Post-Exercise Protein Intake May Reduce Time in Hypoglycemia Following Moderate-Intensity Continuous Exercise among Adults with Type 1 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Parent Study
2.2. Participants
2.3. Measures
2.3.1. Demographics and Health History
2.3.2. Continuous Glucose Monitoring (CGM)
2.3.3. Dietary Intake Measures
2.3.4. Physical Activity Measures
2.3.5. Anthropometrics and Body Composition
2.4. Statistical Analysis
2.4.1. Model Selection
2.4.2. Primary Analyses—Post-Exercise Protein Intake and Glycemia Following Exercise
2.4.3. Effect Measure Modification
3. Results
3.1. Final Sample Size
3.2. Baseline CharacteristicsTh
3.3. Results of Primary Analyses
3.4. Results of Effect Measure Modification
4. Discussion
4.1. Challenges and Opportunities
4.2. Relevance for Clinical Practice
4.3. Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Ferranti, S.D.; De Boer, I.H.; Fonseca, V.; Fox, C.S.; Golden, S.H.; Lavie, C.J.; Magge, S.N.; Marx, N.; McGuire, D.K.; Orchard, T.J. Type 1 diabetes mellitus and cardiovascular disease: A scientific statement from the American Heart Association and American Diabetes Association. Circulation 2014, 130, 1110–1130. [Google Scholar] [CrossRef] [PubMed]
- Nathan, D.M.; Cleary, P.A.; Backlund, J.-Y.C.; Genuth, S.M.; Lachin, J.M.; Orchard, T.J.; Raskin, P.; Zinman, B.; Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N. Engl. J. Med. 2005, 353, 2643–2653. [Google Scholar] [CrossRef]
- Purnell, J.Q.; Braffett, B.H.; Zinman, B.; Gubitosi-Klug, R.A.; Sivitz, W.; Bantle, J.P.; Ziegler, G.; Cleary, P.A.; Brunzell, J.D. Impact of Excessive Weight Gain on Cardiovascular Outcomes in Type 1 Diabetes: Results From the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study. Diabetes Care 2017, 40, 1756–1762. [Google Scholar] [CrossRef]
- Bohn, B.; Herbst, A.; Pfeifer, M.; Krakow, D.; Zimny, S.; Kopp, F.; Melmer, A.; Steinacker, J.M.; Holl, R.W. Impact of Physical Activity on Glycemic Control and Prevalence of Cardiovascular Risk Factors in Adults With Type 1 Diabetes: A Cross-sectional Multicenter Study of 18,028 Patients. Diabetes Care 2015, 38, 1536–1543. [Google Scholar] [CrossRef] [PubMed]
- Brazeau, A.S.; Rabasa-Lhoret, R.; Strychar, I.; Mircescu, H. Barriers to Physical Activity Among Patients With Type 1 Diabetes. Diabetes Care 2008, 31, 2108–2109. [Google Scholar] [CrossRef]
- Lascar, N.; Kennedy, A.; Hancock, B.; Jenkins, D.; Andrews, R.C.; Greenfield, S.; Narendran, P. Attitudes and Barriers to Exercise in Adults with Type 1 Diabetes (T1DM) and How Best to Address Them: A Qualitative Study. PLoS ONE 2014, 9, e108019. [Google Scholar] [CrossRef]
- Riddell, M.C.; Gallen, I.W.; Smart, C.E.; Taplin, C.E.; Adolfsson, P.; Lumb, A.N.; Kowalski, A.; Rabasa-Lhoret, R.; McCrimmon, R.J.; Hume, C.; et al. Exercise management in type 1 diabetes: A consensus statement. Lancet Diabetes Endocrinol. 2017, 5, 377–390. [Google Scholar] [CrossRef]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J. Acad. Nutr. Diet. 2016, 116, 501–528. [Google Scholar] [CrossRef]
