Physical Activity and Type 2 Diabetes: In Search of a Personalized Approach to Improving β-Cell Function
Abstract
:1. Introduction
2. Evidence Acquisition
3. Effects of Physical Activity on β-Cell Function and Insulin Secretion
4. Responsiveness to Physical Activity
5. Exercise Regimens for T2DM
6. Adherence and the “Lack of Time”
7. Nutrition and Physical Activity
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mezza, T.; Clemente, G.; Sorice, G.P.; Conte, C.; De Rose, A.M.; Sun, V.A.; Cefalo, C.M.A.; Pontecorvi, A.; Nuzzo, G.; Giaccari, A. Metabolic Consequences of the Occlusion of the Main Pancreatic Duct with Acrylic Glue after Pancreaticoduodenectomy. Am. J. Surg. 2015, 210, 783–789. [Google Scholar] [CrossRef] [PubMed]
- Mezza, T.; Shirakawa, J.; Martinez, R.; Hu, J.; Giaccari, A.; Kulkarni, R.N. Nuclear Export of FoxO1 Is Associated with ERK Signaling in β-Cells Lacking Insulin Receptors. J. Biol. Chem. 2016, 291, 21485–21495. [Google Scholar] [CrossRef] [PubMed]
- Di Giuseppe, G.; Ciccarelli, G.; Soldovieri, L.; Capece, U.; Cefalo, C.M.A.; Moffa, S.; Nista, E.C.; Brunetti, M.; Cinti, F.; Gasbarrini, A.; et al. First-Phase Insulin Secretion: Can Its Evaluation Direct Therapeutic Approaches? Trends Endocrinol. Metab. 2023, 34, 216–230. [Google Scholar] [CrossRef] [PubMed]
- Mezza, T.; Ferraro, P.M.; Di Giuseppe, G.; Moffa, S.; Cefalo, C.M.A.; Cinti, F.; Impronta, F.; Capece, U.; Quero, G.; Pontecorvi, A.; et al. Pancreaticoduodenectomy Model Demonstrates a Fundamental Role of Dysfunctional β Cells in Predicting Diabetes. J. Clin. Investig. 2021, 131, e146788. [Google Scholar] [CrossRef]
- Shoelson, S.E. Inflammation and Insulin Resistance. J. Clin. Investig. 2006, 116, 1793–1801. [Google Scholar] [CrossRef]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 140, e596–e646. [Google Scholar] [CrossRef]
- Colberg, S.R.; Sigal, R.J.; Yardley, J.E.; Riddell, M.C.; Dunstan, D.W.; Dempsey, P.C.; Horton, E.S.; Castorino, K.; Tate, D.F. Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care 2016, 39, 2065–2079. [Google Scholar] [CrossRef]
- Solomon, T.P.J.; Haus, J.M.; Kelly, K.R.; Rocco, M.; Kashyap, S.R.; Kirwan, J.P. Improved Pancreatic β-Cell Function in Type 2 Diabetic Patients after Lifestyle-Induced Weight Loss Is Related to Glucose-Dependent Insulinotropic Polypeptide. Diabetes Care 2010, 33, 1561–1566. [Google Scholar] [CrossRef]
- Dela, F.; von Linstow, M.E.; Joensen Mikines, K.; Galbo, H. Physical Training May Enhance-Cell Function in Type 2 Diabetes. Am. J. Physiol. Endocrinol. Metab. 2004, 287, 1024–1031. [Google Scholar] [CrossRef]
- Coomans de Brachène, A.; Scoubeau, C.; Musuaya, A.E.; Costa-Junior, J.M.; Castela, A.; Carpentier, J.; Faoro, V.; Klass, M.; Cnop, M.; Eizirik, D.L. Exercise as a Non-Pharmacological Intervention to Protect Pancreatic Beta Cells in Individuals with Type 1 and Type 2 Diabetes. Diabetologia 2023, 66, 450–460. [Google Scholar] [CrossRef]
- Curran, M.; Drayson, M.T.; Andrews, R.C.; Zoppi, C.; Barlow, J.P.; Solomon, T.P.J.; Narendran, P. The Benefits of Physical Exercise for the Health of the Pancreatic β-Cell: A Review of the Evidence. Exp. Physiol. 2020, 105, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Paula, F.M.M.; Leite, N.C.; Vanzela, E.C.; Kurauti, M.A.; Freitas-Dias, R.; Carneiro, E.M.; Boschero, A.C.; Zoppi, C.C. Exercise Increases Pancreatic Β-cell Viability in a Model of Type 1 Diabetes through IL-6 Signaling. FASEB J. 2015, 29, 1805–1816. [Google Scholar] [CrossRef] [PubMed]
- Paula, F.M.M.; Leite, N.C.; Borck, P.C.; Freitas-Dias, R.; Cnop, M.; Chacon-Mikahil, M.P.T.; Cavaglieri, C.R.; Marchetti, P.; Boschero, A.C.; Zoppi, C.C.; et al. Exercise Training Protects Human and Rodent β Cells against Endoplasmic Reticulum Stress and Apoptosis. FASEB J. 2018, 32, 1524–1536. [Google Scholar] [CrossRef]
- Thomas, D.; Elliott, E.J.; Naughton, G.A. Exercise for Type 2 Diabetes Mellitus. Cochrane Database Syst. Rev. 2006, 2009, CD002968. [Google Scholar] [CrossRef] [PubMed]
