Effects of a Functional Ice Cream Enriched with Milk Proteins on Bone Metabolism: A Feasibility Clinical Study and In Vitro Investigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human Study Design
2.1.1. Clinical Outcomes and Treatment
2.1.2. Participants’ Biochemical Evaluation
2.2. In Vitro Study
2.2.1. Chemicals, Reagents, and Materials
2.2.2. Cell Culture
2.2.3. Cell Proliferation
2.2.4. Western Blotting
2.2.5. ALP Activity
2.2.6. Real Time-PCR
2.3. Statistics
3. Results
3.1. Human Study
3.1.1. Clinical Characteristics of Participants
3.1.2. Clinical Characteristics Changes at Follow-Up and Outcomes of the Study
3.2. In Vitro Study
3.2.1. Whey Proteins Induces pERK1/2 and pAKT Protein Expression Level on Saos-2
3.2.2. Whey Proteins Increase mRNA Expression Levels of RUNX2 and Decrease RANKL/OPG Ratio mRNA Expression Levels on Saos-2
3.2.3. Whey Proteins Increase Osteoblast Proliferation and ALP Enzymatic Activity on Saos-2 Cell Line
3.2.4. Involvement of ERK1/2 on WP-Induced Differentiation and Proliferation in Saos-2 Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Oostwaard, M. Osteoporosis and the nature of fragility fracture: An overview. Fragility Fract. Nurs. 2018, 1–13. [Google Scholar] [CrossRef]
- Clynes, M.A.; Harvey, N.C.; Curtis, E.M.; Fuggle, N.R.; Dennison, E.M.; Cooper, C. The epidemiology of osteoporosis. Br. Med. Bull. 2020, 133, 105–117. [Google Scholar] [CrossRef]
- Sözen, T.; Özışık, L.; Başaran, N.Ç. An overview and management of osteoporosis. Eur. J. Rheumatol. 2017, 4, 46. [Google Scholar] [CrossRef] [PubMed]
- Lang, T.F. The bone-muscle relationship in men and women. J. Osteoporos. 2011, 2011, 702735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanis, J.A.; Cooper, C.; Rizzoli, R.; Reginster, J.-Y. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos. Int. 2019, 30, 3–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiligsmann, M.; McGowan, B.; Bennett, K.; Barry, M.; Reginster, J.-Y. The clinical and economic burden of poor adherence and persistence with osteoporosis medications in Ireland. Value Health 2012, 15, 604–612. [Google Scholar] [CrossRef] [Green Version]
- Hiligsmann, M.; Cornelissen, D.; Vrijens, B.; Abrahamsen, B.; Al-Daghri, N.; Biver, E.; Brandi, M.-L.; Bruyère, O.; Burlet, N.; Cooper, C. Determinants, consequences and potential solutions to poor adherence to anti-osteoporosis treatment: Results of an expert group meeting organized by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) and the International Osteoporosis Foundation (IOF). Osteoporos. Int. 2019, 30, 2155–2165. [Google Scholar]
- Komm, B.S.; Morgenstern, D.; Yamamoto, L.A.; Jenkins, S.N. The safety and tolerability profile of therapies for the prevention and treatment of osteoporosis in postmenopausal women. Expert Rev. Clin. Pharmacol. 2015, 8, 769–784. [Google Scholar] [CrossRef]
- Delmas, P. Multiple outcomes of raloxifene evaluation investigators. Efficacy of raloxifene on vertebral fracture risk reduction in postmenopausal women with osteoporosis: Four-year results from a randomized clinical trial. J. Clin. Endocrinol. Metab. 2002, 87, 3609–3617. [Google Scholar] [CrossRef]
