Joint Effects of Prenatal Folic Acid Supplement with Prenatal Multivitamin and Iron Supplement on Obesity in Preschoolers Born SGA: Sex Specific Difference
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Measurement of Prenatal Maternal Nutrient Supplementations
2.4. Measurement and Definition of Obesity
2.5. Potential Confounding Variables
2.6. Statistical Analyses
3. Results
3.1. Characteristics of Participants
3.2. Associations between Prenatal Supplementation of the Micronutrients and Obesity in Preschoolers Born SGA
3.3. Combination Effects of Maternal Micronutrients Supplementation during Pregnancy on Obesity in Preschoolers Born SGA
3.4. Combination Effects of Maternal Micronutrients Supplementation during Pregnancy on Obesity in Preschoolers Born SGA
4. Discussion
4.1. Associations of Prenatal Maternal Supplementation of Folic Acid with Preschool Obesity in SGA
4.2. Modification Effects of Prenatal Supplement of Iron or Multivitamin on Associations between Prenatal Maternal Supplementation of Folic Acid and Obesity
4.3. Sex Specific Differences of Associations between Prenatal Supplement of Folic Acid, Iron, and Multivitamin and Offspring’s Obesity
4.4. Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stanaway, J.D.; Afshin, A.; Gakidou, E.; Lim, S.S.; Abate, D.; Abate, K.H. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1923–1994. [Google Scholar] [CrossRef] [Green Version]
- Bentham, J.; Di Cesare, M.; Bilano, V.; Bixby, H.; Zhou, B.; Stevens, G.A.; Riley, L.M.; Taddei, C.; Hajifathalian, K.; Lu, Y.; et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [Green Version]
- Capital Institute of Pediatrics; The Coordinating Study Group of Nine Cities on the Physical. A national epidemiological survey on obesity of children under seven years of age in nine cities of China in 2016. Zhonghua Er Ke Za Zhi 2018, 56, 745–752. [Google Scholar] [CrossRef]
- Weihrauch-Blüher, S.; Schwarz, P.; Klusmann, J.H. Childhood obesity: Increased risk for cardiometabolic disease and cancer in adulthood. Metabolism 2019, 92, 147–152. [Google Scholar] [CrossRef]
- Simmonds, M.; Llewellyn, A.; Owen, C.G.; Woolacott, N. Predicting adult obesity from childhood obesity: A systematic review and meta-analysis. Obes. Rev. 2016, 17, 95–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton, D.; Dee, A.; Perry, I.J. The lifetime costs of overweight and obesity in childhood and adolescence: A systematic review. Obes. Rev. 2018, 19, 452–463. [Google Scholar] [CrossRef] [PubMed]
- Quan, L.L.; Wang, H.; Tian, Y.; Mu, X.; Zhang, Y.; Tao, K. Association of fat-mass and obesity-associated gene FTO rs9939609 polymorphism with the risk of obesity among children and adolescents: A meta-analysis. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 614–623. [Google Scholar]
- Wang, H.J.; Hinney, A.; Song, J.Y.; Scherag, A.; Meng, X.R.; Grallert, H.; Illig, T.; Hebebrand, J.; Wang, Y.; Ma, J. Association of common variants identified by recent genome-wide association studies with obesity in Chinese children: A case-control study. BMC Med. Genet. 2016, 17, 7. [Google Scholar] [CrossRef] [Green Version]
- Raskiliene, A.; Smalinskiene, A.; Kriaucioniene, V.; Lesauskaite, V.; Petkeviciene, J. Associations of MC4R, LEP, and LEPR Polymorphisms with Obesity-Related Parameters in Childhood and Adulthood. Genes 2021, 12, 949. [Google Scholar] [CrossRef]