- Boulé, N.G.; Haddad, E.; Kenny, G.P.; Wells, G.A.; Sigal, R.J. Effects of Exercise on Glycemic Control and Body Mass in Type 2 Diabetes Mellitus. JAMA 2001, 286, 1218. [Google Scholar] [CrossRef]
- Snowling, N.J.; Hopkins, W.G. Effects of Different Modes of Exercise Training on Glucose Control and Risk Factors for Complications in Type 2 Diabetic Patients. Diabetes Care 2006, 29, 2518–2527. [Google Scholar] [CrossRef] [PubMed]
- Chudyk, A.; Petrella, R.J. Effects of Exercise on Cardiovascular Risk Factors in Type 2 Diabetes. Diabetes Care 2011, 34, 1228–1237. [Google Scholar] [CrossRef]
- Ried-Larsen, M.; Johansen, M.Y.; MacDonald, C.S.; Hansen, K.B.; Christensen, R.; Wedell-Neergaard, A.S.; Pilmark, N.S.; Langberg, H.; Vaag, A.A.; Pedersen, B.K.; et al. Type 2 Diabetes Remission 1 Year after an Intensive Lifestyle Intervention: A Secondary Analysis of a Randomized Clinical Trial. Diabetes Obes. Metab. 2019, 21, 2257–2266. [Google Scholar] [CrossRef]
- Ades, P.A.; Savage, P.D.; Marney, A.M.; Harvey, J.; Evans, K.A. Remission of Recently Diagnosed Type 2 Diabetes Mellitus with Weight Loss and Exercise. J. Cardiopulm. Rehabil. Prev. 2015, 35, 193–197. [Google Scholar] [CrossRef]
- Gregg, E.W.; Chen, H.; Wagenknecht, L.E.; Clark, J.M.; Delahanty, L.M.; Bantle, J.; Pownall, H.J.; Johnson, K.C.; Safford, M.M.; Kitabchi, A.E.; et al. Association of an Intensive Lifestyle Intervention With Remission of Type 2 Diabetes. JAMA 2012, 308, 2489. [Google Scholar] [CrossRef]
- Pelliccia, A.; Sharma, S.; Gati, S.; Bäck, M.; Börjesson, M.; Caselli, S.; Collet, J.-P.; Corrado, D.; Drezner, J.A.; Halle, M.; et al. 2020 ESC Guidelines on Sports Cardiology and Exercise in Patients with Cardiovascular Disease. Eur. Heart J. 2021, 42, 17–96. [Google Scholar] [CrossRef] [PubMed]
- Church, T.S.; Blair, S.N.; Cocreham, S.; Johannsen, N.; Johnson, W.; Kramer, K.; Mikus, C.R.; Myers, V.; Nauta, M.; Rodarte, R.Q.; et al. Effects of Aerobic and Resistance Training on Hemoglobin A 1c Levels in Patients With Type 2 Diabetes. JAMA 2010, 304, 2253. [Google Scholar] [CrossRef] [PubMed]
- Kanaley, J.A.; Colberg, S.R.; Corcoran, M.H.; Malin, S.K.; Rodriguez, N.R.; Crespo, C.J.; Kirwan, J.P.; Zierath, J.R. Exercise/Physical Activity in Individuals with Type 2 Diabetes: A Consensus Statement from the American College of Sports Medicine. In Proceedings of the Medicine and Science in Sports and Exercise, Northfield, IL, USA, 1 February 2022; Volume 54, pp. 353–368. [Google Scholar]
- Goodwin, M.L. Blood Glucose Regulation during Prolonged, Submaximal, Continuous Exercise: A Guide for Clinicians. J. Diabetes Sci. Technol. 2010, 4, 694–705. [Google Scholar] [CrossRef] [PubMed]
- Di Giuseppe, G.; Ciccarelli, G.; Cefalo, C.M.; Cinti, F.; Moffa, S.; Impronta, F.; Capece, U.; Pontecorvi, A.; Giaccari, A.; Mezza, T. Prediabetes: How Pathophysiology Drives Potential Intervention on a Subclinical Disease with Feared Clinical Consequences. Minerva Endocrinol. 2021, 46, 272–292. [Google Scholar] [CrossRef] [PubMed]
- DeFronzo, R.A.; Abdul-Ghani, M.A. Preservation of β-Cell Function: The Key to Diabetes Prevention. J. Clin. Endocrinol. Metab. 2011, 96, 2354–2366. [Google Scholar] [CrossRef]
- Soldovieri, L.; Di Giuseppe, G.; Ciccarelli, G.; Quero, G.; Cinti, F.; Brunetti, M.; Nista, E.C.; Gasbarrini, A.; Alfieri, S.; Pontecorvi, A.; et al. An Update on Pancreatic Regeneration Mechanisms: Searching for Paths to a Cure for Type 2 Diabetes. Mol. Metab. 2023, 74, 101754. [Google Scholar] [CrossRef] [PubMed]
- Lv, C.; Sun, Y.; Zhang, Z.Y.; Aboelela, Z.; Qiu, X.; Meng, Z.-X. β-Cell Dynamics in Type 2 Diabetes and in Dietary and Exercise Interventions. J. Mol. Cell Biol. 2022, 14, mjac046. [Google Scholar] [CrossRef]
- Brusco, N.; Sebastiani, G.; Di Giuseppe, G.; Licata, G.; Grieco, G.E.; Fignani, D.; Nigi, L.; Formichi, C.; Aiello, E.; Auddino, S.; et al. Intra-Islet Insulin Synthesis Defects Are Associated with Endoplasmic Reticulum Stress and Loss of Beta Cell Identity in Human Diabetes. Diabetologia 2023, 66, 354–366. [Google Scholar] [CrossRef]