- Ukon, Y.; Makino, T.; Kodama, J.; Tsukazaki, H.; Tateiwa, D.; Yoshikawa, H.; Kaito, T. Molecular-based treatment strategies for osteoporosis: A literature review. Int. J. Mol. Sci. 2019, 20, 2557. [Google Scholar] [CrossRef] [Green Version]
- Arnold, M.; Rajagukguk, Y.V.; Gramza-Michałowska, A. Functional Food for Elderly High in Antioxidant and Chicken Eggshell Calcium to Reduce the Risk of Osteoporosis—A Narrative Review. Foods 2021, 10, 656. [Google Scholar] [CrossRef] [PubMed]
- Simpson, E.E.; Furlong, O.N.; Parr, H.J.; Hodge, S.J.; Slevin, M.M.; McSorley, E.M.; McCormack, J.M.; McConville, C.; Magee, P.J. The effect of a randomized 12-week soy drink intervention on everyday mood in postmenopausal women. Menopause 2019, 26, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Al Kanhal, H.A. Compositional, technological and nutritional aspects of dromedary camel milk. Int. Dairy J. 2010, 20, 811–821. [Google Scholar]
- Dangin, M.; Boirie, Y.; Guillet, C.; Beaufrѐre, B. Influence of the protein digestion rate on protein turnover in young and elderly subjects. J. Nutr. 2002, 132, 3228S–3233S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badr, G.; Ramadan, N.K.; Sayed, L.H.; Badr, B.M.; Omar, H.M.; Selamoglu, Z. Why whey? Camel whey protein as a new dietary approach to the management of free radicals and for the treatment of different health disorders. Iran. J. Basic Med. Sci. 2017, 20, 338. [Google Scholar]
- Krissansen, G.W. Emerging health properties of whey proteins and their clinical implications. J. Am. Coll. Nutr. 2007, 26, 713S–723S. [Google Scholar] [CrossRef]
- Douglas, T.E.; Vandrovcová, M.; Kročilová, N.; Keppler, J.K.; Zárubová, J.; Skirtach, A.G.; Bačáková, L. Application of whey protein isolate in bone regeneration: Effects on growth and osteogenic differentiation of bone-forming cells. J. Dairy Sci. 2018, 101, 28–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solak, B.B.; Akin, N. Health benefits of whey protein: A review. J. Food Sci. Eng. 2012, 2, 129. [Google Scholar]
- Kim, J.; Kim, H.K.; Kim, S.; Imm, J.-Y.; Whang, K.-Y. Whey protein concentrate hydrolysate prevents bone loss in ovariectomized rats. J. Med. Food 2015, 18, 1349–1356. [Google Scholar] [CrossRef] [Green Version]
- Zhu, K.; Meng, X.; Kerr, D.A.; Devine, A.; Solah, V.; Binns, C.W.; Prince, R.L. The effects of a two-year randomized, controlled trial of whey protein supplementation on bone structure, IGF-1, and urinary calcium excretion in older postmenopausal women. J. Bone Miner. Res. 2011, 26, 2298–2306. [Google Scholar] [CrossRef]
- Bihuniak, J.D.; Simpson, C.A.; Sullivan, R.R.; Caseria, D.M.; Kerstetter, J.E.; Insogna, K.L. Dietary protein-induced increases in urinary calcium are accompanied by similar increases in urinary nitrogen and urinary urea: A controlled clinical trial. J. Acad. Nutr. Diet. 2013, 113, 447–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burini, R.; Gollino, L.; Lima, R.; Kano, H.; Mendes, A.; Nahas, E. Effect of Whey Protein Supplementation on Plasma Bone-Resorption Biomarker in Post-Menopausal Women Submitted to Physical Exercise Training. Curr. Dev. Nutr. 2020, 4, 1748. [Google Scholar] [CrossRef]