- Mǎrginean, C.O.; Mǎrginean, C.; Meliţ, L.E. New Insights Regarding Genetic Aspects of Childhood Obesity: A Minireview. Front. Pediatr. 2018, 6, 271. [Google Scholar] [CrossRef] [Green Version]
- Larqué, E.; Labayen, I.; Flodmark, C.E.; Lissau, I.; Czernin, S.; Moreno, L.A.; Pietrobelli, A.; Widhalm, K. From conception to infancy—Early risk factors for childhood obesity. Nat. Rev. Endocrinol. 2019, 15, 456–478. [Google Scholar] [CrossRef] [PubMed]
- Weng, S.F.; Redsell, S.A.; Swift, J.A.; Yang, M.; Glazebrook, C.P. Systematic review and meta-analyses of risk factors for childhood overweight identifiable during infancy. Arch. Dis. Child. 2012, 97, 1019–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurnani, M.; Birken, C.; Hamilton, J. Childhood Obesity: Causes, Consequences, and Management. Pediatr. Clin. N. Am. 2015, 62, 821–840. [Google Scholar] [CrossRef] [PubMed]
- Biosca, M.; Rodríguez, G.; Ventura, P.; Samper, M.P.; Labayen, I.; Collado, M.P.; Valle, S.; Bueno, O.; Santabárbara, J.; Moreno, L.A. Central adiposity in children born small and large for gestational age. Nutr. Hosp. 2011, 26, 971–976. [Google Scholar] [CrossRef]
- Yuan, Z.P.; Yang, M.; Liang, L.; Fu, J.F.; Xiong, F.; Liu, G.L.; Gong, C.X.; Luo, F.H.; Chen, S.K.; Zhang, D.D.; et al. Possible role of birth weight on general and central obesity in Chinese children and adolescents: A cross-sectional study. Ann. Epidemiol. 2015, 25, 748–752. [Google Scholar] [CrossRef]
- Goedegebuure, W.J.; Van der Steen, M.; Smeets, C.C.J.; Kerkhof, G.F.; Hokken-Koelega, A.C.S. SGA-born adults with postnatal catch-up have a persistently unfavourable metabolic health profile and increased adiposity at age 32 years. Eur. J. Endocrinol. 2022, 187, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Shastri, S.; Farahbakhsh, N.; Sharma, P. Intrauterine growth restriction—Part 1. J. Matern Fetal Neonatal Med. 2016, 29, 3977–3987. [Google Scholar] [CrossRef]
- Sacchi, C.; Marino, C.; Nosarti, C.; Vieno, A.; Visentin, S.; Simonelli, A. Association of Intrauterine Growth Restriction and Small for Gestational Age Status With Childhood Cognitive Outcomes: A Systematic Review and Meta-analysis. JAMA Pediatr. 2020, 174, 772–781. [Google Scholar] [CrossRef]
- Kemp, M.W.; Kallapur, S.G.; Jobe, A.H.; Newnham, J.P. Obesity and the developmental origins of health and disease. J. Paediatr. Child. Health 2012, 48, 86–90. [Google Scholar] [CrossRef]
- Nam, H.K.; Lee, K.H. Small for gestational age and obesity: Epidemiology and general risks. Ann. Pediatr. Endocrinol. Metab. 2018, 23, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Maguolo, A.; Olivieri, F.; Zusi, C.; Miraglia Del Giudice, E.; Morandi, A.; Maffeis, C. The risk of metabolic derangements is higher in children and adolescents with overweight or obesity born small for gestational age. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1903–1910. [Google Scholar] [CrossRef]
- Colella, M.; Frérot, A.; Novais, A.R.B.; Baud, O. Neonatal and Long-Term Consequences of Fetal Growth Restriction. Curr. Pediatr. Rev. 2018, 14, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Banister, C.E.; Koestler, D.C.; Maccani, M.A.; Padbury, J.F.; Houseman, E.A.; Marsit, C.J. Infant growth restriction is associated with distinct patterns of DNA methylation in human placentas. Epigenetics 2011, 6, 920–927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, D.; Farahbakhsh, N.; Shastri, S.; Sharma, P. Intrauterine growth restriction—Part 2. J. Matern Fetal Neonatal. Med. 2016, 29, 4037–4048. [Google Scholar] [CrossRef]