- Pasiakos, S.M.; Cao, J.J.; Margolis, L.M.; Sauter, E.R.; Whigham, L.D.; McClung, J.P.; Rood, J.C.; Carbone, J.W.; Combs, G.F., Jr.; Young, A.J. Effects of high-protein diets on fat-free mass and muscle protein synthesis following weight loss: A randomized controlled trial. Faseb J. 2013, 27, 3837–3847. [Google Scholar] [CrossRef] [PubMed]
- Pasiakos, S.M.; McLellan, T.M.; Lieberman, H.R. The effects of protein supplements on muscle mass, strength, and aerobic and anaerobic power in healthy adults: A systematic review. Sports Med. 2015, 45, 111–131. [Google Scholar] [CrossRef] [PubMed]
- Morton, R.W.; Murphy, K.T.; McKellar, S.R.; Schoenfeld, B.J.; Henselmans, M.; Helms, E.; Aragon, A.A.; Devries, M.C.; Banfield, L.; Krieger, J.W.; et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br. J. Sports Med. 2018, 52, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.H.; Hector, A.J.; Phillips, S.M. Considerations for protein intake in managing weight loss in athletes. Eur. J. Sport Sci. 2015, 15, 21–28. [Google Scholar] [CrossRef]
- Churchward-Venne, T.A.; Murphy, C.H.; Longland, T.M.; Phillips, S.M. Role of protein and amino acids in promoting lean mass accretion with resistance exercise and attenuating lean mass loss during energy deficit in humans. Amino Acids 2013, 45, 231–240. [Google Scholar] [CrossRef]
- Saunders, M.J.; Luden, N.D.; Herrick, J.E. Consumption of an oral carbohydrate-protein gel improves cycling endurance and prevents postexercise muscle damage. J. Strength Cond. Res. 2007, 21, 678. [Google Scholar] [PubMed]
- Paterson, M.A.; Smart, C.E.; Lopez, P.E.; McElduff, P.; Attia, J.; Morbey, C.; King, B.R. Influence of dietary protein on postprandial blood glucose levels in individuals with Type 1 diabetes mellitus using intensive insulin therapy. Diabet. Med. 2016, 33, 592–598. [Google Scholar] [CrossRef]
- Paterson, M.A.; Smart, C.E.M.; Lopez, P.E.; Howley, P.; McElduff, P.; Attia, J.; Morbey, C.; King, B.R. Increasing the protein quantity in a meal results in dose-dependent effects on postprandial glucose levels in individuals with Type 1 diabetes mellitus. Diabet. Med. 2017, 34, 851–854. [Google Scholar] [CrossRef] [PubMed]
- Smart, C.E.M.; Evans, M.; O’Connell, S.M.; McElduff, P.; Lopez, P.E.; Jones, T.W.; Davis, E.A.; King, B.R. Both Dietary Protein and Fat Increase Postprandial Glucose Excursions in Children With Type 1 Diabetes, and the Effect Is Additive. Diabetes Care 2013, 36, 3897–3902. [Google Scholar] [CrossRef]
- Paterson, M.; Smart, C.; McElduff, P.; Lopez, P.; Morbey, C.; Attia, J.; King, B. Influence of Pure Protein on Postprandial Blood Glucose Levels in Individuals with Type 1 Diabetes Mellitus. Diabetes 2014, 63, A15. [Google Scholar]
- Neu, A.; Behret, F.; Braun, R.; Herrlich, S.; Liebrich, F.; Loesch-Binder, M.; Schneider, A.; Schweizer, R. Higher glucose concentrations following protein- and fat-rich meals—The Tuebingen Grill Study: A pilot study in adolescents with type 1 diabetes. Pediatr. Diabetes 2015, 16, 587–591. [Google Scholar] [CrossRef]
- Borie-Swinburne, C.; Sola-Gazagnes, A.; Gonfroy-Leymarie, C.; Boillot, J.; Boitard, C.; Larger, E. Effect of dietary protein on post-prandial glucose in patients with type 1 diabetes. J. Hum. Nutr. Diet. 2013, 26, 606–611. [Google Scholar] [CrossRef]