- Koutsofta, I.; Mamais, I.; Chrysostomou, S. The effect of protein diets in postmenopausal women with osteoporosis: Systematic review of randomized controlled trials. J. Women Aging 2019, 31, 117–139. [Google Scholar] [CrossRef]
- Maurotti, S.; Mare, R.; Pujia, R.; Ferro, Y.; Mazza, E.; Romeo, S.; Pujia, A.; Montalcini, T. Hemp Seeds in Post-Arthroplasty Rehabilitation: A Pilot Clinical Study and an In Vitro Investigation. Nutrients 2021, 13, 4330. [Google Scholar] [CrossRef] [PubMed]
- Russo, C.; Ferro, Y.; Maurotti, S.; Salvati, M.A.; Mazza, E.; Pujia, R.; Terracciano, R.; Maggisano, G.; Mare, R.; Giannini, S. Lycopene and bone: An in vitro investigation and a pilot prospective clinical study. J. Transl. Med. 2020, 18, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamprinoudi, T.; Mazza, E.; Ferro, Y.; Brogneri, S.; Foti, D.; Gulletta, E.; Iocco, M.; Gazzaruso, C.; Romeo, S.; Pujia, A. The link between nutritional parameters and bone mineral density in women: Results of a screening programme for osteoporosis. J. Transl. Med. 2014, 12, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Goff, H.D. Milk proteins in ice cream. In Advanced Dairy Chemistry; McSweeney, P., O’Mahony, J., Eds.; Springer: New York, NY, USA, 2016; pp. 329–345. [Google Scholar]
- Pellicano, F.; Šimara, P.; Sinclair, A.; Helgason, G.V.; Copland, M.; Grant, S.; Holyoake, T.L. The MEK inhibitor PD184352 enhances BMS-214662-induced apoptosis in CD34+ CML stem/progenitor cells. Leukemia 2011, 25, 1159–1167. [Google Scholar] [CrossRef]
- Mukaiyama, K.; Kamimura, M.; Uchiyama, S.; Ikegami, S.; Nakamura, Y.; Kato, H. Elevation of serum alkaline phosphatase (ALP) level in postmenopausal women is caused by high bone turnover. Aging Clin. Exp. Res. 2015, 27, 413–418. [Google Scholar] [CrossRef]
- Lumachi, F.; Ermani, M.; Camozzi, V.; Tombolan, V.; Luisetto, G. Changes of bone formation markers osteocalcin and bone-specific alkaline phosphatase in postmenopausal women with osteoporosis. Ann. N. Y. Acad. Sci. 2009, 1173, E60–E63. [Google Scholar] [CrossRef]
- Kuo, T.-R.; Chen, C.-H. Bone biomarker for the clinical assessment of osteoporosis: Recent developments and future perspectives. Biomark. Res. 2017, 5, 18. [Google Scholar] [CrossRef] [Green Version]
- Bettica, P.; Bevilacqua, M.; Vago, T.; Masino, M.; Cucinotta, E.; Norbiato, G. Short-term variations in bone remodeling biochemical markers: Cyclical etidronate and alendronate effects compared. J. Clin. Endocrinol. Metab. 1997, 82, 3034–3039. [Google Scholar] [CrossRef]
- Khanizadeh, F.; Rahmani, A.; Asadollahi, K.; Ahmadi, M.R.H. Combination therapy of curcumin and alendronate modulates bone turnover markers and enhances bone mineral density in postmenopausal women with osteoporosis. Arch. Endocrinol. Metab. 2018, 62, 438–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, T.C.; Bailey, R.L.; Lappe, J.; O’Brien, K.O.; Wang, D.D.; Sahni, S.; Weaver, C.M. Dairy intake and bone health across the lifespan: A systematic review and expert narrative. Crit. Rev. Food Sci. Nutr. 2021, 61, 3661–3707. [Google Scholar] [CrossRef]
