Risk Profile of Patients with Brushite Stone Disease and the Impact of Diet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Study Design
2.3. [13C2]Oxalate Absorption Test
2.4. Ammonium Chloride Loading Test
2.5. Calcium Loading Test
2.6. Urinary Parameters
2.7. Statistical Analysis
3. Results
3.1. Patients
3.2. Urine Composition
3.3. [13C2]Oxalate Absorption Test
3.4. Ammonium Chloride Loading Test
3.5. Calcium Loading Test
3.6. Diet Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hesse, A.; Heimbach, D. Causes of Phosphate Stone Formation and the Importance of Metaphylaxis by Urinary Acidification: A Review. World J. Urol. 1999, 17, 308–315. [Google Scholar] [CrossRef]
- Siener, R.; Herwig, H.; Rüdy, J.; Schaefer, R.M.; Lossin, P.; Hesse, A. Urinary Stone Composition in Germany: Results from 45,783 Stone Analyses. World J. Urol. 2022, 40, 1813–1820. [Google Scholar] [CrossRef] [PubMed]
- Daudon, M.; Jungers, P.; Bazin, D.; Williams, J.C. Recurrence Rates of Urinary Calculi According to Stone Composition and Morphology. Urolithiasis 2018, 46, 459–470. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.C.; Hameed, T.; Jackson, M.E.; Aftab, S.; Gambaro, A.; Pishchalnikov, Y.A.; Lingeman, J.E.; McAteer, J.A. Fragility of Brushite Stones in Shock Wave Lithotripsy: Absence of Correlation with Computerized Tomography Visible Structure. J. Urol. 2012, 188, 996–1001. [Google Scholar] [CrossRef]
- Klee, L.W.; Brito, C.G.; Lingeman, J.E. The Clinical Implications of Brushite Calculi. J. Urol. 1991, 145, 715–718. [Google Scholar] [CrossRef]
- Parks, J.H.; Worcester, E.M.; Coe, F.L.; Evan, A.P.; Lingeman, J.E. Clinical Implications of Abundant Calcium Phosphate in Routinely Analyzed Kidney Stones. Kidney Int. 2004, 66, 777–785. [Google Scholar] [CrossRef]
- Krambeck, A.E.; Handa, S.E.; Evan, A.P.; Lingeman, J.E. Profile of the Brushite Stone Former. J. Urol. 2010, 184, 1367–1371. [Google Scholar] [CrossRef]
- Li, S.; Iremashvili, V.; Vernez, S.L.; Penniston, K.L.; Jhagroo, R.A.; Best, S.L.; Hedican, S.P.; Nakada, S.Y. Effect of Stone Composition on Surgical Stone Recurrence: Single Center Longitudinal Analysis. Can. J. Urol. 2021, 28, 10744–10749. [Google Scholar]
- Bensalah, K.; Tuncel, A.; Gupta, A.; Raman, J.D.; Pearle, M.S.; Lotan, Y. Determinants of Quality of Life for Patients with Kidney Stones. J. Urol. 2008, 179, 2238–2243. [Google Scholar] [CrossRef] [PubMed]
- Daudon, M.; Bouzidi, H.; Bazin, D. Composition and Morphology of Phosphate Stones and Their Relation with Etiology. Urol. Res. 2010, 38, 459–467. [Google Scholar] [CrossRef]
- Siener, R.; Netzer, L.; Hesse, A. Determinants of Brushite Stone Formation: A Case-Control Study. PLoS ONE 2013, 8, e78996. [Google Scholar] [CrossRef] [PubMed]
- Parks, J.; Coe, F.; Favus, M. Hyperparathyroidism in Nephrolithiasis. Arch. Intern. Med. 1980, 140, 1479–1481. [Google Scholar] [CrossRef] [PubMed]
- Skolarikos, A.; Jung, H.; Neisius, A.; Petřík, A.; Somani, B.; Tailly, T.; Gambaro, G.; Davis, N.F.; Geraghty, R.; Lombardo, R.; et al. EAU Guidelines on Urolithiasis; EAU Guidelines Office: Arnhem, The Netherlands, 2023; Available online: http://uroweb.org/guidelines/compilations-of-all-guidelines (accessed on 8 May 2023).
