Analysis
2.6. Statistical Methods
2.7. Sample Size Calculation
3. Results
3.1. Participant Characteristics
3.2. Human Milk Processing and Human Milk Composition
3.3. Human Milk Composition of Mothers from Preterm and Term Infants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lucas, A.; Morley, R.; Cole, T.; Lister, G.; Leeson-Payne, C. Breast milk and subsequent intelligence quotient in children born preterm. Lancet 1992, 339, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Lucas, A.; Morley, R.; Cole, T.J.; Gore, S.M. A randomised multicentre study of human milk versus formula and later development in preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 1994, 70, F141–F146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballard, O.; Morrow, A.L. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin. N. Am. 2013, 60, 49–74. [Google Scholar] [CrossRef] [Green Version]
- Donovan, S.M. Role of human milk components in gastrointestinal development: Current knowledge and future Needs. J. Pediatr. 2006, 149, S49–S61. [Google Scholar] [CrossRef]
- Lönnerdal, B. Human Milk: Bioactive Proteins/Peptides and Functional Properties. In Protein in Neonatal and Infant Nutrition: Recent Updates; Karger Publishers: Basel, Switzerland, 2016; Volume 86, pp. 97–107. [Google Scholar] [CrossRef] [Green Version]
- Hamosh, M. Bioactive Factors in Human Milk. Pediatr. Clin. North Am. 2001, 48, 69–86. [Google Scholar] [CrossRef] [PubMed]
- Perrella, S.; Gridneva, Z.; Lai, C.T.; Stinson, L.; George, A.; Bilston-John, S.; Geddes, D. Human milk composition promotes optimal infant growth, development and health. Semin. Perinatol. 2021, 45, 151380. [Google Scholar] [CrossRef] [PubMed]
- Gidrewicz, D.A.; Fenton, T.R. A systematic review and meta-analysis of the nutrient content of preterm and term breast milk. BMC Pediatr. 2014, 14, 216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eriksen, K.G.; Christensen, S.H.; Lind, M.V.; Michaelsen, K.F. Human milk composition and infant growth. Curr. Opin. Clin. Nutr. Metab. Care 2018, 21, 200–206. [Google Scholar] [CrossRef]
- Andreas, N.J.; Kampmann, B.; Le-Doare, K.M. Human breast milk: A review on its composition and bioactivity. Early Hum. Dev. 2015, 91, 629–635. [Google Scholar] [CrossRef]
- Mitoulas, L.R.; Kent, J.C.; Cox, D.B.; Owens, R.A.; Sherriff, J.L.; Hartmann, P.E. Variation in fat, lactose and protein in human milk over 24 h and throughout the first year of lactation. Br. J. Nutr. 2002, 88, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Paulaviciene, I.J.; Liubsys, A.; Molyte, A.; Eidukaite, A.; Usonis, V. Circadian changes in the composition of human milk macronutrients depending on pregnancy duration: A cross-sectional study. Int. Breastfeed. J. 2020, 15, 49. [Google Scholar] [CrossRef] [PubMed]
- Rochow, N.; Fusch, G.; Choi, A.; Chessell, L.; Elliott, L.; McDonald, K.; Kuiper, E.; Purcha, M.; Turner, S.; Chan, E.; et al. Target Fortification of Breast Milk with Fat, Protein, and Carbohydrates for Preterm Infants. J. Pediatr. 2013, 163, 1001–1007. [Google Scholar] [CrossRef] [PubMed]