- Christian, P.; Stewart, C.P. Maternal micronutrient deficiency, fetal development, and the risk of chronic disease. J. Nutr. 2010, 140, 437–445. [Google Scholar] [CrossRef] [Green Version]
- Priliani, L.; Oktavianthi, S.; Prado, E.L.; Malik, S.G.; Shankar, A.H. Maternal biomarker patterns for metabolism and inflammation in pregnancy are influenced by multiple micronutrient supplementation and associated with child biomarker patterns and nutritional status at 9–12 years of age. PLoS ONE 2020, 15, e0216848. [Google Scholar] [CrossRef]
- Stewart, C.P.; Christian, P.; Schulze, K.J.; Leclerq, S.C.; West, K.P., Jr.; Khatry, S.K. Antenatal micronutrient supplementation reduces metabolic syndrome in 6- to 8-year-old children in rural Nepal. J. Nutr. 2009, 139, 1575–1581. [Google Scholar] [CrossRef] [Green Version]
- Georgieff, M.K. Iron deficiency in pregnancy. Am. J. Obstet. Gynecol. 2020, 223, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Roberfroid, D.; Huybregts, L.; Lanou, H.; Habicht, J.P.; Henry, M.C.; Meda, N.; Kolsteren, P. Prenatal micronutrient supplements cumulatively increase fetal growth. J. Nutr. 2012, 142, 548–554. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulou, E.; Stratakis, N.; Roumeliotaki, T.; Sarri, K.; Merlo, D.F.; Kogevinas, M.; Chatzi, L. The effect of high doses of folic acid and iron supplementation in early-to-mid pregnancy on prematurity and fetal growth retardation: The mother-child cohort study in Crete, Greece (Rhea study). Eur. J. Nutr. 2013, 52, 327–336. [Google Scholar] [CrossRef]
- Wang, C.; Gao, R.; Huang, L.; Hu, P.; Zhu, L.; Chen, W.Q. Effect of prenatal nutritional intervention on foetal growth restriction: A real-world study in Shenzhen, China. J. Matern Fetal Neonatal Med. 2022, 35, 2435–2444. [Google Scholar] [CrossRef] [PubMed]
- Sauder, K.A.; Starling, A.P.; Shapiro, A.L.; Kaar, J.L.; Ringham, B.M.; Glueck, D.H.; Dabelea, D. Exploring the association between maternal prenatal multivitamin use and early infant growth: The Healthy Start Study. Pediatr. Obes. 2016, 11, 434–441. [Google Scholar] [CrossRef] [Green Version]
- Herath, M.P.; Ahuja, K.D.K.; Beckett, J.M.; Jayasinghe, S.; Byrne, N.M.; Hills, A.P. Determinants of Infant Adiposity across the First 6 Months of Life: Evidence from the Baby-bod study. J. Clin. Med. 2021, 10, 1770. [Google Scholar] [CrossRef] [PubMed]
- Balashova, O.A.; Visina, O.; Borodinsky, L.N. Folate action in nervous system development and disease. Dev. Neurobiol. 2018, 78, 391–402. [Google Scholar] [CrossRef]
- Li, N.; Li, Z.; Ye, R.; Liu, J.; Ren, A. Impact of Periconceptional Folic Acid Supplementation on Low Birth Weight and Small-for-Gestational-Age Infants in China: A Large Prospective Cohort Study. J. Pediatr. 2017, 187, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, D.; Zhang, R.; Lei, F.; Liu, X.; Cheng, Y.; Li, C.; Xiao, M.; Guo, L.; Li, M.; et al. The association of maternal dietary folate intake and folic acid supplementation with small-for-gestational-age births: A cross-sectional study in Northwest China. Br. J. Nutr. 2019, 122, 459–467. [Google Scholar] [CrossRef]