- Bloem, C.J.; Chang, A.M. Short-Term Exercise Improves β-Cell Function and Insulin Resistance in Older People with Impaired Glucose Tolerance. J. Clin. Endocrinol. Metab. 2008, 93, 387–392. [Google Scholar] [CrossRef]
- Croymans, D.M.; Paparisto, E.; Lee, M.M.; Brandt, N.; Le, B.K.; Lohan, D.; Lee, C.C.; Roberts, C.K. Resistance Training Improves Indices of Muscle Insulin Sensitivity and β-Cell Function in Overweight/Obese, Sedentary Young Men. J. Appl. Physiol. 2013, 115, 1245–1253. [Google Scholar] [CrossRef]
- Dela, F.; Stallknecht, B. Effect of Physical Training on Insulin Secretion and Action in Skeletal Muscle and Adipose Tissue of First-Degree Relatives of Type 2 Diabetic Patients. Am. J. Physiol. Endocrinol. Metab. 2010, 299, E80–E91. [Google Scholar] [CrossRef] [PubMed]
- Hordern, M.D.; Cooney, L.M.; Beller, E.M.; Prins, J.B.; Marwick, T.H.; Coombes, J.S. Determinants of Changes in Blood Glucose Response to Short-Term Exercise Training in Patients with Type 2 Diabetes. Clin. Sci. 2008, 115, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Boulé, N.G.; John Weisnagel, S.; Lakka, T.A.; Tremblay, A.; Bergman, R.N.; Rankinen, T.; Leon, A.S.; Skinner, J.S.; Wilmore, J.H.; Rao, D.; et al. Effects of Exercise Training on Glucose Homeostasis the HERITAGE Family Study; Diabetes Care: Sainte-Foy, QC, Canada, 2005. [Google Scholar]
- Solomon, T.P.J.; Malin, S.K.; Karstoft, K.; Kashyap, S.R.; Haus, J.M.; Kirwan, J.P. Pancreatic β-Cell Function Is a Stronger Predictor of Changes in Glycemic Control after an Aerobic Exercise Intervention than Insulin Sensitivity. J. Clin. Endocrinol. Metab. 2013, 98, 4176–4186. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Feng, Y.; Shi, J.; Tang, H.; Chen, L.; Lou, Q. Β-Cell Function and Body Mass Index Are Predictors of Exercise Response in Elderly Patients with Prediabetes. J. Diabetes Investig. 2022, 13, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Malin, S.K.; Solomon, T.P.J.; Blaszczak, A.; Finnegan, S.; Filion, J.; Kirwan, J.P. Pancreatic β-Cell Function Increases in a Linear Dose-Response Manner Following Exercise Training in Adults with Prediabetes. Am. J. Physiol. Endocrinol. Metab. 2013, 305, E1248–E1254. [Google Scholar] [CrossRef] [PubMed]
- Bacchi, E.; Negri, C.; Zanolin, M.E.; Milanese, C.; Faccioli, N.; Trombetta, M.; Zoppini, G.; Cevese, A.; Bonadonna, R.C.; Schena, F.; et al. Metabolic Effects of Aerobic Training and Resistance Training in Type 2 Diabetic Subjects. Diabetes Care 2012, 35, 676–682. [Google Scholar] [CrossRef]
- Lee, S.; Bacha, F.; Hannon, T.; Kuk, J.L.; Boesch, C.; Arslanian, S. Effects of Aerobic Versus Resistance Exercise Without Caloric Restriction on Abdominal Fat, Intrahepatic Lipid, and Insulin Sensitivity in Obese Adolescent Boys. Diabetes 2012, 61, 2787–2795. [Google Scholar] [CrossRef]
- Slentz, C.A.; Tanner, C.J.; Bateman, L.A.; Durheim, M.T.; Huffman, K.M.; Houmard, J.A.; Kraus, W.E. Effects of Exercise Training Intensity on Pancreatic β-Cell Function. Diabetes Care 2009, 32, 1807–1811. [Google Scholar] [CrossRef]
- AbouAssi, H.; Slentz, C.A.; Mikus, C.R.; Tanner, C.J.; Bateman, L.A.; Willis, L.H.; Shields, A.T.; Piner, L.W.; Penry, L.E.; Kraus, E.A.; et al. The Effects of Aerobic, Resistance, and Combination Training on Insulin Sensitivity and Secretion in Overweight Adults from STRRIDE AT/RT: A Randomized Trial. J. Appl. Physiol. 2015, 118, 1474–1482. [Google Scholar] [CrossRef]
- Madsen, S.M.; Thorup, A.C.; Overgaard, K.; Jeppesen, P.B. High Intensity Interval Training Improves Glycaemic Control and Pancreatic β Cell Function of Type 2 Diabetes Patients. PLoS ONE 2015, 10, 0133286. [Google Scholar] [CrossRef]