- Rochow, N.; Fusch, G.; Ali, A.; Bhatia, A.; So, H.Y.; Iskander, R.; Chessell, L.; el Helou, S.; Fusch, C. Individualized target fortification of breast milk with protein, carbohydrates, and fat for preterm infants: A double-blind randomized controlled trial. Clin. Nutr. 2020, 40, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Embleton, N.D.; Akker, C.H.V.D. Protein intakes to optimize outcomes for preterm infants. Semin. Perinatol. 2019, 43, 151154. [Google Scholar] [CrossRef]
- Kunz, C.; Lönnerdal, B. Re-evaluation of the whey protein/casein ratio of human milk. Acta Paediatr. 1992, 81, 107–112. [Google Scholar] [CrossRef]
- Hay, W.W.; Thureen, P. Protein for Preterm Infants: How Much is Needed? How Much is Enough? How Much is Too Much? Pediatr. Neonatol. 2010, 51, 198–207. [Google Scholar] [CrossRef] [Green Version]
- Isaacs, E.B.; Morley, R.; Lucas, A. Early Diet and General Cognitive Outcome at Adolescence in Children Born at or Below 30 Weeks Gestation. J. Pediatr. 2009, 155, 229–234. [Google Scholar] [CrossRef]
- Chatmethakul, T.; Schmelzel, M.L.; Johnson, K.J.; Walker, J.R.; Santillan, D.A.; Colaizy, T.T.; Roghair, R.D. Postnatal Leptin Levels Correlate with Breast Milk Leptin Content in Infants Born before 32 Weeks Gestation. Nutrients 2022, 14, 5224. [Google Scholar] [CrossRef]
- Valleau, J.C.; Sullivan, E.L. The impact of leptin on perinatal development and psychopathology. J. Chem. Neuroanat. 2014, 61–62, 221–232. [Google Scholar] [CrossRef]
- Choi, H.M.; Doss, H.M.; Kim, K.S. Multifaceted Physiological Roles of Adiponectin in Inflammation and Diseases. Int. J. Mol. Sci. 2020, 21, 1219. [Google Scholar] [CrossRef] [Green Version]
- Brunner, S.; Schmid, D.; Zang, K.; Much, D.; Knoeferl, B.; Kratzsch, J.; Amann-Gassner, U.; Bader, B.L.; Hauner, H. Breast milk leptin and adiponectin in relation to infant body composition up to 2 years. Pediatr. Obes. 2014, 10, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Valūnienė, M.; Verkauskienė, R.; Boguszewski, M.; Dahlgren, J.; Lašienė, D.; Lašas, L.; Wikland, K.A. Leptin levels at birth and in early postnatal life in small- and appropriate-for-gestational-age infants. Medicina 2007, 43, 784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calió, M.L.; Mosini, A.C.; Marinho, D.S.; Salles, G.N.; Massinhani, F.H.; Ko, G.M.; Porcionatto, M.A. Leptin enhances adult neurogenesis and reduces pathological features in a transgenic mouse model of Alzheimer’s disease. Neurobiol. Dis. 2020, 148, 105219. [Google Scholar] [CrossRef] [PubMed]
- Erkonen, G.E.; Hermann, G.M.; Miller, R.L.; Thedens, D.L.; Nopoulos, P.C.; Wemmie, J.A.; Roghair, R.D. Neonatal Leptin Administration Alters Regional Brain Volumes and Blocks Neonatal Growth Restriction-Induced Behavioral and Cardiovascular Dysfunction in Male Mice. Pediatr. Res. 2011, 69, 406–412. [Google Scholar] [CrossRef]