- Dube, M.-C.; Lavoie, C.; Galibois, I.; Weisnagel, J. Nutritional Strategies to Prevent Hypoglycemia at Exercise in Diabetic Adolescents. Med. Sci. Sports Exerc. 2012, 44, 1427–1432. [Google Scholar] [CrossRef] [PubMed]
- Paramalingam, N.; Keating, B.L.; Chetty, T.; Fournier, P.A.; Soon, W.H.K.; O’Dea, J.M.; Roberts, A.G.; Horowitz, M.; Jones, T.W.; Davis, E.A. Protein Ingestion in Reducing the Risk of Late-Onset Post-Exercise Hypoglycemia: A Pilot Study in Adolescents and Youth with Type 1 Diabetes. Nutrients 2023, 15, 543. [Google Scholar] [CrossRef] [PubMed]
- Battelino, T.; Danne, T.; Bergenstal, R.M.; Amiel, S.A.; Beck, R.; Biester, T.; Bosi, E.; Buckingham, B.A.; Cefalu, W.T.; Close, K.L.; et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care 2019, 42, 1593–1603. [Google Scholar] [CrossRef] [PubMed]
- Subar, A.F.; Kirkpatrick, S.I.; Mittl, B.; Zimmerman, T.P.; Thompson, F.E.; Bingley, C.; Willis, G.; Islam, N.G.; Baranowski, T.; McNutt, S.; et al. The Automated Self-Administered 24-hour dietary recall (ASA24): A resource for researchers, clinicians, and educators from the National Cancer Institute. J. Acad. Nutr. Diet. 2012, 112, 1134–1137. [Google Scholar] [CrossRef]
- Smith-Ryan, A.E.; Mock, M.G.; Ryan, E.D.; Gerstner, G.R.; Trexler, E.T.; Hirsch, K.R. Validity and reliability of a 4-compartment body composition model using dual energy x-ray absorptiometry-derived body volume. Clin. Nutr. 2017, 36, 825–830. [Google Scholar] [CrossRef]
- Bally, L.; Zueger, T.; Buehler, T.; Dokumaci, A.S.; Speck, C.; Pasi, N.; Ciller, C.; Paganini, D.; Feller, K.; Loher, H.; et al. Metabolic and hormonal response to intermittent high-intensity and continuous moderate intensity exercise in individuals with type 1 diabetes: A randomised crossover study. Diabetologia 2016, 59, 776–784. [Google Scholar] [CrossRef]
- Hasan, S.; Shaw, S.M.; Gelling, L.H.; Kerr, C.J.; Meads, C.A. Exercise modes and their association with hypoglycemia episodes in adults with type 1 diabetes mellitus: A systematic review. BMJ Open Diabetes Res. Care 2018, 6, e000578. [Google Scholar] [CrossRef]
- Paldus, B.; Morrison, D.; Zaharieva, D.P.; Lee, M.H.; Jones, H.; Obeyesekere, V.; Lu, J.; Vogrin, S.; La Gerche, A.; McAuley, S.A.; et al. A Randomized Crossover Trial Comparing Glucose Control During Moderate-Intensity, High-Intensity, and Resistance Exercise With Hybrid Closed-Loop Insulin Delivery While Profiling Potential Additional Signals in Adults With Type 1 Diabetes. Diabetes Care 2022, 45, 194–203. [Google Scholar] [CrossRef]
- Dovc, K.; Battelino, T. Time in range centered diabetes care. Clin. Pediatr. Endocrinol. 2021, 30, 1–10. [Google Scholar] [CrossRef]
- Riddell, M.C.; Pooni, R.; Yavelberg, L.; Li, Z.; Kollman, C.; Brown, R.E.; Li, A.; Aronson, R. Reproducibility in the cardiometabolic responses to high-intensity interval exercise in adults with type 1 diabetes. Diabetes Res. Clin. Pract. 2019, 148, 137–143. [Google Scholar] [CrossRef]