- Wirunsawana, K.; Upala, S. Impact of Whey Protein on Bone Mineral Density: A Systemic Review and Meta-analysis. J. Clin. Densitom. 2018, 21, 597–598. [Google Scholar] [CrossRef]
- Hou, J.-m.; Xue, Y.; Lin, Q.-m. Bovine lactoferrin improves bone mass and microstructure in ovariectomized rats via OPG/RANKL/RANK pathway. Acta Pharmacol. Sin. 2012, 33, 1277–1284. [Google Scholar] [CrossRef] [Green Version]
- Mackie, E. Osteoblasts: Novel roles in orchestration of skeletal architecture. Int. J. Biochem. Cell Biol. 2003, 35, 1301–1305. [Google Scholar] [CrossRef] [PubMed]
- Gundle, R.; Beresford, J. The isolation and culture of cells from explants of human trabecular bone. Calcif. Tissue Int. 1995, 56, S8–S10. [Google Scholar] [CrossRef]
- Xi, J.-C.; Zang, H.-Y.; Guo, L.-X.; Xue, H.-B.; Liu, X.-D.; Bai, Y.-B.; Ma, Y.-Z. The PI3K/AKT cell signaling pathway is involved in regulation of osteoporosis. J. Recept. Signal Transduct. 2015, 35, 640–645. [Google Scholar] [CrossRef]
- Ge, C.; Xiao, G.; Jiang, D.; Franceschi, R.T. Critical role of the extracellular signal–regulated kinase–MAPK pathway in osteoblast differentiation and skeletal development. J. Cell Biol. 2007, 176, 709–718. [Google Scholar] [CrossRef]
- Liu, M.; Fan, F.; Shi, P.; Tu, M.; Yu, C.; Yu, C.; Du, M. Lactoferrin promotes MC3T3-E1 osteoblast cells proliferation via MAPK signaling pathways. Int. J. Biol. Macromol. 2018, 107, 137–143. [Google Scholar] [CrossRef]
- Cornish, J.; Naot, D. Lactoferrin as an effector molecule in the skeleton. Biometals 2010, 23, 425–430. [Google Scholar] [CrossRef]
- Ding, D.; Li, L.; Song, Y.; Wei, X.; Cao, Y. MAPK-ERK1/2 signaling pathway regulates osteogenic gene expression in rat osteoblasts in vitro. Nan Fang Yi Ke Da Xue Xue Bao = J. South. Med. Univ. 2013, 33, 1432–1436. [Google Scholar]
- Xu, R. Effect of whey protein on the proliferation and differentiation of osteoblasts. J. Dairy Sci. 2009, 92, 3014–3018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, M.; Huang, P.; Islam, S.; Heruth, D.P.; Li, X.; Zhang, L.Q.; Li, D.-Y.; Hu, Z.; Ye, S.Q. Epigenetic regulation of Runx2 transcription and osteoblast differentiation by nicotinamide phosphoribosyltransferase. Cell Biosci. 2017, 7, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komori, T. Regulation of Osteoblast Differentiation by Runx2. In Advances in Experimental Medicine and Biology; Osteoimmunology; Springer: New York, NY, USA, 2009; p. 658. [Google Scholar]
- Masi, L.; Simonini, G.; Piscitelli, E.; Del Monte, F.; Giani, T.; Cimaz, R.; Vierucci, S.; Brandi, M.L.; Falcini, F. Osteoprotegerin (OPG)/RANK-L system in juvenile idiopathic arthritis: Is there a potential modulating role for OPG/RANK-L in bone injury? J. Rheumatol. 2004, 31, 986–991. [Google Scholar]