- Nieuwoudt, S.; Fealy, C.E.; Foucher, J.A.; Scelsi, A.R.; Malin, S.K.; Pagadala, M.; Rocco, M.; Burguera, B.; Kirwan, J.P. Functional High-Intensity Training Improves Pancreatic β-Cell Function in Adults with Type 2 Diabetes. Am. J. Physiol. Endocrinol. Metab. 2017, 313, E314–E320. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, C.; Wagenknecht, L.E.; Rewers, M.J.; Karter, A.J.; Bergman, R.N.; Hanley, A.J.G.; Haffner, S.M. Disposition Index, Glucose Effectiveness, and Conversion to Type 2 Diabetes. Diabetes Care 2010, 33, 2098–2103. [Google Scholar] [CrossRef] [PubMed]
- Utzschneider, K.M.; Prigeon, R.L.; Faulenbach, M.V.; Tong, J.; Carr, D.B.; Boyko, E.J.; Leonetti, D.L.; McNeely, M.J.; Fujimoto, W.Y.; Kahn, S.E. Oral Disposition Index Predicts the Development of Future Diabetes Above and Beyond Fasting and 2-h Glucose Levels. Diabetes Care 2009, 32, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Retnakaran, R.; Qi, Y.; Goran, M.I.; Hamilton, J.K. Evaluation of Proposed Oral Disposition Index Measures in Relation to the Actual Disposition Index. Diabet. Med. 2009, 26, 1198–1203. [Google Scholar] [CrossRef] [PubMed]
- Michishita, R.; Shono, N.; Kasahara, T.; Tsuruta, T. Effects of Low Intensity Exercise Therapy on Early Phase Insulin Secretion in Overweight Subjects with Impaired Glucose Tolerance and Type 2 Diabetes Mellitus. Diabetes Res. Clin. Pract. 2008, 82, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Solomon, T.P.J.; Knudsen, S.H.; Karstoft, K.; Winding, K.; Holst, J.J.; Pedersen, B.K. Examining the Effects of Hyperglycemia on Pancreatic Endocrine Function in Humans: Evidence for in Vivo Glucotoxicity. J. Clin. Endocrinol. Metab. 2012, 97, 4682–4691. [Google Scholar] [CrossRef]
- Fritsche, A.; Wagner, R.; Heni, M.; Kantartzis, K.; Machann, J.; Schick, F.; Lehmann, R.; Peter, A.; Dannecker, C.; Fritsche, L.; et al. Different Effects of Lifestyle Intervention in High-and Low-Risk Prediabetes: Results of the Randomized Controlled Prediabetes Lifestyle Intervention Study (PLIS). Diabetes 2021, 70, 2785–2795. [Google Scholar] [CrossRef]
- Willis, L.H.; Slentz, C.A.; Bateman, L.A.; Shields, A.T.; Piner, L.W.; Bales, C.W.; Houmard, J.A.; Kraus, W.E. Effects of Aerobic and/or Resistance Training on Body Mass and Fat Mass in Overweight or Obese Adults. J. Appl. Physiol. 2012, 113, 1831–1837. [Google Scholar] [CrossRef]
- Lee, D.; Sui, X.; Artero, E.G.; Lee, I.-M.; Church, T.S.; McAuley, P.A.; Stanford, F.C.; Kohl, H.W.; Blair, S.N. Long-Term Effects of Changes in Cardiorespiratory Fitness and Body Mass Index on All-Cause and Cardiovascular Disease Mortality in Men. Circulation 2011, 124, 2483–2490. [Google Scholar] [CrossRef]
- Kadoglou, N.P.E.; Iliadis, F.; Angelopoulou, N.; Perrea, D.; Ampatzidis, G.; Liapis, C.D.; Alevizos, M. The Anti-Inflammatory Effects of Exercise Training in Patients with Type 2 Diabetes Mellitus. Eur. J. Cardiovasc. Prev. Rehabil. 2007, 14, 837–843. [Google Scholar] [CrossRef]
- Slentz, C.A.; Bateman, L.A.; Willis, L.H.; Granville, E.O.; Piner, L.W.; Samsa, G.P.; Setji, T.L.; Muehlbauer, M.J.; Huffman, K.M.; Bales, C.W.; et al. Effects of Exercise Training Alone vs a Combined Exercise and Nutritional Lifestyle Intervention on Glucose Homeostasis in Prediabetic Individuals: A Randomised Controlled Trial. Diabetologia 2016, 59, 2088–2098. [Google Scholar] [CrossRef]
- Winnick, J.J.; Sherman, W.M.; Habash, D.L.; Stout, M.B.; Failla, M.L.; Belury, M.A.; Schuster, D.P. Short-Term Aerobic Exercise Training in Obese Humans with Type 2 Diabetes Mellitus Improves Whole-Body Insulin Sensitivity through Gains in Peripheral, Not Hepatic Insulin Sensitivity. J. Clin. Endocrinol. Metab. 2008, 93, 771–778. [Google Scholar] [CrossRef] [PubMed]
- Castaneda, C.; Layne, J.E.; Munoz-Orians, L.; Gordon, P.L.; Walsmith, J.; Foldvari, M.; Roubenoff, R.; Tucker, K.L.; Nelson, M.E. A Randomized Controlled Trial of Resistance Exercise Training to Improve Glycemic Control in Older Adults With Type 2 Diabetes. Diabetes Care 2002, 25, 2335–2341. [Google Scholar] [CrossRef] [PubMed]