- Bouret, S.G. Neurodevelopmental actions of leptin. Brain Res. 2010, 1350, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Steppan, C.M.; Swick, A.G. A Role for Leptin in Brain Development. Biochem. Biophys. Res. Commun. 1999, 256, 600–602. [Google Scholar] [CrossRef]
- Devaskar, S.U.; Ollesch, C.; Rajakumar, R.A.; Rajakumar, P.A. Developmental Changes inobGene Expression and Circulating Leptin Peptide Concentrations. Biochem. Biophys. Res. Commun. 1997, 238, 44–47. [Google Scholar] [CrossRef]
- Ilcol, Y.O.; Hizli, Z.B.; Ozkan, T. Leptin concentration in breast milk and its relationship to duration of lactation and hormonal status. Int. Breastfeed. J. 2006, 1, 21. [Google Scholar] [CrossRef] [Green Version]
- Vass, R.A.; Bell, E.F.; Colaizy, T.T.; Schmelzel, M.L.; Johnson, K.J.; Walker, J.R.; Ertl, T.; Roghair, R.D. Hormone levels in preterm and donor human milk before and after Holder pasteurization. Pediatr. Res. 2020, 88, 612–617. [Google Scholar] [CrossRef]
- Wesolowska, A.; Sinkiewicz-Darol, E.; Barbarska, O.; Bernatowicz-Lojko, U.; Borszewska-Kornacka, M.K.; van Goudoever, J.B. Innovative Techniques of Processing Human Milk to Preserve Key Components. Nutrients 2019, 11, 1169. [Google Scholar] [CrossRef] [Green Version]
- Pitino, M.A.; O’Connor, D.L.; McGeer, A.J.; Unger, S. The impact of thermal pasteurization on viral load and detectable live viruses in human milk and other matrices: A rapid review. Appl. Physiol. Nutr. Metab. 2021, 46, 10–26. [Google Scholar] [CrossRef] [PubMed]
- Miris, A. Miris HMA User Manual. 2022, 2, 1–39. Available online: https://www.mirissolutions.com/media/19fad927-9b29-447b-adf1-877494a7c61d (accessed on 6 December 2022).
- Miris, A. Miris Heater. 2022, 1–52. Available online: https://www.mirissolutions.com/media/408cc59c-3be8-430f-b37f-a59fd6a303a5 (accessed on 6 December 2022).
- Miris, A. Miris Ultrasonic Processor. 2018, 1–9. Available online: https://www.mirissolutions.com/media/a918b1d8-8283-4fd7-b495-78a23e168c69 (accessed on 6 December 2022).
- Bronský, J.; Karpisek, M.; Bronská, E.; Pechová, M.; Jančíková, B.; Kotolová, H.; Stejskal, D.; Pruša, R.; Nevoral, J. Adiponectin, Adipocyte Fatty Acid Binding Protein, and Epidermal Fatty Acid Binding Protein: Proteins Newly Identified in Human Breast Milk. Clin. Chem. 2006, 52, 1763–1770. [Google Scholar] [CrossRef] [PubMed]
- Bronsky, J.; Mitrova, K.; Karpisek, M.; Mazoch, J.; Durilova, M.; Fisarkova, B.; Stechova, K.; Prusa, R.; Nevoral, J. Adiponectin, AFABP, and Leptin in Human Breast Milk During 12 Months of Lactation. J. Craniofacial Surg. 2011, 52, 474–477. [Google Scholar] [CrossRef]
- BioVendor. Application Protocol: Determination of Leptin in Breast Milk with Human Leptin ELISA; BioVendor: Brno, Czech Republic, 2011; pp. 1–3. [Google Scholar]
- Peila, C.; Moro, G.E.; Bertino, E.; Cavallarin, L.; Giribaldi, M.; Giuliani, F.; Cresi, F.; Coscia, A. The Effect of Holder Pasteurization on Nutrients and Biologically-Active Components in Donor Human Milk: A Review. Nutrients 2016, 8, 477. [Google Scholar] [CrossRef] [Green Version]
