Regional Living Conditions and Individual Dietary Characteristics of the Russian Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Methods for Assessing and Analyzing the Dietary Patterns
2.3. Individual Covariates
2.4. Regional Variables
2.5. Methods of Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Micha, R.; Khatibzadeh, S.; Shi, P.; Andrews, K.G.; Engell, R.E.; Mozaffarian, D. Global Burden of Diseases Nutrition and Chronic Diseases Expert Group (NutriCoDE). Global, regional and national consumption of major food groups in 1990 and 2010: A systematic analysis including 266 country-specific nutrition surveys worldwide. BMJ Open 2015, 5, e008705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caleyachetty, R.; Echouffo-Tcheugui, J.B.; Tait, C.A.; Schilsky, S.; Forrester, T.; Kengne, A.P. Prevalence of behavioural risk factors for cardiovascular disease in adolescents in low-income and middle-income countries: An individual participant data meta-analysis. Lancet Diabetes Endocrinol. 2015, 3, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Agudo, A.; Slimani, N.; Ocké, M.C.; Naska, A.; Miller, A.B.; Kroke, A.; Bamia, C.; Karalis, D.; Vineis, P.; Palli, D.; et al. Consumption of vegetables, fruit and other plant foods in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohorts from 10 European countries. Public Health Nutr. 2002, 5, 1179–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welch, A.A.; Lund, E.; Amiano, P.; Dorronsoro, M.; Brustad, M.; Kumle, M.; Rodriguez, M.; Lasheras, C.; Janzon, L.; Jansson, J.; et al. Variability of fish consumption within the 10 European countries participating in the European Investigation into Cancer and Nutrition (EPIC) study. Public Health Nutr. 2002, 5, 1273–1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hjartåker, A.; Lagiou, A.; Slimani, N.; Lund, E.; Chirlaque, M.D.; Vasilopoulou, E.; Zavitsanos, X.; Berrino, F.; Sacerdote, C.; Ocké, M.C.; et al. Consumption of dairy products in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort: Data from 35 955 24-hour dietary recalls in 10 European countries. Public Health Nutr. 2002, 5, 1259–1271. [Google Scholar] [CrossRef] [Green Version]
- Linseisen, J.; Kesse, E.; Slimani, N.; Bueno-De-Mesquita, H.B.; Ocké, M.C.; Skeie, G.; Kumle, M.; Dorronsoro Iraeta, M.; Morote Gómez, P.; Janzon, L.; et al. Meat consumption in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohorts: Results from 24-hour dietary recalls. Public Health Nutr. 2002, 5, 1243–1258. [Google Scholar] [CrossRef] [Green Version]
- Mertens, E.; Kuijsten, A.; Dofková, M.; Mistura, L.; D’Addezio, L.; Turrini, A.; Dubuisson, C.; Favret, S.; Havard, S.; Trolle, E.; et al. Geographic and socioeconomic diversity of food and nutrient intakes: A comparison of four European countries. Eur. J. Nutr. 2019, 58, 1475–1493. [Google Scholar] [CrossRef] [Green Version]
- Freisling, H.; Fahey, M.T.; Moskal, A.; Ocké, M.C.; Ferrari, P.; Jenab, M.; Norat, T.; Naska, A.; Welch, A.A.; Navarro, C.; et al. Region-specific nutrient intake patterns exhibit a geographical gradient within and between European countries. J. Nutr. 2010, 140, 1280–1286. [Google Scholar] [CrossRef] [Green Version]