- Waterland, R.A.; Travisano, M.; Tahiliani, K.G.; Rached, M.T.; Mirza, S. Methyl donor supplementation prevents transgenerational amplification of obesity. Int. J. Obes. 2008, 32, 1373–1379. [Google Scholar] [CrossRef] [Green Version]
- Monasso, G.S.; Santos, S.; Geurtsen, M.L.; Heil, S.G.; Felix, J.F.; Jaddoe, V.W.V. Associations of Early Pregnancy and Neonatal Circulating Folate, Vitamin B-12, and Homocysteine Concentrations with Cardiometabolic Risk Factors in Children at 10 y of Age. J. Nutr. 2021, 151, 1628–1636. [Google Scholar] [CrossRef]
- Yajnik, C.S.; Deshpande, S.S.; Jackson, A.A.; Refsum, H.; Rao, S.; Fisher, D.J.; Bhat, D.S.; Naik, S.S.; Coyaji, K.J.; Joglekar, C.V.; et al. Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: The Pune Maternal Nutrition Study. Diabetologia 2008, 51, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Capital Institute of Pediatrics; The Coordinating Study Group of Nine Cities on the Physical. Growth standard curves of birth weight, length and head circumference of Chinese newborns of different gestation. Zhonghua Er Ke Za Zhi 2020, 58, 738–746. [Google Scholar] [CrossRef]
- Bian, H.; Tang, Y.; Zhou, Y.; Li, H.; Liu, J. Demographic variations and temporal trends in prenatal use of multiple micronutrient supplements in Beijing, 2013–2017. Public Health Nutr. 2021, 24, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Keats, E.C.; Haider, B.A.; Tam, E.; Bhutta, Z.A. Multiple-micronutrient supplementation for women during pregnancy. Cochrane Database Syst. Rev. 2019, 3, Cd004905. [Google Scholar] [CrossRef] [PubMed]
- Shand, A.W.; Walls, M.; Chatterjee, R.; Nassar, N.; Khambalia, A.Z. Dietary vitamin, mineral and herbal supplement use: A cross-sectional survey of before and during pregnancy use in Sydney, Australia. Aust. New Zealand J. Obstet. Gynaecol. 2016, 56, 154–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koivuniemi, E.; Hart, K.; Mazanowska, N.; Ruggeri, S.; Egan, B.; Censi, L.; Roccaldo, R.; Mattila, L.; Buonocore, P.; Löyttyniemi, E.; et al. Food Supplement Use Differs from the Recommendations in Pregnant Women: A Multinational Survey. Nutrients 2022, 14, 2909. [Google Scholar] [CrossRef]
- Li, H.; Ji, C.Y.; Zong, X.N.; Zhang, Y.Q. Body mass index growth curves for Chinese children and adolescents aged 0 to 18 years. Zhonghua Er Ke Za Zhi 2009, 47, 493–498. [Google Scholar] [CrossRef]
- Kunaratnam, K.; Halaki, M.; Wen, L.M.; Baur, L.A.; Flood, V.M. Tracking Preschoolers’ Lifestyle Behaviors and Testing Maternal Sociodemographics and BMI in Predicting Child Obesity Risk. J. Nutr. 2020, 150, 3068–3074. [Google Scholar] [CrossRef]
- Morgen, C.S.; Ängquist, L.; Baker, J.L.; Andersen, A.M.N.; Michaelsen, K.F.; Sørensen, T.I.A. Prenatal risk factors influencing childhood BMI and overweight independent of birth weight and infancy BMI: A path analysis within the Danish National Birth Cohort. Int. J. Obes. 2018, 42, 594–602. [Google Scholar] [CrossRef]
- Xie, R.H.; Liu, Y.J.; Retnakaran, R.; MacFarlane, A.J.; Hamilton, J.; Smith, G.; Walker, M.C.; Wen, S.W. Maternal folate status and obesity/insulin resistance in the offspring: A systematic review. Int. J. Obes. 2016, 40, 1–9. [Google Scholar] [CrossRef]