- Hofbauer, L.C.; Schoppet, M. Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA 2004, 292, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Shi, P.; Liu, M.; Chen, H.; Tu, M.; Lu, W.; Du, M. Lactoferrin preserves bone homeostasis by regulating the RANKL/RANK/OPG pathway of osteoimmunology. Food Funct. 2018, 9, 2653–2660. [Google Scholar] [CrossRef]
- Li, M.; Zhao, S.; Wu, S.; Yang, X.; Feng, H. Effectiveness of Oral Nutritional Supplements on Older People with Anorexia: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2021, 13, 835. [Google Scholar] [CrossRef]
- Bronner, F. Extracellular and intracellular regulation of calcium homeostasis. Sci. World J. 2001, 1, 919–925. [Google Scholar] [CrossRef] [Green Version]
- Hall, W.; Millward, D.; Long, S.; Morgan, L. Casein and whey exert different effects on plasma amino acid profiles, gastrointestinal hormone secretion and appetite. Br. J. Nutr. 2003, 89, 239–248. [Google Scholar] [CrossRef]
- Qin, Y.-X.; Xia, Y.; Muir, J.; Lin, W.; Rubin, C.T. Quantitative ultrasound imaging monitoring progressive disuse osteopenia and mechanical stimulation mitigation in calcaneus region through a 90-day bed rest human study. J. Orthop. Transl. 2019, 18, 48–58. [Google Scholar] [CrossRef]
- Okuizumi, H.; Koyano, K.; Kurosawa, K.; Kamide, N.; Soyano, A. Change in Calcaneal Bone Strength in Long-Term Care Residents Treated with Low-Intensity Pulsed Ultrasound. J. Orthop. Trauma 2017, 31, S4. [Google Scholar] [CrossRef]
- Ali, A.T.; Paiker, J.E.; Crowther, N.J. The relationship between anthropometry and serum concentrations of alkaline phosphatase isoenzymes, liver enzymes, albumin, and bilirubin. Am. J. Clin. Pathol. 2006, 126, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Majima, T.; Shimatsu, A.; Satoh, N.; Komatsu, Y.; Fukao, A.; Ninomiya, K.; Matsumura, T.; Nakao, K. Three-month changes in bone turnover markers and bone mineral density response to raloxifene in Japanese postmenopausal women with osteoporosis. J. Bone Miner. Metab. 2008, 26, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Greenspan, S.L.; Parker, R.A.; Ferguson, L.; Rosen, H.N.; Maitland-Ramsey, L.; Karpf, D.B. Early changes in biochemical markers of bone turnover predict the long-term response to alendronate therapy in representative elderly women: A randomized clinical trial. J. Bone Miner. Res. 1998, 13, 1431–1438. [Google Scholar] [CrossRef] [PubMed]
- Rodan, S.B.; Imai, Y.; Thiede, M.A.; Wesolowski, G.; Thompson, D.; Bar-Shavit, Z.; Shull, S.; Mann, K.; Rodan, G.A. Characterization of a human osteosarcoma cell line (Saos-2) with osteoblastic properties. Cancer Res. 1987, 47, 4961–4966. [Google Scholar]
- Ammann, P.; Bourrin, S.; Bonjour, J.P.; Meyer, J.M.; Rizzoli, R. Protein undernutrition-induced bone loss is associated with decreased IGF-I levels and estrogen deficiency. J. Bone Miner. Res. 2000, 15, 683–690. [Google Scholar] [CrossRef]
Variables | Control (n = 21) | MPs Ice Cream (n = 41) | p-Values |
---|---|---|---|
Age (years) | 66 ± 6 | 63 ± 7 | 0.11 |
Menopausal status (years) | 15 ± 7 | 17 ± 9 | 0.37 |
Weight (kg) | 67 ± 11 | 62 ± 9 | 0.14 |