- Yardley, J.E. Fasting May Alter Blood Glucose Responses to High-Intensity Interval Exercise in Adults With Type 1 Diabetes: A Randomized, Acute Crossover Study. Can. J. Diabetes 2020, 44, 727–733. [Google Scholar] [CrossRef] [PubMed]
- McClure, R.D.; Alcántara-Cordero, F.J.; Weseen, E.; Maldaner, M.; Hart, S.; Nitz, C.; Boulé, N.G.; Yardley, J.E. Systematic Review and Meta-analysis of Blood Glucose Response to High-intensity Interval Exercise in Adults With Type 1 Diabetes. Can. J. Diabetes 2023, 47, 171–179. [Google Scholar] [CrossRef]
- Powers, M.A.; Gal, R.L.; Connor, C.G.; Mangan, M.; Maahs, D.M.; Clements, M.A.; Mayer-Davis, E.J. Eating patterns and food intake of persons with type 1 diabetes within the T1D exchange. Diabetes Res. Clin. Pract. 2018, 141, 217–228. [Google Scholar] [CrossRef]
- Johansson, G.; Wikman, A.; Ahrén, A.M.; Hallmans, G.; Johansson, I. Underreporting of energy intake in repeated 24-hour recalls related to gender, age, weight status, day of interview, educational level, reported food intake, smoking habits and area of living. Public Health Nutr. 2001, 4, 919–927. [Google Scholar] [CrossRef] [PubMed]
- Blanton, C.A.; Moshfegh, A.J.; Baer, D.J.; Kretsch, M.J. The USDA Automated Multiple-Pass Method Accurately Estimates Group Total Energy and Nutrient Intake. J. Nutr. 2006, 136, 2594–2599. [Google Scholar] [CrossRef] [PubMed]
- Berardi, J.M.; Noreen, E.E.; Lemon, P.W. Recovery from a cycling time trial is enhanced with carbohydrate-protein supplementation vs. isoenergetic carbohydrate supplementation. J. Int. Soc. Sports Nutr. 2008, 5, 24. [Google Scholar] [CrossRef]
- Rustad, P.I.; Sailer, M.; Cumming, K.T.; Jeppesen, P.B.; Kolnes, K.J.; Sollie, O.; Franch, J.; Ivy, J.L.; Daniel, H.; Jensen, J. Intake of Protein Plus Carbohydrate during the First Two Hours after Exhaustive Cycling Improves Performance the following Day. PLoS ONE 2016, 11, e0153229. [Google Scholar] [CrossRef]
- Lin, Y.-N.; Tseng, T.-T.; Knuiman, P.; Chan, W.P.; Wu, S.-H.; Tsai, C.-L.; Hsu, C.-Y. Protein supplementation increases adaptations to endurance training: A systematic review and meta-analysis. Clin. Nutr. 2020, 40, 3123–3132. [Google Scholar] [CrossRef]
- Cermak, N.M.; Res, P.T.; de Groot, L.C.; Saris, W.H.; van Loon, L.J. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: A meta-analysis. Am. J. Clin. Nutr. 2012, 96, 1454–1464. [Google Scholar] [CrossRef]
- Helms, E.R.; Zinn, C.; Rowlands, D.S.; Brown, S.R. A systematic review of dietary protein during caloric restriction in resistance trained lean athletes: A case for higher intakes. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 127–138. [Google Scholar] [CrossRef]
- Kilbride, L.; Charlton, J.; Aitken, G.; Hill, G.W.; Davison, R.C.; McKnight, J.A. Managing blood glucose during and after exercise in Type 1 diabetes: Reproducibility of glucose response and a trial of a structured algorithm adjusting insulin and carbohydrate intake. J. Clin. Nurs. 2011, 20, 3423–3429. [Google Scholar] [CrossRef]