- Wang, G.; Hu, F.B.; Mistry, K.B.; Zhang, C.; Ren, F.; Huo, Y.; Paige, D.; Bartell, T.; Hong, X.; Caruso, D.; et al. Association Between Maternal Prepregnancy Body Mass Index and Plasma Folate Concentrations With Child Metabolic Health. JAMA Pediatr. 2016, 170, e160845. [Google Scholar] [CrossRef]
- Greenberg, J.A.; Bell, S.J.; Guan, Y.; Yu, Y.H. Folic Acid supplementation and pregnancy: More than just neural tube defect prevention. Rev. Obstet. Gynecol. 2011, 4, 52–59. [Google Scholar]
- Qian, Y.Y.; Huang, X.L.; Liang, H.; Zhang, Z.F.; Xu, J.H.; Chen, J.P.; Yuan, W.; He, L.; Wang, L.; Miao, M.H.; et al. Effects of maternal folic acid supplementation on gene methylation and being small for gestational age. J. Hum. Nutr. Diet 2016, 29, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Pauwels, S.; Ghosh, M.; Duca, R.C.; Bekaert, B.; Freson, K.; Huybrechts, I.; Langie, S.A.S.; Koppen, G.; Devlieger, R.; Godderis, L. Maternal intake of methyl-group donors affects DNA methylation of metabolic genes in infants. Clin. Epigenetics 2017, 9, 16. [Google Scholar] [CrossRef] [PubMed]
- McGee, M.; Bainbridge, S.; Fontaine-Bisson, B. A crucial role for maternal dietary methyl donor intake in epigenetic programming and fetal growth outcomes. Nutr. Rev. 2018, 76, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Salbaum, J.M.; Kappen, C. Genetic and epigenomic footprints of folate. Prog. Mol. Biol. Transl. Sci. 2012, 108, 129–158. [Google Scholar] [CrossRef] [Green Version]
- Steegers-Theunissen, R.P.; Obermann-Borst, S.A.; Kremer, D.; Lindemans, J.; Siebel, C.; Steegers, E.A.; Slagboom, P.E.; Heijmans, B.T. Periconceptional maternal folic acid use of 400 microg per day is related to increased methylation of the IGF2 gene in the very young child. PLoS ONE 2009, 4, e7845. [Google Scholar] [CrossRef] [Green Version]
- Huot, P.S.; Ly, A.; Szeto, I.M.; Reza-López, S.A.; Cho, D.; Kim, Y.I.; Anderson, G.H. Maternal and postweaning folic acid supplementation interact to influence body weight, insulin resistance, and food intake regulatory gene expression in rat offspring in a sex-specific manner. Appl. Physiol. Nutr. Metab. 2016, 41, 411–420. [Google Scholar] [CrossRef] [Green Version]
- Pickell, L.; Li, D.; Brown, K.; Mikael, L.G.; Wang, X.L.; Wu, Q.; Luo, L.; Jerome-Majewska, L.; Rozen, R. Methylenetetrahydrofolate reductase deficiency and low dietary folate increase embryonic delay and placental abnormalities in mice. Birth Defects Res. A Clin. Mol. Teratol. 2009, 85, 531–541. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, Y.H.; Dong, X.T.; Zhou, J.; Chen, X.; Wang, H.; Wu, S.X.; Xia, M.Z.; Zhang, C.; Xu, D.X. Folic acid protects against lipopolysaccharide-induced preterm delivery and intrauterine growth restriction through its anti-inflammatory effect in mice. PLoS ONE 2013, 8, e82713. [Google Scholar] [CrossRef] [Green Version]
- Hofstee, P.; McKeating, D.R.; Perkins, A.V.; Cuffe, J.S. Placental adaptations to micronutrient dysregulation in the programming of chronic disease. Clin. Exp. Pharmacol. Physiol. 2018, 45, 871–884. [Google Scholar] [CrossRef]