- García-Lara, N.R.; Escuder-Vieco, D.; García-Algar, O.; De La Cruz, J.; Lora, D.; Pallás-Alonso, C. Effect of Freezing Time on Macronutrients and Energy Content of Breastmilk. Breastfeed. Med. 2012, 7, 295–301. [Google Scholar] [CrossRef]
- Păduraru, L.; Zonda, G.I.; Avasiloaiei, A.-L.; Moscalu, M.; Dimitriu, D.C.; Stamatin, M. Influence of refrigeration or freezing on human milk macronutrients and energy content in early lactation: Results from a tertiary centre survey. Paediatr. Child Health 2018, 24, 250–257. [Google Scholar] [CrossRef]
- Orbach, R.; Mandel, D.; Mangel, L.; Marom, R.; Lubetzky, R. The Effect of Deep Freezing on Human Milk Macronutrients Content. Breastfeed. Med. 2019, 14, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Fenaille, F.; Parisod, V.; Tabet, J.-C.; Guy, P.A. Carbonylation of milk powder proteins as a consequence of processing conditions. Proteomics 2005, 5, 3097–3104. [Google Scholar] [CrossRef]
- Van Boekel, M. Effect of heating on Maillard reactions in milk. Food Chem. 1998, 62, 403–414. [Google Scholar] [CrossRef]
- Vieira, A.A.; Soares, F.V.M.; Pimenta, H.P.; Abranches, A.D.; Moreira, M.E.L. Analysis of the influence of pasteurization, freezing/thawing, and offer processes on human milk’s macronutrient concentrations. Early Hum. Dev. 2011, 87, 577–580. [Google Scholar] [CrossRef]
- Thajer, A.; Fusch, G.; Binder, C.; Berger, A.; Fusch, C. Human milk analyser underestimated protein content of unfortified and fortified samples compared to elemental analysis. Acta Paediatr. 2019, 108, 2298–2300. [Google Scholar] [CrossRef] [Green Version]
- Kotrri, G.; Fusch, G.; Kwan, C.; Choi, D.; Choi, A.; Al Kafi, N.; Rochow, N.; Fusch, C. Validation of Correction Algorithms for Near-IR Analysis of Human Milk in an Independent Sample Set—Effect of Pasteurization. Nutrients 2016, 8, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peila, C.; Coscia, A.; Bertino, E.; Cavaletto, M.; Spertino, S.; Icardi, S.; Tortone, C.; Visser, G.H.A.; Gazzolo, D. Effects of Holder pasteurization on the protein profile of human milk. Ital. J. Pediatr. 2016, 42, 36. [Google Scholar] [CrossRef] [Green Version]
- Valentine, C.J.; Morrow, G.; Fernandez, S.; Gulati, P.; Bartholomew, D.; Long, D.; Welty, S.E.; Morrow, A.L.; Rogers, L.K. Docosahexaenoic Acid and Amino Acid Contents in Pasteurized Donor Milk are Low for Preterm Infants. J. Pediatr. 2010, 157, 906–910. [Google Scholar] [CrossRef]
- Espinosa-Martos, I.; Montilla, A.; de Segura, A.G.; Escuder, D.; Bustos, G.; Pallás, C.; Rodríguez, J.; Corzo, N.; Fernández, L. Bacteriological, Biochemical, and Immunological Modifications in Human Colostrum After Holder Pasteurisation. J. Craniofacial Surg. 2013, 56, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Kreissl, A.; Zwiauer, V.; Repa, A.; Binder, C.; Haninger, N.; Jilma, B.; Berger, A.; Haiden, N. Effect of Fortifiers and Additional Protein on the Osmolarity of Human Milk. J. Craniofacial Surg. 2013, 57, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Paulaviciene, I.J.; Liubsys, A.; Eidukaite, A.; Molyte, A.; Tamuliene, L.; Usonis, V. The Effect of Prolonged Freezing and Holder Pasteurization on the Macronutrient and Bioactive Protein Compositions of Human Milk. Breastfeed. Med. 2020, 15, 583–588. [Google Scholar] [CrossRef]