- Buoite Stella, A.; Assaloni, R.; Tonutti, L.; Manca, E.; Tortul, C.; Candido, R.; Francescato, M.P. Strategies used by Patients with Type 1 Diabetes to Avoid Hypoglycemia in a 24×1-Hour Marathon: Comparison with the Amounts of Carbohydrates Estimated by a Customizable Algorithm. Can. J. Diabetes 2017, 41, 184–189. [Google Scholar] [CrossRef]
- Lysy, P.A.; Absil, H.; Gasser, E.; Boughaleb, H.; Barrea, T.; Moniotte, S. Combined Algorithm-Based Adaptations of Insulin Dose and Carbohydrate Intake During Exercise in Children With Type 1 Diabetes: Results from the CAR2DIAB Study. Front. Endocrinol. 2021, 12, 658311. [Google Scholar] [CrossRef] [PubMed]
- Paterson, M.A.; Smart, C.E.M.; Howley, P.; Price, D.A.; Foskett, D.C.; King, B.R. High-protein meals require 30% additional insulin to prevent delayed postprandial hyperglycaemia. Diabet Med. 2020, 37, 1185–1191. [Google Scholar] [CrossRef] [PubMed]
- Gingras, V.; Bonato, L.; Messier, V.; Roy-Fleming, A.; Smaoui, M.R.; Ladouceur, M.; Rabasa-Lhoret, R. Impact of macronutrient content of meals on postprandial glucose control in the context of closed-loop insulin delivery: A randomized cross-over study. Diabetes Obes. Metab. 2018, 20, 2695–2699. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.; Fuery, M.; Knight, B.; King, B.; Smart, C. In young people using insulin pump therapy an additional sixty percent of the mealtime insulin dose improves postprandial glycaemia following a high fat, high protein meal. Pediatr. Diabetes 2018, 19, 131–132. [Google Scholar]
- Addala, A.; Igudesman, D.; Kahkoska, A.R.; Muntis, F.R.; Souris, K.J.; Whitaker, K.J.; Pratley, R.E.; Mayer-Davis, E. The interplay of type 1 diabetes and weight management: A qualitative study exploring thematic progression from adolescence to young adulthood. Pediatr. Diabetes 2019, 20, 974–985. [Google Scholar] [CrossRef] [PubMed]
Demographic | Mean ± SD or N (%) |
---|---|
Age | 33 ± 11.4 |
Female | 6 (54.6) |
Male | 5 (45.5) |
Self-Reported Race/Ethnicity | |
Non-Hispanic White | 8 (72.7) |
Asian | 2 (18.2) |
Hispanic | 1 (9.1) |
Diabetes Care | |
Diabetes Duration (Years) | 17.0 ± 13.5 |
Insulin Regimen | |
Continuous Subcutaneous Insulin Infusion | 6 (54.6) |
Multiple Daily Injections | 5 (45.4) |
≥10 Days CGM Use in Past 30 Days | 11 (100%) |
Most Recent HbA1c (%) (n = 10) | 6.5 ± 0.8 |
Anthropometric | |
Weight (kg) | 73.9 ± 13.4 |
BMI | 25.1 ± 3.4 |
Estimated Body Fat % | 26.8 ± 7.7 |
Total Lean Mass (kg) | 51.0 ± 10.5 |
Total Body Fat Mass (kg) | 19.0 ± 7.5 |
Visceral Fat Mass (kg) | 0.4 ± 0.3 |
Diet | |
Daily Caloric Intake (kcal) | 1675.2 (1417.8, 2040.6) |
Percent of Daily Calories from Protein | 14.9 ± 4.7 |
Percent of Daily Calories from Carbohydrate | 40.2 ± 13.6 |
Percent of Daily Calories from Fat | 42.5 ± 9.5 |
Daily Fiber Intake (Grams) | 11.4 (10.5, 15.6) |
VO2 Peak (mL/kg/min) | 31.1 ± 9.1 |
Post-Exercise Protein (grams) * | Post-Exercise Protein (g/kg) † | |||||
---|---|---|---|---|---|---|
Estimate | p-Value | 95% CI | Estimate | p-Value | 95% CI | |
Unadjusted Models | ||||||
Percent Time Above Range | 2.7% | 0.48 | (−5.8%, 11.2%) | 0.8% | 0.76 | (−5.2%, 6.9%) |
Percent Time In Range | −1.7% | 0.66 | (−10.1%, 6.7%) | −0.1% | 0.96 | (−6.1%, 5.8) |