- Perrin, A.E.; Dallongeville, J.; Ducimetière, P.; Ruidavets, J.B.; Schlienger, J.L.; Arveiler, D.; Simon, C. Interactions between traditional regional determinants and socio-economic status on dietary patterns in a sample of French men. Br. J. Nutr. 2005, 93, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Wyndels, K.; Dallongeville, J.; Simon, C.; Bongard, V.; Wagner, A.; Ruidavets, J.B.; Arveiler, D.; Ferrières, J.; Amouyel, P.; Dauchet, L. Regional factors interact with educational and income tax levels to influence food intake in France. Eur. J. Clin. Nutr. 2011, 65, 1067–1075. [Google Scholar] [CrossRef]
- Pucarin-Cvetković, J.; Kern, J.; Vuletić, S. Regional features of Croatian nutrition. Acta Med. Croat. 2010, 64, 83–87. [Google Scholar]
- Fink, D.S.; Keyes, K.M.; Cerdá, M. Social determinants of population health: A systems sciences approach. Curr. Epidemiol. Rep. 2016, 3, 98–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulz, A.J.; Kannan, S.; Dvonch, J.T.; Israel, B.A.; Allen, A.; James, S.A.; House, J.S.; Lepkowski, J. Social and physical environments and disparities in risk for cardiovascular disease: The healthy environments partnership conceptual model. Environ. Health Perspect. 2005, 113, 1817–1825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, E.; Blissett, J.; Higgs, S. Social influences on eating: Implications for nutritional interventions. Nutr. Res. Rev. 2013, 26, 166–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgs, S. Social norms and their influence on eating behaviours. Appetite 2015, 86, 38–44. [Google Scholar] [CrossRef]
- Diez Roux, A.V. Residential environments and cardiovascular risk. J. Urban Health 2003, 80, 569–589. [Google Scholar] [CrossRef] [Green Version]
- Boylan, J.M.; Robert, S.A. Neighborhood SES is particularly important to the cardiovascular health of low SES individuals. Soc. Sci. Med. 2017, 188, 60–68. [Google Scholar] [CrossRef]
- Algren, M.H.; Bak, C.K.; Berg-Beckhoff, G.; Andersen, P.T. Health-risk behaviour in deprived neighbourhoods compared with non-deprived neighbourhoods: A systematic literature review of quantitative observational studies. PLoS ONE 2015, 10, e0139297. [Google Scholar] [CrossRef]
- Basora, J.; Villalobos, F.; Pallejà-Millán, M.; Babio, N.; Goday, A.; Zomeño, M.D.; Pintó, X.; Sacanella, E.; Salas-Salvadó, J. Deprivation index and lifestyle: Baseline cross-sectional analysis of the PREDIMED-Plus Catalonia study. Nutrients 2021, 13, 3408. [Google Scholar] [CrossRef]
- Behanova, M.; Nagyova, I.; Katreniakova, Z.; van Ameijden, E.J.; van Dijk, J.P.; Reijneveld, S.A. Health-risk behaviours in deprived urban neighbourhoods: A comparison between Slovak and Dutch cities. Int. J. Public Health 2014, 59, 405–414. [Google Scholar] [CrossRef]
- Chatelan, A.; Beer-Borst, S.; Randriamiharisoa, A.; Pasquier, J.; Blanco, J.M.; Siegenthaler, S.; Paccaud, F.; Slimani, N.; Nicolas, G.; Camenzind-Frey, E.; et al. Major differences in diet across three linguistic regions of Switzerland: Results from the first National Nutrition Survey menuCH. Nutrients 2017, 9, 1163. [Google Scholar] [CrossRef] [PubMed]
- Quon, E.C.; McGrath, J.J. Province-level income inequality and health outcomes in Canadian adolescents. J. Pediatr. Psychol. 2015, 40, 251–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maksimov, S.; Karamnova, N.; Shalnova, S.; Drapkina, O. Sociodemographic and regional determinants of dietary patterns in Russia. Int. J. Environ. Res. Public Health 2020, 17, 328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karamnova, N.S.; Maksimov, S.A.; Shalnova, S.A.; Shvabskaya, O.B.; Drapkina, O.M. Cardioprotective diet: Prevalence, associations and prevention reserves. Russ. J. Cardiol. 2020, 25, 3769. [Google Scholar] [CrossRef]