- Kang, Y.; Dang, S.; Zeng, L.; Wang, D.; Li, Q.; Wang, J.; Ouzhu, L.; Yan, H. Multi-micronutrient supplementation during pregnancy for prevention of maternal anaemia and adverse birth outcomes in a high-altitude area: A prospective cohort study in rural Tibet of China. Br. J. Nutr. 2017, 118, 431–440. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Mei, Z.; Zhang, L.; Li, H.; Zhang, Y.; Li, N.; Ye, R.; Ren, A.; Liu, J.M.; Serdula, M.K. Effects of Prenatal Micronutrient Supplementation on Spontaneous Preterm Birth: A Double-Blind Randomized Controlled Trial in China. Am. J. Epidemiol. 2017, 186, 318–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radziejewska, A.; Suliburska, J.; Kołodziejski, P.; Chmurzynska, A. Simultaneous supplementation with iron and folic acid can affect Slc11a2 and Slc46a1 transcription and metabolite concentrations in rats. Br. J. Nutr. 2020, 123, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Oppenheim, E.W.; Adelman, C.; Liu, X.; Stover, P.J. Heavy chain ferritin enhances serine hydroxymethyltransferase expression and de novo thymidine biosynthesis. J. Biol. Chem. 2001, 276, 19855–19861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powers, H.J. Riboflavin (vitamin B-2) and health. Am. J. Clin. Nutr. 2003, 77, 1352–1360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franco, C.N.; Seabrook, L.J.; Nguyen, S.T.; Leonard, J.T.; Albrecht, L.V. Simplifying the B Complex: How Vitamins B6 and B9 Modulate One Carbon Metabolism in Cancer and Beyond. Metabolites 2022, 12, 961. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, A.; Sapehia, D.; Thakur, S.; Mohanraj, P.S.; Bagga, R.; Kaur, J. Effect of imbalance in folate and vitamin B12 in maternal/parental diet on global methylation and regulatory miRNAs. Sci. Rep. 2019, 9, 17602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Compañ-Gabucio, L.M.; Torres-Collado, L.; Garcia-de la Hera, M.; Fernández-Somoano, A.; Tardón, A.; Julvez, J.; Sunyer, J.; Rebagliato, M.; Murcia, M.; Ibarluzea, J.; et al. Association between the Use of Folic Acid Supplements during Pregnancy and Children’s Cognitive Function at 7-9 Years of Age in the INMA Cohort Study. Int. J. Environ. Res. Public Health 2022, 19, 12123. [Google Scholar] [CrossRef] [PubMed]
- Gallou-Kabani, C.; Gabory, A.; Tost, J.; Karimi, M.; Mayeur, S.; Lesage, J.; Boudadi, E.; Gross, M.S.; Taurelle, J.; Vigé, A.; et al. Sex- and diet-specific changes of imprinted gene expression and DNA methylation in mouse placenta under a high-fat diet. PLoS ONE 2010, 5, e14398. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.Y.; Wang, X.M.; Xie, C.; Zhao, B.; Niu, Z.; Fan, L.; Hivert, M.F.; Chen, W.Q. Placental surface area mediates the association between FGFR2 methylation in placenta and full-term low birth weight in girls. Clin. Epigenetics 2018, 10, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinclair, K.D.; Allegrucci, C.; Singh, R.; Gardner, D.S.; Sebastian, S.; Bispham, J.; Thurston, A.; Huntley, J.F.; Rees, W.D.; Maloney, C.A.; et al. DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc. Natl. Acad. Sci. USA 2007, 104, 19351–19356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, J.C. Sexual dimorphism of body composition. Best Pract. Res. Clin. Endocrinol. Metab. 2007, 21, 415–430. [Google Scholar] [CrossRef] [PubMed]
- Adab, P.; Pallan, M.; Whincup, P.H. Is BMI the best measure of obesity? BMJ 2018, 360, k1274. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total | Obesity, N (%) | t/χ2 | p | |
---|---|---|---|---|---|