- Andersson, Y.; Sävman, K.; Bläckberg, L.; Hernell, O. Pasteurization of mother’s own milk reduces fat absorption and growth in preterm infants. Acta Paediatr. 2007, 96, 1445–1449. [Google Scholar] [CrossRef]
- Takahashi, K.; Mizuno, K.; Itabashi, K. The Freeze-Thaw Process and Long Intervals after Fortification Denature Human Milk Fat Globules. Am. J. Perinatol. 2011, 29, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Henderson, T.R.; Fay, T.N.; Hamosh, M. Effect of pasteurization on long chain polyunsaturated fatty acid levels and enzyme activities of human milk. J. Pediatr. 1998, 132, 876–878. [Google Scholar] [CrossRef]
- Adhisivam, B.; Bhat, B.V.; Rao, K.; Kingsley, S.M.; Plakkal, N.; Palanivel, C. Effect of Holder pasteurization on macronutrients and immunoglobulin profile of pooled donor human milk. J. Matern. Neonatal Med. 2018, 32, 3016–3019. [Google Scholar] [CrossRef] [PubMed]
- Fidler, N.; Sauerwald, T.U.; Koletzko, B.; Demmelmair, H. Effects of Human Milk Pasteurization and Sterilization on Available Fat Content and Fatty Acid Composition. J. Craniofacial Surg. 1998, 27, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Ewaschuk, J.B.; Unger, S.; Harvey, S.; O’Connor, D.; Field, C. Effect of pasteurization on immune components of milk: Implications for feeding preterm infants. Appl. Physiol. Nutr. Metab. 2011, 36, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Kocaadam, B.; Koksal, E.; Ozcan, K.E.; Turkyilmaz, C. Do the adiponectin and leptin levels in preterm and term breast milk samples relate to infants’ short-term growth? J. Dev. Orig. Health Dis. 2019, 10, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Joung, K.E.; Martin, C.R.; Cherkerzian, S.; Kellogg, M.; Belfort, M.B. Human Milk Hormone Intake in the First Month of Life and Physical Growth Outcomes in Preterm Infants. J. Clin. Endocrinol. Metab. 2021, 106, 1793–1803. [Google Scholar] [CrossRef]
- Schepers, J.; Gebhardt, C.; Bracke, A.; Eiffler, I.; Halbach, O.V.B.U. Structural and functional consequences in the amygdala of leptin-deficient mice. Cell Tissue Res. 2020, 382, 421–426. [Google Scholar] [CrossRef]
- Steinbrekera, B.; Roghair, R. Modeling the impact of growth and leptin deficits on the neuronal regulation of blood pressure. J. Endocrinol. 2016, 231, R47–R60. [Google Scholar] [CrossRef] [Green Version]
- Hellgren, G.; Engström, E.; Smith, L.E.; Löfqvist, C.; Hellström, A. Effect of Preterm Birth on Postnatal Apolipoprotein and Adipocytokine Profiles. Neonatology 2015, 108, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Ertl, T.; Funke, S.; Sárkány, I.; Szabó, I.; Rascher, W.; Blum, W.; Sulyok, E. Postnatal Changes of Leptin Levels in Full-Term and Preterm Neonates: Their Relation to Intrauterine Growth, Gender and Testosterone. Neonatology 1999, 75, 167–176. [Google Scholar] [CrossRef]