- Maksimov, S.A.; Karamnova, N.S.; Shalnova, S.A.; Balanova, Y.A.; Deev, A.D.; Evstifeeva, S.E.; Imaeva, A.E.; Kapustina, A.V.; Muromtseva, G.A.; Rotar, O.P.; et al. Empirical dietary patterns in the Russian population and the risk factors of chronic non-infectious diseases (Research ECVD-RF). Vopr. Pitan. 2019, 6, 22–33. [Google Scholar] [CrossRef]
- Boitsov, S.A.; Chazov, E.I.; Shlyakhto, E.V.; Shalnova, S.A.; Konradi, A.O.; Karpov, Y.A.; Muromtseva, G.A.; Zhernakova, Y.U.; Oshchepkova, E.V.; Rotar, O.P.; et al. Scientific Organizing Committee of the ESSE-RF. Epidemiology of cardiovascular diseases in different regions of Russia (ESSE-RF). The rationale for and design of the study. Profil. Meditsina. 2013, 6, 25–34. [Google Scholar]
- Maksimov, S.A.; Karamnova, N.S.; Shalnova, S.A.; Drapkina, O.M. Empirical dietary patterns and their influence on health in epidemiological studies. Vopr. Pitan. 2020, 89, 6–18. [Google Scholar] [CrossRef]
- Maksimov, S.A.; Shalnova, S.A.; Balanova, Y.A.; Kutsenko, V.A.; Evstifeeva, S.E.; Imaeva, A.E.; Drapkina, O.M. What regional living conditions affect individual smoking of adults in Russia. Int. J. Public Health 2021, 66, 599570. [Google Scholar] [CrossRef]
- Lakshman, R.; McConville, A.; How, S.; Flowers, J.; Wareham, N.; Cosford, P. Association between area-level socioeconomic deprivation and a cluster of behavioural risk factors: Cross-sectional, population-based study. J. Public Health 2010, 33, 234–245. [Google Scholar] [CrossRef] [Green Version]
- Thornton, L.E.; Crawford, D.A.; Ball, K. Neighbourhood-socioeconomic variation in women’s diet: The role of nutrition environments. Eur. J. Clin. Nutr. 2010, 64, 1423–1432. [Google Scholar] [CrossRef]
- Lagström, H.; Halonen, J.I.; Suominen, S.; Pentti, J.; Stenholm, S.; Kivimäki, M.; Vahtera, J. Neighbourhood characteristics as a predictor of adherence to dietary recommendations: A population-based cohort study of Finnish adults. Scand. J. Public Health 2022, 50, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Ghenadenik, A.E.; Frohlich, K.L.; Gauvin, L. Beyond smoking prevalence: Exploring the variability of associations between neighborhood exposures across two nested spatial units and two-year smoking trajectory among young adults. Int. J. Environ. Res. Public Health 2016, 13, 106. [Google Scholar] [CrossRef] [PubMed]
- Krieger, N.; Chen, J.T.; Waterman, P.D.; Soobader, M.J.; Subramanian, S.V.; Carson, R. Geocoding and monitoring of US socioeconomic inequalities in mortality and cancer incidence: Does the choice of area-based measure and geographic level matter? The Public Health Disparities Geocoding Project. Am. J. Epidemiol. 2002, 156, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Schuurman, N.; Bell, N.; Dunn, J.R.; Oliver, L. Deprivation indices, population health and geography: An evaluation of the spatial effectiveness of indices at multiple scales. J. Urban Health 2007, 84, 591–603. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.M.; Micha, R.; Khatibzadeh, S.; Shi, P.; Lim, S.; Andrews, K.G.; Engell, R.E.; Ezzati, M.; Mozaffarian, D. Global, regional, and national consumption of sugar-sweetened beverages, fruit juices, and milk: A systematic assessment of beverage intake in 187 countries. PLoS ONE 2015, 10, e0124845. [Google Scholar] [CrossRef] [Green Version]