Yes | No | ||||
Total | 8016 | 702 (8.76) | 7314 (91.24) | - | - |
Age [(Mean ± SD) (years)] | 4.85 ± 0.84 | 4.89 ± 0.83 | 4.85 ± 0.84 | −1.200 | 0.230 |
Sex | 15.152 | <0.001 | |||
Male | 4863 | 474 (67.52) | 4389 (60.01) | ||
Female | 3153 | 228 (32.48) | 2925 (39.99) | ||
Current weight of child [(Mean ± SD) (kg)] | 18.07 ± 3.64 | 24.32 ± 5.12 | 17.47 ± 2.81 | −56.287 | <0.001 |
Current height of child [(Mean ± SD) (cm)] | 108.34 ± 7.69 | 108.51 ± 9.27 | 108.33 ± 7.53 | −0.614 | 0.539 |
Current BMI of child [(Mean ± SD) (kg/m2)] | 15.33 ± 2.18 | 20.47 ± 2.29 | 14.84 ± 1.38 | −96.150 | <0.001 |
Birthweight [(Mean ± SD) (kg)] | 2.72 ± 0.41 | 2.71 ± 0.50 | 2.72 ± 0.40 | 0.469 | 0.639 |
Gestational age at birth [(Mean ± SD) (weeks)] | 39.65 ± 1.90 | 39.58 ± 2.38 | 39.65 ± 1.85 | 0.962 | 0.336 |
Maternal age [(Mean ± SD) (years)] | 28.44 ± 4.27 | 28.64 ± 4.41 | 28.42 ± 4.25 | −1.310 | 0.190 |
Paternal age [(Mean ± SD) (years)] | 30.55 ± 4.83 | 30.79 ± 4.92 | 30.52 ± 4.82 | −1.418 | 0.156 |
Maternal prepregnancy obesity | 7.856 | 0.005 | |||
No | 7897 | 683 (97.29) | 7214 (98.63) | ||
Yes | 119 | 19 (2.71) | 100 (1.37) | ||
Maternal prepregnancy BMI [(Mean ± SD) (kg/m2)] | 20.31 ± 2.81 | 20.87 ± 3.22 | 20.26 ± 2.76 | −5.486 | <0.001 |
Gestational hypertension | 2.651 | 0.266 | |||
No | 7743 | 683 (97.43) | 7060 (96.74) | ||
Yes | 204 | 12 (1.71) | 192 (2.63) | ||
Uncertain | 52 | 6 (0.86) | 46 (0.63) | ||
Mode of delivery | 0.373 | 0.542 | |||
Vaginal delivery | 5848 | 1324 (61.07) | 3539 (60.52) | ||
Cesarean delivery | 2168 | 844 (38.93) | 2309 (39.48) | ||
Maternal marital state | 2.251 | 0.134 | |||
Married | 7943 | 692 (98.58) | 7251 (99.14) | ||
Others * | 73 | 10 (1.42) | 63 (0.86) | ||
Paternal marital state | 0.567 | 0.451 | |||
Married | 7935 | 693 (98.72) | 7242 (99.02) | ||
Others * | 81 | 9 (1.28) | 72 (0.98) | ||
Maternal education level | 3.345 | 0.188 | |||
Junior high school or lower | 1350 | 135 (19.23) | 1215 (16.61) | ||
High school | 1628 | 143 (20.37) | 1485 (20.30) | ||
College or higher | 5038 | 424 (60.40) | 4614 (63.08) | ||
Paternal education level | 10.542 | 0.005 | |||
Junior high school or lower | 1177 | 131 (18.66) | 1046 (14.30) | ||
High school | 1687 | 150 (21.37) | 1537 (21.01) | ||
College or higher | 5152 | 421 (59.97) | 4731 (64.68) | ||
Household income [(Chinese Yuan)] | 10.785 | 0.005 | |||
0–9999 | 1369 | 151 (21.51) | 1218 (16.65) | ||
10,000–29,999 | 4613 | 386 (54.99) | 4227 (57.79) | ||
≥30,000 | 2034 | 165 (23.50) | 1869 (25.55) | ||
Single child | 37.421 | <0.001 | |||
Yes | 2893 | 179 (25.50) | 2714 (37.11) | ||
No | 5123 | 523 (74.50) | 4600 (62.89) |
Nutrients Supplementation | Total, N = 8016 | Obesity, N (%) | AOR (95% CI) a |
---|---|---|---|
Folic acid | |||
No | 567 | 71 (12.52) | 1.00 |
Yes | 7449 | 631 (8.47) | 0.72 (0.55, 0.93) * |
Multivitamin | |||
No | 4873 | 454 (9.32) | 1.00 |
Yes | 3143 | 248 (7.89) | 0.89 (0.75, 1.05) |
Iron | |||
No | 4914 | 453 (9.22) | 1.00 |
Yes | 3102 | 249 (8.03) | 0.91 (0.77, 1.07) |
Nutrients Supplementation | AOR (95% CI) a | IOR (95% CI) a | RERI (95% CI) a | AP (95% CI) a | |
---|---|---|---|---|---|
Folic acid | Multivitamin | 1.07 (0.40, 2.84) | 0.08 (−0.76, 0.92) | 0.12 (−1.14, 1.39) | |
No | No | 1.00 | |||
No | Yes | 0.86 (0.33, 2.25) | |||
Yes | No | 0.73 (0.55, 0.97) * | |||