- Eilers, E.; Ziska, T.; Harder, T.; Plagemann, A.; Obladen, M.; Loui, A. Leptin determination in colostrum and early human milk from mothers of preterm and term infants. Early Hum. Dev. 2011, 87, 415–419. [Google Scholar] [CrossRef]
- Fumeaux, C.J.F.; Garcia-Rodenas, C.L.; De Castro, C.A.; Courtet-Compondu, M.-C.; Thakkar, S.K.; Beauport, L.; Tolsa, J.-F.; Affolter, M. Longitudinal Analysis of Macronutrient Composition in Preterm and Term Human Milk: A Prospective Cohort Study. Nutrients 2019, 11, 1525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maly, J.; Burianova, I.; Vitkova, V.; Ticha, E.; Navratilova, M.; Cermakova, E. Preterm human milk macronutrient concentration is independent of gestational age at birth. Arch. Dis. Child. Fetal Neonatal Ed. 2018, 104, F50–F56. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.M.; Williams, F.H.; Merkatz, R.B.; Schulman, P.K.; Kerr, D.S.; Pittard, W.B. Length of gestation and nutritional composition of human milk. Am. J. Clin. Nutr. 1983, 37, 810–814. [Google Scholar] [CrossRef]
- Butte, N.F.; Garza, C.; Johnson, C.A.; Smith, E.; Nichols, B.L. Longitudinal changes in milk composition of mothers delivering preterm and term infants. Early Hum. Dev. 1984, 9, 153–162. [Google Scholar] [CrossRef]
- A Lemons, J.; Moye, L.; Hall, D.; Simmons, M. Differences in the Composition of Preterm and Term Human Milk during Early Lactation. Pediatr. Res. 1982, 16, 113–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreissl, A.; Zwiauer, V.; Repa, A.; Binder, C.; Thanhaeuser, M.; Jilma, B.; Berger, A.; Haiden, N. Human Milk Analyser shows that the lactation period affects protein levels in preterm breastmilk. Acta Paediatr. 2016, 105, 635–640. [Google Scholar] [CrossRef]
- De Oliveira, M.N.S.; Rodrigues, A.M.; De Faria, A.M.C.; Pereira, S.C.L.; Maioli, T.U. Effects of Holder Pasteurization on Immune Composition of Human Milk. Breastfeed. Med. 2020, 15, 803–808. [Google Scholar] [CrossRef]
Parameter | n = 136 |
---|---|
Maternal parameters | |
Age of mother (years) | 32 ± 7 |
Height (cm) | 167 ± 6 |
Weight (kg) | 68 ± 10 |
BMI (kg/m2) | 24.5 ± 3.5 |
Primiparous, n (%) | 77 (56.6) |
Cesarean delivery, n (%) | 124 (91.2) |
Lactation period (days) | 41 ± 32 |
Frequency of breastfeeding/pumping per day | 6 ± 2 |
Infant parameters | |
Male sex, n (%) | 76 (55.9) |
Gestational age (wk + d) | 30 + 3 (± 5 + ± 2) |
Preterm infants <37 weeks of GA, n (%) | 126 (92.65) |
Birth weight (g) | 1525 ± 907 |
Birth height (cm) | 38.8 ± 7.1 |
Head circumference (cm) | 27.6 ± 4.5 |
Fresh HM (n = 136) | Fresh Pasteurized HM (n = 136) | Thawed HM (n = 136) | Thawed PasteurizedHM (n = 136) | |
---|---|---|---|---|
True protein (g/100 mL) | 1.14 ± 0.38 | 1.11 ± 0.39 | 1.12 ± 0.39 | 1.09 ± 0.39 |
Crude protein (g/100 mL) | 1.39 ± 0.47 | 1.37 ± 0.48 | 1.39 ± 0.48 | 1.36 ± 0.47 |
Fat (g/100 mL) | 2.96 ± 0.87 | 2.87 ± 0.80 | 2.82 ± 0.82 | 2.83 ± 0.80 |