- Miller, V.; Reedy, J.; Cudhea, F.; Zhang, J.; Shi, P.; Erndt-Marino, J.; Coates, J.; Micha, R.; Webb, P.; Mozaffarian, D. Global, regional, and national consumption of animal-source foods between 1990 and 2018: Findings from the Global Dietary Database. Lancet Planet. Health 2022, 6, e243–e256. [Google Scholar] [CrossRef]
- Micha, R.; Khatibzadeh, S.; Shi, P.; Fahimi, S.; Lim, S.; Andrews, K.G.; Engell, R.E.; Powles, J.; Ezzati, M.; Mozaffarian, D. Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: A systematic analysis including 266 country-specific nutrition surveys. BMJ 2014, 348, g2272. [Google Scholar] [CrossRef] [Green Version]
- Miller, V.; Yusuf, S.; Chow, C.K.; Dehghan, M.; Corsi, D.J.; Lock, K.; Popkin, B.; Rangarajan, S.; Khatib, R.; Lear, S.A.; et al. Availability, affordability, and consumption of fruits and vegetables in 18 countries across income levels: Findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet Glob. Health 2016, 4, e695–e703. [Google Scholar] [CrossRef] [Green Version]
- Skomorokhov, S.N. Methodology of the study of the influence of personal subsidiary farms and other individual farms of citizens on the development of rural local economy. Aktual. Vopr. Sovrem. Ekon. 2022, 8, 9–25. [Google Scholar] [CrossRef]
- Razin, A.F.; Shatilov, M.V.; Meshcheryakova, R.A.; Surikhina, T.N.; Razin, O.A.; Telegina, G.A. Borscht vegetables in Russia. Potato VegeTable 2019, 10, 10–13. [Google Scholar] [CrossRef]
- Robinson, E.; Thomas, J.; Aveyard, P.; Higgs, S. What everyone else is eating: A systematic review and meta-analysis of the effect of informational eating norms on eating behavior. J. Acad. Nutr. Diet. 2014, 114, 414–429. [Google Scholar] [CrossRef] [PubMed]
- Suwalska, J.; Bogdański, P. Social modeling and eating behavior—A narrative review. Nutrients 2021, 13, 1209. [Google Scholar] [CrossRef] [PubMed]
- Guendelman, M.D.; Cheryan, S.; Monin, B. Fitting in but getting fat: Identity threat and dietary choice among U.S. immigrant groups. Psychol. Sci. 2011, 22, 959–967. [Google Scholar] [CrossRef]
- Stok, F.M.; de Ridder, D.T.; de Vet, E.; de Wit, J.B. Minority talks: The influence of descriptive social norms on fruit intake. Psychol. Health 2012, 27, 956–970. [Google Scholar] [CrossRef] [PubMed]
- Croker, H.; Whitaker, K.L.; Cooke, L.; Wardle, J. Do social norms affect intended food choice? Prev. Med. 2009, 49, 190–193. [Google Scholar] [CrossRef] [PubMed]
- Slimani, N.; Fahey, M.; Welch, A.A.; Wirfält, E.; Stripp, C.; Bergström, E.; Linseisen, J.; Schulze, M.B.; Bamia, C.; Chloptsios, Y.; et al. Diversity of dietary patterns observed in the European Prospective Investigation into Cancer and Nutrition (EPIC) project. Public Health Nutr. 2002, 5, 1311–1328. [Google Scholar] [CrossRef] [PubMed]
- Bamia, C.; Orfanos, P.; Ferrari, P.; Overvad, K.; Hundborg, H.H.; Tjønneland, A.; Olsen, A.; Kesse, E.; Boutron-Ruault, M.C.; Clavel-Chapelon, F.; et al. Dietary patterns among older Europeans: The EPIC-Elderly study. Br. J. Nutr. 2005, 94, 100–113. [Google Scholar] [CrossRef]
- Westerterp-Plantenga, M.S. Effects of extreme environments on food intake in human subjects. Proc. Nutr. Soc. 1999, 58, 791–798. [Google Scholar] [CrossRef] [Green Version]