Yes | Yes | 0.67 (0.50, 0.90) ** | |||
Folic acid | Iron | 0.69 (0.35, 1.39) | −0.38 (−1.28, 0.52) | −0.54 (−1.78, 0.69) | |
No | No | 1.00 | |||
No | Yes | 1.31 (0.67, 2.58) | |||
Yes | No | 0.77 (0.57, 1.04) | |||
Yes | Yes | 0.70 (0.52, 0.96) * |
Male | Female | ||||||
---|---|---|---|---|---|---|---|
Nutrients Supplementation | Total, N = 4863 | Obesity, N (%) | AOR (95% CI) a | Nutrients Supplementation | Total, N = 3153 | Obesity, N (%) | AOR (95% CI) a |
Folic acid | Folic acid | ||||||
No | 361 | 46 (12.74) | 1.00 | No | 206 | 25 (12.14) | 1.00 |
Yes | 4502 | 428 (9.51) | 0.78 (0.56, 1.09) | Yes | 2947 | 203 (6.89) | 0.57 (0.36, 0.90) * |
Multivitamin | Multivitamin | ||||||
No | 2999 | 319 (10.64) | 1.00 | No | 1874 | 135 (7.20) | 1.00 |
Yes | 1864 | 155 (8.32) | 0.83 (0.67, 1.02) | Yes | 1279 | 93 (7.27) | 1.01 (0.76, 1.34) |
Iron | Iron | ||||||
No | 3010 | 307 (10.20) | 1.00 | No | 1904 | 146 (7.67) | 1.00 |
Yes | 1853 | 167 (9.01) | 0.94 (0.77, 1.15) | Yes | 1249 | 82 (6.57) | 0.85 (0.64, 1.13) |
Sex | Nutrients Supplementation | AOR (95% CI) a | IOR (95% CI) a | RERI (95% CI) a | AP (95% CI) a | |
---|---|---|---|---|---|---|
Male | ||||||
Folic acid | Multivitamin | 0.68 (0.22, 2.11) | −0.37 (−1.75, 1.02) | −0.52 (−2.45, 1.41) | ||
No | No | 1.00 | ||||
No | Yes | 1.22 (0.40, 3.73) | ||||
Yes | No | 0.85 (0.60, 1.20) | ||||
Yes | Yes | 0.71 (0.49, 1.03) | ||||
Folic acid | Iron | 0.56 (0.24, 1.28) | −0.73 (−2.08, 0.63) | −0.90 (−2.48, 0.69) | ||
No | No | 1.00 | ||||
No | Yes | 1.66 (0.74, 3.71) | ||||
Yes | No | 0.87 (0.60, 1.27) | ||||
Yes | Yes | 0.81 (0.55, 1.20) | ||||
Female | ||||||
Folic acid | Multivitamin | 3.55 (0.44, 28.50) | 0.74 (0.08, 1.40) | 1.34 (−0.07, 2.74) | ||
No | No | 1.00 | ||||
No | Yes | 0.31 (0.04, 2.46) | ||||
Yes | No | 0.50 (0.31, 0.82) ** | ||||
Yes | Yes | 0.55 (0.33, 0.92) * | ||||
Folic acid | Iron | 1.16 (0.31, 4.33) | 0.17 (−0.83, 1.17) | 0.34 (−1.69, 2.37) | ||
No | No | 1.00 | ||||
No | Yes | 0.76 (0.21, 2.76) | ||||
Yes | No | 0.57 (0.35, 0.94) * | ||||
Yes | Yes | 0.51 (0.30, 0.86) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Q.; Strodl, E.; Liang, Y.; Huang, L.-H.; Hu, B.-J.; Chen, W.-Q. Joint Effects of Prenatal Folic Acid Supplement with Prenatal Multivitamin and Iron Supplement on Obesity in Preschoolers Born SGA: Sex Specific Difference. Nutrients 2023, 15, 380. https://doi.org/10.3390/nu15020380
Lu Q, Strodl E, Liang Y, Huang L-H, Hu B-J, Chen W-Q. Joint Effects of Prenatal Folic Acid Supplement with Prenatal Multivitamin and Iron Supplement on Obesity in Preschoolers Born SGA: Sex Specific Difference. Nutrients. 2023; 15(2):380. https://doi.org/10.3390/nu15020380
Chicago/Turabian StyleLu, Qing, Esben Strodl, Yang Liang, Li-Hua Huang, Bing-Jie Hu, and Wei-Qing Chen. 2023. "Joint Effects of Prenatal Folic Acid Supplement with Prenatal Multivitamin and Iron Supplement on Obesity in Preschoolers Born SGA: Sex Specific Difference" Nutrients 15, no. 2: 380. https://doi.org/10.3390/nu15020380
APA StyleLu, Q., Strodl, E., Liang, Y., Huang, L. -H., Hu, B. -J., & Chen, W. -Q. (2023). Joint Effects of Prenatal Folic Acid Supplement with Prenatal Multivitamin and Iron Supplement on Obesity in Preschoolers Born SGA: Sex Specific Difference. Nutrients, 15(2), 380. https://doi.org/10.3390/nu15020380