- Sigal, R.J.; Kenny, G.P.; Boulé, N.G.; Wells, G.A.; Prud’homme, D.; Fortier, M.; Reid, R.D.; Tulloch, H.; Coyle, D.; Phillips, P.; et al. Effects of Aerobic Training, Resistance Training, or Both on Glycemic Control in Type 2 Diabetes. Ann. Intern. Med. 2007, 147, 357. [Google Scholar] [CrossRef] [PubMed]
- Cuff, D.J.; Meneilly, G.S.; Martin, A.; Ignaszewski, A.; Tildesley, H.D.; Frohlich, J.J. Effective Exercise Modality to Reduce Insulin Resistance in Women With Type 2 Diabetes. Diabetes Care 2003, 26, 2977–2982. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Missbach, B.; Dias, S.; König, J.; Hoffmann, G. Impact of Different Training Modalities on Glycaemic Control and Blood Lipids in Patients with Type 2 Diabetes: A Systematic Review and Network Meta-Analysis. Diabetologia 2014, 57, 1789–1797. [Google Scholar] [CrossRef]
- Herriott, M.T.; Colberg, S.R.; Parson, H.K.; Nunnold, T.; Vinik, A.I. Effects of 8 Weeks of Flexibility and Resistance Training in Older Adults With Type 2 Diabetes. Diabetes Care 2004, 27, 2988–2989. [Google Scholar] [CrossRef]
- Morrison, S.; Colberg, S.R.; Mariano, M.; Parson, H.K.; Vinik, A.I. Balance Training Reduces Falls Risk in Older Individuals With Type 2 Diabetes. Diabetes Care 2010, 33, 748–750. [Google Scholar] [CrossRef]
- Morrison, S.; Simmons, R.; Colberg, S.R.; Parson, H.K.; Vinik, A.I. Supervised Balance Training and Wii Fit–Based Exercises Lower Falls Risk in Older Adults With Type 2 Diabetes. J. Am. Med. Dir. Assoc. 2018, 19, 185.e7–185.e13. [Google Scholar] [CrossRef]
- Melo, K.C.B.; Araújo, F.d.S.; Cordeiro Júnior, C.C.M.; de Andrade, K.T.P.; Moreira, S.R. Pilates Method Training: Functional and Blood Glucose Responses of Older Women With Type 2 Diabetes. J. Strength Cond. Res. 2020, 34, 1001–1007. [Google Scholar] [CrossRef]
- Cui, J.; Yan, J.-H.; Yan, L.-M.; Pan, L.; Le, J.-J.; Guo, Y.-Z. Effects of Yoga in Adults with Type 2 Diabetes Mellitus: A Meta-Analysis. J. Diabetes Investig. 2017, 8, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Thind, H.; Lantini, R.; Balletto, B.L.; Donahue, M.L.; Salmoirago-Blotcher, E.; Bock, B.C.; Scott-Sheldon, L.A.J. The Effects of Yoga among Adults with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Prev. Med. 2017, 105, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Jelleyman, C.; Yates, T.; O’Donovan, G.; Gray, L.J.; King, J.A.; Khunti, K.; Davies, M.J. The Effects of High-Intensity Interval Training on Glucose Regulation and Insulin Resistance: A Meta-Analysis. Obes. Rev. 2015, 16, 942–961. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.E.; Van Guilder, G.P.; Dalleck, L.C.; Harris, N.K. The Effects of High-Intensity Functional Training on Cardiometabolic Risk Factors and Exercise Enjoyment in Men and Women with Metabolic Syndrome: Study Protocol for a Randomized, 12-Week, Dose-Response Trial. Trials 2022, 23, 182. [Google Scholar] [CrossRef]
- Fealy, C.E.; Nieuwoudt, S.; Foucher, J.A.; Scelsi, A.R.; Malin, S.K.; Pagadala, M.; Cruz, L.A.; Li, M.; Rocco, M.; Burguera, B.; et al. Functional High-Intensity Exercise Training Ameliorates Insulin Resistance and Cardiometabolic Risk Factors in Type 2 Diabetes. Exp. Physiol. 2018, 103, 985–994. [Google Scholar] [CrossRef]
- Langlois, A.; Forterre, A.; Pinget, M.; Bouzakri, K. Impact of Moderate Exercise on Fatty Acid Oxidation in Pancreatic β-Cells and Skeletal Muscle. J. Endocrinol. Investig. 2021, 44, 1815–1825. [Google Scholar] [CrossRef]
- Korkiakangas, E.E.; Alahuhta, M.A.; Laitinen, J.H. Barriers to Regular Exercise among Adults at High Risk or Diagnosed with Type 2 Diabetes: A Systematic Review. Health Promot. Int. 2009, 24, 416–427. [Google Scholar] [CrossRef]
- Blackwell, D.L.; Clarke, T.C. State Variation in Meeting the 2008 Federal Guidelines for Both Aerobic and Muscle-Strengthening Activities through Leisure-Time Physical Activity among Adults Aged 18–64: United States, 2010–2015; United States, 2008. Available online: https://www.govinfo.gov/app/details/GOVPUB-HE20-PURL-gpo108937 (accessed on 6 September 2023).