- Millet, J.; Siracusa, J.; Tardo-Dino, P.E.; Thivel, D.; Koulmann, N.; Malgoyre, A.; Charlot, K. Effects of acute heat and cold exposures at rest or during exercise on subsequent energy intake: A systematic review and meta-analysis. Nutrients 2021, 13, 3424. [Google Scholar] [CrossRef]
- Jezewska-Zychowicz, M.; Gębski, J.; Guzek, D.; Świątkowska, M.; Stangierska, D.; Plichta, M.; Wasilewska, M. The associations between dietary patterns and sedentary behaviors in Polish adults (LifeStyle Study). Nutrients 2018, 10, 1004. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Papier, K.; Yiengprugsawan, V.; Kelly, M.; Seubsman, S.A.; Sleigh, A.C. Dietary patterns associated with hypertension risk among adults in Thailand: 8-year findings from the Thai Cohort Study. Public Health Nutr. 2019, 22, 307–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, H. The prevention and handling of the missing data. Korean J. Anesthesiol. 2013, 64, 402–406. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Entire Sample, 18,054 | Men, 6814 | Women, 11,240 | |
---|---|---|---|---|
Place of residence, urban | 79.5% (14,351) | 80.1% (5459) | 79.1% (8892) | |
Has a family | 64.7% (11,680) | 76.1% (5186) | 57.8% (6494) | |
Education, higher | 42.2% (7619) | 43.0% (2928) | 41.7% (4691) | |
Employment | 75.7% (13,661) | 83.3% (5678) | 71.0% (7983) | |
Gastrointestinal diseases | 38.2% (6902) | 27.7% (1888) | 44.6% (5014) | |
Peptic ulcer disease | 12.9% (2325) | 14.4% (979) | 12.0% (1346) | |
Diabetes mellitus | 4.6% (833) | 3.6% (243) | 5.2% (590) | |
Smoking | Never | 61.9% (11,165) | 34.0% (2316) | 78.7% (8849) |
Quit | 16.6% (2999) | 27.7% (1885) | 9.9% (1114) | |
Smoker | 21.5% (3890) | 38.3% (2613) | 11.4% (1277) | |
Age | 46.4 ± 11.6 | 44.4 ± 11.9 | 47.5 ± 11.3 | |
Body mass index | 28.1 ± 5.9 | 27.6 ± 4.9 | 28.5 ± 6.4 | |
Socio-geographical index | 0.015 ± 0.943 | 0.110 ± 0.903 | −0.042 ± 0.962 | |
Demographic index | 0.026 ± 0.970 | 0.093 ± 0.893 | −0.014 ± 1.011 | |
Industrial index | −0.015 ± 0.951 | 0.062 ± 0.971 | −0.062 ± 0.936 | |
Mixed index | 0.045 ± 1.055 | 0.077 ± 1.090 | 0.026 ± 1.032 | |
Economic index | −0.021 ± 0.951 | −0.007 ± 0.960 | −0.030 ± 0.946 | |
Prudent dietary pattern | −0.011 ± 1.001 | −0.199 ± 0.993 | 0.103 ± 0.989 | |
Salt-rich dietary pattern | 0.021 ± 0.991 | 0.223 ± 0.960 | −0.102 ± 0.990 | |
Meat-based dietary pattern | −0.004 ± 1.008 | 0.104 ± 0.962 | −0.069 ± 1.029 | |
Mixed dietary pattern | 0.003 ± 1.007 | −0.009 ± 1.008 | 0.011 ± 1.006 | |
Cardioprotective dietary pattern | 6.5% (1169) | 4.6% (312) | 7.6% (857) |
Characteristics | Prudent DP | Salt-Rich DP | Meat-Based DP | Mixed DP | Cardioprotective DP | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
B-Coeff. | p-Value | B-Coeff. | p-Value | B-Coeff. | p-Value | B-Coeff. | p-Value | OR | 95% CI | ||
Individual Characteristics | |||||||||||
Gender (reference: women) | −0.221 | <0.001 | 0.219 | <0.001 | 0.083 | <0.001 | 0.064 | 0.039 | 0.60 | 0.48–0.75 | |
Place of residence (reference: urban) | 0.010 | 0.84 | 0.069 | 0.095 | −0.056 | 0.34 | −0.029 | 0.27 | 0.74 | 0.61–0.90 | |
Has a family (reference: none) | 0.057 | <0.001 | 0.068 | <0.001 | 0.150 | <0.001 | 0.014 | 0.53 | 1.01 | 0.90–1.14 | |
Education (reference: other than higher) | 0.117 | <0.001 | −0.168 | <0.001 | 0.037 | 0.19 | 0.003 | 0.94 | 1.72 | 1.44–2.06 | |
Employment (reference: unemployed) | 0.039 | 0.067 | 0.091 | <0.001 | 0.104 | <0.001 | −0.034 | 0.20 | 1.02 | 0.85–1.23 | |