Percent Time Below Range | −0.8% | 0.10 | (−1.9%, 0.2%) | −0.6% | 0.10 | (−1.3%, 0.1%) |
Fully Adjusted Models ‡ | ||||||
Percent Time Above Range | 2.9% | 0.41 | (−5.1%, 10.9%) | 1.8% | 0.41 | (−4.0%, 8.6%) |
Percent Time In Range | −1.7% | 0.60 | (−9.3%, 5.8%) | −1.2% | 0.55 | (−7.4%, 4.4%) |
Percent Time Below Range | −1.2% | 0.09 | (−2.6%, 0.3%) | −1.0% | 0.07 | (−2.1%, 0.1%) |
Post-Exercise Protein (grams) * | Post-Exercise Protein (g/kg) † | |||||
---|---|---|---|---|---|---|
Estimate | p-Value | 95% CI | Estimate | p-Value | 95% CI | |
Moderate Intensity Continuous Training (MICT) | ||||||
Unadjusted Models (n = 10, obs = 10) | ||||||
Time Above Range | −1.30% | 0.85 | (−17.1%, 14.4%) | −3.10% | 0.53 | (−14.1%, 7.8%) |
Time In Range | 3.00% | 0.66 | (−12.4%, 18.4%) | 4.10% | 0.39 | (−6.4%, 14.6%) |
Time Below Range | −1.70% | 0.04 | (−3.3%, −0.1%) | −1.00% | 0.11 | (−2.2%, 0.3%) |
Fully Adjusted Models ‡ (n = 9, obs = 9) | ||||||
Time Above Range | 4.90% | 0.5 | (−13.5%, 23.4%) | 2.30% | 0.46 | (−12.0%, 16.5%) |
Time In Range | −3.00% | 0.67 | (−21.2%, 15.2%) | −1.10% | 0.84 | (−14.8%, 12.7%) |
Time Below Range | −1.90% | 0.05 | (−3.9%, 0.0) | −1.20% | 0.14 | (−3.0%, 0.6%) |
High-Intensity Interval Training (HIIT) | ||||||
Unadjusted Models (n = 11, obs = 11) | ||||||
Time Above Range | 5.00% | 0.27 | (−4.62%, 14.6%) | 6.20% | 0.21 | (−4.3%, 16.8%) |
Time In Range | −4.50% | 0.29 | (−13.8%, 4.7%) | −6.40% | 0.18 | (−16.3%, 3.5%) |
Time Below Range | −0.50% | 0.53 | (−2.0%, 1.1%) | 0.10% | 0.86 | (−1.7%, 1.9%) |
Fully Adjusted Models ‡ (n = 10, obs = 10) | ||||||
Time Above Range | −6.60% | 0.21 | (−18.3%, 5.2%) | −1.50% | 0.82 | (−17.0%, 14.0%) |
Time In Range | 5.30% | 0.35 | (−8.0%, 18.7%) | −0.90% | 0.89 | (−17.3%, 15.5%) |
Time Below Range | 1.20% | 0.42 | (−2.4%, 4.9%) | 2.40% | 0.13 | (−1.0%, 5.8%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muntis, F.R.; Mayer-Davis, E.J.; Shaikh, S.R.; Crandell, J.; Evenson, K.R.; Smith-Ryan, A.E. Post-Exercise Protein Intake May Reduce Time in Hypoglycemia Following Moderate-Intensity Continuous Exercise among Adults with Type 1 Diabetes. Nutrients 2023, 15, 4268. https://doi.org/10.3390/nu15194268
Muntis FR, Mayer-Davis EJ, Shaikh SR, Crandell J, Evenson KR, Smith-Ryan AE. Post-Exercise Protein Intake May Reduce Time in Hypoglycemia Following Moderate-Intensity Continuous Exercise among Adults with Type 1 Diabetes. Nutrients. 2023; 15(19):4268. https://doi.org/10.3390/nu15194268
Chicago/Turabian StyleMuntis, Franklin R., Elizabeth J. Mayer-Davis, Saame R. Shaikh, Jamie Crandell, Kelly R. Evenson, and Abbie E. Smith-Ryan. 2023. "Post-Exercise Protein Intake May Reduce Time in Hypoglycemia Following Moderate-Intensity Continuous Exercise among Adults with Type 1 Diabetes" Nutrients 15, no. 19: 4268. https://doi.org/10.3390/nu15194268
APA StyleMuntis, F. R., Mayer-Davis, E. J., Shaikh, S. R., Crandell, J., Evenson, K. R., & Smith-Ryan, A. E. (2023). Post-Exercise Protein Intake May Reduce Time in Hypoglycemia Following Moderate-Intensity Continuous Exercise among Adults with Type 1 Diabetes. Nutrients, 15(19), 4268. https://doi.org/10.3390/nu15194268