- Jarvie, J.L.; Pandey, A.; Ayers, C.R.; McGavock, J.M.; Sénéchal, M.; Berry, J.D.; Patel, K.V.; McGuire, D.K. Aerobic Fitness and Adherence to Guideline-Recommended Minimum Physical Activity among Ambulatory Patients with Type 2 Diabetes Mellitus. Diabetes Care 2019, 42, 1333–1339. [Google Scholar] [CrossRef]
- Di Loreto, C.; Fanelli, C.; Lucidi, P.; Murdolo, G.; De Cicco, A.; Parlanti, N.; Ranchelli, A.; Fatone, C.; Taglioni, C.; Santeusanio, F.; et al. Make Your Diabetic Patients Walk. Diabetes Care 2005, 28, 1295–1302. [Google Scholar] [CrossRef]
- Balducci, S.; Zanuso, S.; Cardelli, P.; Salvi, L.; Bazuro, A.; Pugliese, L.; Maccora, C.; Iacobini, C.; Conti, F.G.; Nicolucci, A.; et al. Effect of High- versus Low-Intensity Supervised Aerobic and Resistance Training on Modifiable Cardiovascular Risk Factors in Type 2 Diabetes; The Italian Diabetes and Exercise Study (IDES). PLoS ONE 2012, 7, e49297. [Google Scholar] [CrossRef]
- Gibala, M.J. High-Intensity Interval Training: A Time-Efficient Strategy for Health Promotion? Curr. Sport. Med. Rep. 2007, 6, 211–213. [Google Scholar] [CrossRef]
- Davis, C.L.; Pollock, N.K.; Waller, J.L.; Allison, J.D.; Dennis, B.A.; Bassali, R.; Meléndez, A.; Boyle, C.A.; Gower, B.A. Exercise Dose and Diabetes Risk in Overweight and Obese Children: A Randomized Controlled Trial. JAMA 2012, 308, 1103–1112. [Google Scholar] [CrossRef]
- Nesti, L.; Pugliese, N.R.; Sciuto, P.; Natali, A. Type 2 Diabetes and Reduced Exercise Tolerance: A Review of the Literature through an Integrated Physiology Approach. Cardiovasc. Diabetol. 2020, 19, 134. [Google Scholar] [CrossRef] [PubMed]
- Regensteiner, J.G.; Bauer, T.A.; Huebschmann, A.G.; Herlache, L.; Weinberger, H.D.; Wolfel, E.E.; Reusch, J.E.B. Sex Differences in the Effects of Type 2 Diabetes on Exercise Performance. Med. Sci. Sport. Exerc. 2015, 47, 58–65. [Google Scholar] [CrossRef]
- American Diabetes Association. 5. Facilitating Behavior Change and Well-Being to Improve Health Outcomes: Standards of Medical Care in Diabetes—2021. Diabetes Care 2021, 44, S53–S72. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. 8. Obesity Management for the Treatment of Type 2 Diabetes: Standards of Medical Care in Diabetes—2021. Diabetes Care 2021, 44, S100–S110. [Google Scholar] [CrossRef]
- Franz, M.J.; MacLeod, J.; Evert, A.; Brown, C.; Gradwell, E.; Handu, D.; Reppert, A.; Robinson, M. Academy of Nutrition and Dietetics Nutrition Practice Guideline for Type 1 and Type 2 Diabetes in Adults: Systematic Review of Evidence for Medical Nutrition Therapy Effectiveness and Recommendations for Integration into the Nutrition Care Process. J. Acad. Nutr. Diet. 2017, 117, 1659–1679. [Google Scholar] [CrossRef]
- Sievenpiper, J.L.; Chan, C.B.; Dworatzek, P.D.; Freeze, C.; Williams, S.L. Nutrition Therapy. Can. J. Diabetes 2018, 42, S64–S79. [Google Scholar] [CrossRef]
- Ojo, O. Dietary Intake and Type 2 Diabetes. Nutrients 2019, 11, 2177. [Google Scholar] [CrossRef]
- Petroni, M.L.; Brodosi, L.; Marchignoli, F.; Sasdelli, A.S.; Caraceni, P.; Marchesini, G.; Ravaioli, F. Nutrition in Patients with Type 2 Diabetes: Present Knowledge and Remaining Challenges. Nutrients 2021, 13, 2748. [Google Scholar] [CrossRef]
- Vitale, M.; Masulli, M.; Calabrese, I.; Rivellese, A.; Bonora, E.; Signorini, S.; Perriello, G.; Squatrito, S.; Buzzetti, R.; Sartore, G.; et al. Impact of a Mediterranean Dietary Pattern and Its Components on Cardiovascular Risk Factors, Glucose Control, and Body Weight in People with Type 2 Diabetes: A Real-Life Study. Nutrients 2018, 10, 1067. [Google Scholar] [CrossRef] [PubMed]
- Snetselaar, L.G.; de Jesus, J.M.; DeSilva, D.M.; Stoody, E.E. Dietary Guidelines for Americans, 2020–2025. Nutr. Today 2021, 56, 287–295. [Google Scholar] [CrossRef]
- Chester, B.; Babu, J.R.; Greene, M.W.; Geetha, T. The Effects of Popular Diets on Type 2 Diabetes Management. Diabetes Metab. Res. Rev. 2019, 35, e3188. [Google Scholar] [CrossRef] [PubMed]
- Saslow, L.R.; Mason, A.E.; Kim, S.; Goldman, V.; Ploutz-Snyder, R.; Bayandorian, H.; Daubenmier, J.; Hecht, F.M.; Moskowitz, J.T. An Online Intervention Comparing a Very Low-Carbohydrate Ketogenic Diet and Lifestyle Recommendations Versus a Plate Method Diet in Overweight Individuals With Type 2 Diabetes: A Randomized Controlled Trial. J. Med. Internet Res. 2017, 19, e36. [Google Scholar] [CrossRef]