Gastrointestinal diseases (reference: none) | 0.088 | <0.001 | −0.066 | <0.001 | 0.017 | 0.63 | −0.060 | <0.001 | 1.01 | 0.89–1.14 | |
Peptic ulcer disease (reference: none) | −0.023 | 0.50 | 0.011 | 0.67 | 0.041 | 0.028 | −0.027 | 0.19 | 0.81 | 0.65–1.02 | |
Diabetes mellitus (reference: none) | −0.507 | <0.001 | −0.364 | <0.001 | 0.207 | <0.001 | 0.18 | <0.001 | 1.89 | 1.64–2.17 | |
Smoking (reference: never) | Quit | −0.132 | <0.001 | −0.004 | 0.81 | 0.030 | 0.17 | −0.062 | 0.006 | 1.07 | 0.93–1.23 |
Smoker | −0.317 | <0.001 | 0.158 | <0.001 | 0.096 | <0.001 | −0.129 | <0.001 | 0.67 | 0.55–0.81 | |
Age | 0.002 | 0.11 | −0.010 | <0.001 | −0.001 | 0.28 | 0.008 | <0.001 | 1.02 | 1.01–1.03 | |
Body mass index | −0.008 | <0.001 | 0.005 | <0.001 | 0.012 | <0.001 | 0.002 | <0.001 | 1.01 | 0.99–1.02 | |
Regional Indices | |||||||||||
Socio-geographical index | 0.095 | 0.076 | −0.006 | 0.87 | 0.103 | 0.046 | −0.063 | 0.18 | 1.23 | 1.08–1.41 | |
Demographic index | 0.039 | 0.37 | 0.043 | 0.22 | 0.039 | 0.42 | −0.059 | 0.33 | 1.40 | 1.29–1.52 | |
Industrial index | 0.028 | 0.43 | −0.025 | 0.31 | 0.059 | 0.12 | −0.024 | 0.66 | 1.09 | 1.04–1.15 | |
Mixed index | −0.054 | <0.001 | −0.025 | 0.051 | 0.018 | 0.21 | 0.086 | <0.001 | 1.16 | 1.12–1.19 | |
Economic index | 0.009 | 0.86 | 0.013 | 0.67 | 0.077 | 0.20 | −0.025 | 0.71 | 0.90 | 0.81–0.99 |
Characteristics | Prudent DP | Salt-Rich DP | Meat-Based DP | Mixed DP | Cardioprotective DP |
---|---|---|---|---|---|
Individual Characteristics | |||||
Gender | 41.2 | 94.3 | 10.5 | 4.3 | 19.9 |
Place of residence | <0.1 | 2.8 | 0.9 | 1.2 | 9.4 |
Has a family | 13.6 | 17.5 | 50.7 | 0.4 | <0.1 |
Education | 33.7 | 117.0 | 1.7 | <0.1 | 34.8 |
Employment | 3.3 | 15.8 | 61.3 | 1.6 | <0.1 |
Gastrointestinal diseases | 16.1 | 10.8 | 0.2 | 7.3 | <0.1 |
Peptic ulcer disease | 0.4 | 0.2 | 4.8 | 1.7 | 3.3 |
Diabetes mellitus | 97.8 | 45.0 | 31.6 | 16.7 | 79.8 |
Smoking | 181.0 | 38.7 | 24.3 | 25.5 | 23.7 |
Age | 2.5 | 53.8 | 1.1 | 59.0 | 15.9 |
Body mass index | 110.7 | 13.2 | 51.4 | 0.5 | 0.7 |
Regional Indices | |||||
Socio-geographical index | 3.2 | <0.1 | 4.0 | 1.8 | 9.7 |
Demographic index | 0.8 | 1.5 | 0.6 | 1.0 | 64.2 |
Industrial index | 0.6 | 1.0 | 2.4 | 0.2 | 11.0 |
Mixed index | 26.6 | 3.8 | 1.5 | 19.3 | 84.2 |
Economic index | <0.1 | 0.2 | 1.6 | 0.1 | 4.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maksimov, S.A.; Karamnova, N.S.; Shalnova, S.A.; Muromtseva, G.A.; Kapustina, A.V.; Drapkina, O.M. Regional Living Conditions and Individual Dietary Characteristics of the Russian Population. Nutrients 2023, 15, 396. https://doi.org/10.3390/nu15020396
Maksimov SA, Karamnova NS, Shalnova SA, Muromtseva GA, Kapustina AV, Drapkina OM. Regional Living Conditions and Individual Dietary Characteristics of the Russian Population. Nutrients. 2023; 15(2):396. https://doi.org/10.3390/nu15020396
Chicago/Turabian StyleMaksimov, Sergey A., Natalia S. Karamnova, Svetlana A. Shalnova, Galina A. Muromtseva, Anna V. Kapustina, and Oksana M. Drapkina. 2023. "Regional Living Conditions and Individual Dietary Characteristics of the Russian Population" Nutrients 15, no. 2: 396. https://doi.org/10.3390/nu15020396
APA StyleMaksimov, S. A., Karamnova, N. S., Shalnova, S. A., Muromtseva, G. A., Kapustina, A. V., & Drapkina, O. M. (2023). Regional Living Conditions and Individual Dietary Characteristics of the Russian Population. Nutrients, 15(2), 396. https://doi.org/10.3390/nu15020396