BMI (kg/m2) | 28.3 ± 5 | 25.7 ± 3 | 0.026 |
BUA T-score (SD) | −1.75 ± 0.7 | −1.91 ± 0.8 | 0.42 |
BUA BMD (g/cm2) | 0.394 ± 0.09 | 0.373 ± 0.08 | 0.37 |
Glucose (mg/dL) | 92 ± 10 | 89 ± 8 | 0.24 |
Creatinine (mg/dL) | 0.71 ± 0.09 | 0.71 ± 0.09 | 0.97 |
TC (mg/dL) | 224 ± 32 | 208 ± 47 | 0.13 |
HDL-C (mg/dL) | 70 ± 17 | 64 ± 19 | 0.19 |
TG (mg/dL) | 93 ± 29 | 102 ± 41 | 0.30 |
AST (IU/L) | 20 ± 5 | 20 ± 7 | 0.70 |
ALT (IU/L) | 18 ± 9 | 19 ± 10 | 0.91 |
CRP (mg/L) | 3.6 ± 1.2 | 3.2 ± 0.6 | 0.17 |
S-CTX (ng/mL) | 0.58 ± 0.31 | 0.55 ± 0.28 | 0.68 |
BALP (ug/L) | 18.1 ± 8 | 18.9 ± 8 | 0.68 |
Prevalence | |||
Smoking habit (%) | 24 | 12 | 0.28 |
Hyperlipidemia (%) | 52 | 61 | 0.59 |
Hypertension (%) | 33 | 46 | 0.41 |
Total fractures (%) | 38 | 46 | 0.59 |
Medication | |||
Calcium (%) | 10 | 15 | 0.70 |
Vitamin D (%) | 43 | 29 | 0.39 |
Variables | Control (n = 19) | MPs’ Ice Cream (n = 36) | p-Values |
---|---|---|---|
Weight (kg) | −0.78 ± 1.2 | −0.63 ± 2.2 | 0.74 |
BMI (kg/m2) | −0.42 ± 0.6 | −0.15 ± 0.7 | 0.13 |
BUA T-score (SD) | −0.30 ± 0.39 | −0.05 ± 0.36 | 0.026 |
aBUA T-score (SD) | −0.32 ± 0.09 | −0.04 ± 0.06 | 0.020 |
BUA BMD (g/cm2) | −0.04 ± 0.04 | −0.01 ± 0.04 | 0.029 |
aBUA BMD (g/cm2) | −0.04 ± 0.01 | −0.01 ± 0.01 | 0.032 |
Glucose (mg/dL) | −0.53 ± 5.8 | −1.47 ± 6.5 | 0.58 |
Creatinine (mg/dL) | −0.01 ± 0.05 | −0.01 ± 0.08 | 0.86 |
CRP (mg/L) | −0.15 ± 0.9 | 0.10 ± 0.6 | 0.38 |
S-CTX (ng/mL) | 0.01 ± 0.14 | −0.02 ± 0.12 | 0.46 |
BALP (ug/L) | −0.62 ± 2.9 | −2.73 ± 4.4 | 0.038 |
a BALP (ug/L) | −0.38 ± 0.9 | −2.86 ± 0.7 | 0.046 |
BALP (%) | −0.21 ± 16 | −13.1 ± 22 | 0.016 |
a BALP (%) | 1.04 ± 5 | −13.8 ± 3 | 0.021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maurotti, S.; Ferro, Y.; Pujia, R.; Frosina, M.; Sciacqua, A.; Mare, R.; Mazza, E.; Geirola, N.; Romeo, S.; Pujia, A.; et al. Effects of a Functional Ice Cream Enriched with Milk Proteins on Bone Metabolism: A Feasibility Clinical Study and In Vitro Investigation. Nutrients 2023, 15, 344. https://doi.org/10.3390/nu15020344
Maurotti S, Ferro Y, Pujia R, Frosina M, Sciacqua A, Mare R, Mazza E, Geirola N, Romeo S, Pujia A, et al. Effects of a Functional Ice Cream Enriched with Milk Proteins on Bone Metabolism: A Feasibility Clinical Study and In Vitro Investigation. Nutrients. 2023; 15(2):344. https://doi.org/10.3390/nu15020344
Chicago/Turabian StyleMaurotti, Samantha, Yvelise Ferro, Roberta Pujia, Miriam Frosina, Angela Sciacqua, Rosario Mare, Elisa Mazza, Nadia Geirola, Stefano Romeo, Arturo Pujia, and et al. 2023. "Effects of a Functional Ice Cream Enriched with Milk Proteins on Bone Metabolism: A Feasibility Clinical Study and In Vitro Investigation" Nutrients 15, no. 2: 344. https://doi.org/10.3390/nu15020344
APA StyleMaurotti, S., Ferro, Y., Pujia, R., Frosina, M., Sciacqua, A., Mare, R., Mazza, E., Geirola, N., Romeo, S., Pujia, A., & Montalcini, T. (2023). Effects of a Functional Ice Cream Enriched with Milk Proteins on Bone Metabolism: A Feasibility Clinical Study and In Vitro Investigation. Nutrients, 15(2), 344. https://doi.org/10.3390/nu15020344