- Crupi, A.N.; Haase, J.; Brandhorst, S.; Longo, V.D. Periodic and Intermittent Fasting in Diabetes and Cardiovascular Disease. Curr. Diabetes Rep. 2020, 20, 83. [Google Scholar] [CrossRef]
- Hansen, D.; De Strijcker, D.; Calders, P. Impact of Endurance Exercise Training in the Fasted State on Muscle Biochemistry and Metabolism in Healthy Subjects: Can These Effects Be of Particular Clinical Benefit to Type 2 Diabetes Mellitus and Insulin-Resistant Patients? Sports Med. 2017, 47, 415–428. [Google Scholar] [CrossRef]
- Qian, J.; Xiao, Q.; Walkup, M.P.; Coday, M.; Erickson, M.L.; Unick, J.; Jakicic, J.M.; Hu, K.; Scheer, F.A.J.L.; Middelbeek, R.J.W. Association of Timing of Moderate-to-Vigorous Physical Activity With Changes in Glycemic Control Over 4 Years in Adults With Type 2 Diabetes From the Look AHEAD Trial. Diabetes Care 2023, 46, 1417–1424. [Google Scholar] [CrossRef]
Refs. | Year | Population | Intervention | Duration (Weeks) | Frequency (Sessions/Week) | Intensity (min/Session) | Dietary Intervention | Effects on β-Cell Function | Additional Effects on Glucose Homeostasis |
Solomon [8] | 2010 | NGT obese subjects | AT | 12 | 5 | 60 | ✔️ | ↓ OGTT-derived IS (not significant when corrected for IR) | - |
T2DM obese subjects | AT | 12 | 5 | 60 | ✔️ | ↑ OGTT-derived IS | - | ||
Dela [9] | 2004 | T2DM subjects | AT vs. no exercise | 12 | 5 | 30–40 | ✕ | ↑ β-cell secretory capacity in subjects with preserved β-cell function at baseline | - |
Bloem [30] | 2008 | IGT overweight/obese subjects | AT | 1 | 7 | 60 | ✕ | ↓ AIRg ↑ DI | ↑ Insulin sensitivity |
Croymans [31] | 2013 | Non-diabetic overweight/obese subjects | RT | 12 | 3 | 60 | ✕ | ↑ DI | ↑ Insulin sensitivity (OGTT-derived mISI) ↓ glucose AUCOGTT ↓ insulin AUCOGTT |
Dela [32] | 2010 | Normal weight or overweight first-degree relatives of T2DM subjects | AT (endurance) | 12 | 6 | 45 | ✕ | =glucose-stimulated IS | ↑ glucose-mediated GU |
Control group | AT (endurance) | 12 | 6 | 45 | ✕ | =glucose-stimulated IS | ↑ insulin-mediated GU ↑ glucose-mediated GU | ||
Hordern [33] | 2008 | T2DM overweight/obese subjects | AT + RT | 4 | 3 | 80–85 | ✕ | =HOMA-β | Baseline glucose and HbA1c were predictors of ↓ blood glucose after intervention |
Boulè [34] | 2005 | Non-diabetic overweight/obese subjects | AT (endurance) | 20 | 3 | 30–50 | ✕ | ↑ AIRg (in the quartile with the worst baseline GT) ↓ AIRg (in the quartile with the better baseline GT) | - |
Solomon [35] | 2013 | IGT and T2DM overweight/obese subjects | AT | 12-16 | 4–5 | 60 | ✕ | ↑ 1st and 2nd-phase DI | - |
He [36] | 2016 | Prediabetic normal weight and overweight subjects | AT vs. RT vs. control | 93 | 3 | 50–60 | ✕ | ↓ HOMA-β (in both groups vs control) Baseline HOMA-β, HbA1c and BMI were predictors of positive β-cell response to training | ↓ glucose levels ↓ HbA1c ↓ HOMA-IR (in both groups vs control) |
Malin [37] | 2013 | Prediabetic obese subjects | AT | 12 | 5 | 60 | ✔️ | ↑ 1st and 2nd-phase DI (related to exercise-dose) | - |
Bacchi [38] | 2012 | Overweight T2DM patients | AT + RT | 16 | 3 | 60 | ✔️ | No major effects | Baseline HbA1c was predictor of changes in HbA1c after intervention |
Lee [39] | 2012 | Non-diabetic obese adolescent subjects | AT vs. RT vs. no-exercise | 12 | 3 | 60 | ✕ | =IS at hyperglycemic clamp =DI at hyperglycemic clamp | ↑ Insulin sensitivity only in RT group =GT |
Slentz [40] | 2009 | Non-diabetic overweight/obese subjects | AT (at different amount/intensity) vs. no exercise | 32 | Variable | Variable | ✕ | ↑ DI (moderate-intensity group displayed major improvements in the DI) | - |
AbouAssi [41] | 2015 | Non-diabetic overweight/obese subjects | AT vs. RT vs. AT + RT | 32 | Variable | Variable | ✕ | ↑ DI ↑ glucose effectiveness (in the AT + AR group compared to AT and AR groups alone) | - |
Madsen [42] | 2015 | T2DM overweight/obese subjects | HIIT | 8 | 3 | 30 | ✕ | ↑ DI ↓ HOMA-β | ↓ glucose levels ↓ HbA1c ↓ HOMA-IR |
Non-diabetic subjects | HIIT | 8 | 3 | 30 | ✕ | - | - | ||
Nieuwoudt [43] | 2017 | T2DM subjects | F-HIT | 6 | 3 | 10–20 | ✕ | ↑ DI =1st and 2nd-phase IS | - |