Carbohydrates (g/100 mL) | 7.48 ± 0.69 | 7.48 ± 0.66 | 7.48 ± 0.73 | 7.44 ± 0.68 |
Energy (kcal/100 mL) | 63.19 ± 9.80 | 62.46 ± 8.86 | 61.96 ± 9.53 | 61.79 ± 9.33 |
Total solids (g/100 mL) | 12.15 ± 1.30 | 12.06 ± 1.19 | 11.99 ± 1.35 | 11.92 ± 1.33 |
Adiponectin (ng/mL) | 22.10 ± 17.37 | 20.20 ± 12.56 | 21.28 ± 16.49 | 19.84 ± 11.41 |
Leptin (ng/mL) | 0.19 ± 0.24 | 0.02 ± 0.05 | 0.14 ± 0.21 | 0.02 ± 0.06 |
Extremely Preterm (n = 62, 46%) | Very Preterm (n = 30, 22%) | Moderate/Late Preterm (n = 34, 25%) | Term Infant (n = 10, 7%) | |
---|---|---|---|---|
Maternal age (years) | 31 ± 7 | 32 ± 7 | 35 ± 7 | 33 ± 5 |
BMI (kg/m2) | 24 ± 3.5 | 24.5 ± 2.7 | 24.7 ± 3.5 | 26.9 ± 4.5 |
Lactation period (days) | 33 ± 31 | 39 ± 30 | 53 ± 33 | 57 ± 31 |
Breastfeeding/pumping per day | 5 ± 2 | 5 ± 2 | 6 ± 2 | 7 ± 1 |
Male sex, n (%) | 35 (56%) | 17 (57%) | 21 (62%) | 3 (30%) |
Cesarean delivery, n (%) | 61 (98%) | 29 (97%) | 29 (85%) | 5 (50%) |
Gestational age (wk + d) | 26 + 1 (± 3 + ± 2) | 29 + 1 (± 4 + ± 2) | 34 + 1 (± 3 + ± 2) | 39 + 1 (± 3 + ± 2) |
Birth weight (g) | 863 ± 192 | 1421 ± 821 | 2250 ±348 | 3472 ± 478 |
Birth height (cm) | 33.1 ± 2.8 | 38.1 ± 5.3 | 45.7 ± 1.7 | 51.8 ± 2.8 |
Head circumference (cm) | 24.5 ± 2.4 | 26.7 ± 3.4 | 31.6 ± 1.5 | 36.1 ± 2.6 |
Extremely Preterm HM (n = 62, 46%) | Very Preterm HM (n = 30, 22%) | Moderate/Late Preterm HM (n = 34, 25%) | Term Infant HM (n = 10, 7%) | |
---|---|---|---|---|
True protein (g/100 mL) | 1.03 ± 0.37 | 1.12 ± 0.33 | 1.29 ± 0.39 | 1.34 ± 0.34 |
Crude protein (g/100 mL) | 1.26 ± 0.45 | 1.36 ± 0.39 | 1.59 ± 0.49 | 1.63 ± 0.42 |
Fat (g/100 mL) | 2.90 ± 0.91 | 2.81 ± 0.91 | 3.25 ± 0.80 | 2.78 ± 0.59 |
Carbohydrates (g/100 mL) | 7.52 ± 0.65 | 7.20 ± 0.75 | 7.62 ± 0.66 | 7.63 ± 0.79 |
Energy (kcal/100 mL) | 62.24 ± 10.26 | 61.23 ± 9.20 | 66.81 ± 9.62 | 62.70 ± 6.88 |
Total solids (g/100 mL) | 12.07 ± 1.31 | 11.74 ± 1.31 | 12.69 ± 1.23 | 12.10 ± 1.13 |
Adiponectin (ng/mL) | 21.92 ± 20.36 | 19.51 ± 6.12 | 24.33 ± 19.31 | 23.13 ± 13.95 |
Leptin (ng/mL) | 0.18 ± 0.28 | 0.21 ± 0.17 | 0.20 ± 0.25 | 0.17 ± 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Binder, C.; Baumgartner-Parzer, S.; Gard, L.-I.; Berger, A.; Thajer, A. Human Milk Processing and Its Effect on Protein and Leptin Concentrations. Nutrients 2023, 15, 347. https://doi.org/10.3390/nu15020347
Binder C, Baumgartner-Parzer S, Gard L-I, Berger A, Thajer A. Human Milk Processing and Its Effect on Protein and Leptin Concentrations. Nutrients. 2023; 15(2):347. https://doi.org/10.3390/nu15020347
Chicago/Turabian StyleBinder, Christoph, Sabina Baumgartner-Parzer, Liliana-Imi Gard, Angelika Berger, and Alexandra Thajer. 2023. "Human Milk Processing and Its Effect on Protein and Leptin Concentrations" Nutrients 15, no. 2: 347. https://doi.org/10.3390/nu15020347
APA StyleBinder, C., Baumgartner-Parzer, S., Gard, L. -I., Berger, A., & Thajer, A. (2023). Human Milk Processing and Its Effect on Protein and Leptin Concentrations. Nutrients, 15(2), 347. https://doi.org/10.3390/nu15020347