Type of Exercise | Description | Intensity | Frequency | Duration | Proven Benefits | Additional Specification |
Aerobic Training | Rhythmic and repetitive PA that uses large muscle groups, e.g., running, cycling, swimming, dancing, jogging | Moderate (55–74% HRmax) or Vigorous (75–95% HRmax) | 5–7 d/week with no more than two consecutive days between bouts | At least 30′/session for ≥150′/week of moderate activity or ≥75′/week of vigorous activity (or an equivalent combination of moderate- and vigorous-intensity, preferably spread throughout the week). | ↓ Glycemia with fewer daily hyperglycemic excursions ↓ HbA1c ↑ Insulin sensitivity ↓ Blood lipids ↓ BP ↑ Fitness levels, even without weight loss | - |
Resistance Training | Short-term repetition exercises performed using external resistance tools like dumbbells, kettlebells, and barbells, or using body weight, weight machines, or elastic resistance bands | Moderate (50–69% of 1-RM) or Vigorous (70–85% of 1-RM) | 2–3 d/week on non-consecutive days | 10–15 repetitions/set with 1–3 sets per type of specific exercise | ↑ Strength ↑ Bone mineral density ↑ Lean mass ↓ BP ↓ Blood lipids ↑ Insulin sensitivity ↓ HbA1c | - |
Pilates | Specific targeted exercises to improve strength, flexibility, and posture, with particular focus on the core | Light | ≥2–3 d/week | - | ↑ Blood glucose management ↑ Functional capacity | For patients with low levels of fitness and insufficient balance |
Yoga | Breath, movement, and meditation to unite mind, body, and spirit | Light | ≥2–3 d/week | - | ↓ HbA1c ↓ Blood lipids ↑ Improvement body composition | For patients with low levels of fitness and insufficient balance |
Balance | Focuses on the ability to maintain proper posture and refers to exercises that are designed to improve and maintain balance | Light | ≥2–3 d/week | - | - | ↓Risk of falls by improving balance and gait, even in adults with peripheral neuropathy |
Flexibility | Stretching and moving a joint through its range of motion | Light | ≥2–3 d/week | 10″–30″ per stretch (static or dynamic) group; 2–4 repetitions of each | - | ↑ Joint range-of-motion; facilitates participation in activities that require flexibility |
HIIT F-HIT | HIIT: repetitions of short intervals of vigorous aerobic training (running or cycling) alternating with a short period of active or passive recovery. F-HIT: based on real-world situational exercises at a high intensity by combining resistance training, gymnastics (body weight), and aerobic exercise | Vigorous (75–95% HRmax) follow by active or passive recovery | 3 d/week | Repetitions of 10″–4′ of vigorous activity with 12″–5′ of active or passive recovery | ↑ Insulin sensitivity ↑ β-cell function in T2DM with preserved residual β-cell secretory capacity ↑ Fitness levels ↓ HbA1c ↓ BMI ↑ CGM | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Murro, E.; Di Giuseppe, G.; Soldovieri, L.; Moffa, S.; Improta, I.; Capece, U.; Nista, E.C.; Cinti, F.; Ciccarelli, G.; Brunetti, M.; et al. Physical Activity and Type 2 Diabetes: In Search of a Personalized Approach to Improving β-Cell Function. Nutrients 2023, 15, 4202. https://doi.org/10.3390/nu15194202
Di Murro E, Di Giuseppe G, Soldovieri L, Moffa S, Improta I, Capece U, Nista EC, Cinti F, Ciccarelli G, Brunetti M, et al. Physical Activity and Type 2 Diabetes: In Search of a Personalized Approach to Improving β-Cell Function. Nutrients. 2023; 15(19):4202. https://doi.org/10.3390/nu15194202
Chicago/Turabian StyleDi Murro, Emanuela, Gianfranco Di Giuseppe, Laura Soldovieri, Simona Moffa, Ilaria Improta, Umberto Capece, Enrico Celestino Nista, Francesca Cinti, Gea Ciccarelli, Michela Brunetti, and et al. 2023. "Physical Activity and Type 2 Diabetes: In Search of a Personalized Approach to Improving β-Cell Function" Nutrients 15, no. 19: 4202. https://doi.org/10.3390/nu15194202
APA StyleDi Murro, E., Di Giuseppe, G., Soldovieri, L., Moffa, S., Improta, I., Capece, U., Nista, E. C., Cinti, F., Ciccarelli, G., Brunetti, M., Gasbarrini, A., Pontecorvi, A., Giaccari, A., & Mezza, T. (2023). Physical Activity and Type 2 Diabetes: In Search of a Personalized Approach to Improving β-Cell Function. Nutrients, 15(19), 4202. https://doi.org/10.3390/nu15194202