- Hönow, R.; Hesse, A. Comparison of Extraction Methods for the Determination of Soluble and Total Oxalate in Foods by HPLC-Enzyme-Reactor. Food Chem. 2002, 78, 511–521. [Google Scholar] [CrossRef]
- Siener, R.; Hönow, R.; Seidler, A.; Voss, S.; Hesse, A. Oxalate Contents of Species of the Polygonaceae, Amaranthaceae and Chenopodiaceae Families. Food Chem. 2006, 98, 220–224. [Google Scholar] [CrossRef]
- Siener, R. Nutrition and Kidney Stone Disease. Nutrients 2021, 13, 1917. [Google Scholar] [CrossRef]
- Siener, R.; Löhr, P.; Hesse, A. Urinary Risk Profile, Impact of Diet, and Risk of Calcium Oxalate Urolithiasis in Idiopathic Uric Acid Stone Disease. Nutrients 2023, 15, 572. [Google Scholar] [CrossRef] [PubMed]
- Hesse, A.; Tiselius, H.G.; Siener, R.; Hoppe, B. Urinary Stones: Diagnosis, Treatment and Prevention of Recurrence, 3rd ed.; Karger: Basel, Switzerland, 2009; ISBN 978-3-8055-9149-2. [Google Scholar]
- Siener, R.; Hoppe, B.; Löhr, P.; Müller, S.C.; Latz, S. Metabolic Profile and Impact of Diet in Patients with Primary Hyperoxaluria. Int. Urol. Nephrol. 2018, 50, 1583–1589. [Google Scholar] [CrossRef]
- von Unruh, G.E.; Voss, S.; Sauerbruch, T.; Hesse, A. Reference Range for Gastrointestinal Oxalate Absorption Measured with a Standardized [13C2]Oxalate Absorption Test. J. Urol. 2003, 169, 687–690. [Google Scholar] [CrossRef]
- Voss, S.; Hesse, A.; Zimmermann, D.J.; Sauerbruch, T.; von Unruh, G.E. Intestinal Oxalate Absorption Is Higher in Idiopathic Calcium Oxalate Stone Formers than in Healthy Controls: Measurements with the [13C2]Oxalate Absorption Test. J. Urol. 2006, 175, 1711–1715. [Google Scholar] [CrossRef]
- Tiselius, H.G. A Simplified Estimate of the Ion-Activity Product of Calcium Phosphate in Urine. Eur. Urol. 1984, 10, 191–195. [Google Scholar] [CrossRef]
- Tiselius, H.G. Medical Evaluation of Nephrolithiasis. Endocrinol. Metab. Clin. N. Am. 2002, 31, 1031–1050. [Google Scholar] [CrossRef]
- Werness, P.G.; Brown, C.M.; Smith, L.H.; Finlayson, B. EQUIL2: A BASIC Computer Program for the Calculation of Urinary Saturation. J. Urol. 1985, 134, 1242–1244. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A New Equation to Estimate Glomerular Filtration Rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Dretler, S.P. Stone Fragility—A New Therapeutic Distinction. J. Urol. 1988, 139, 1124–1127. [Google Scholar] [CrossRef]
- Zhong, P.; Preminger, G.M. Mechanisms of Differing Stone Fragility in Extracorporeal Shockwave Lithotripsy. J. Endourol. 1994, 8, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Zerwekh, J.E.; Reed-Gitomer, B.Y.; Pak, C.Y.C. Pathogenesis of Hypercalciuric Nephrolithiasis. Endocrinol. Metab. Clin. N. Am. 2002, 31, 869–884. [Google Scholar] [CrossRef] [PubMed]
- Worcester, E.M.; Coe, F.L. New Insights into the Pathogenesis of Idiopathic Hypercalciuria. Semin. Nephrol. 2008, 28, 120–132. [Google Scholar] [CrossRef]
- Pak, C.Y.C.; Poindexter, J.R.; Adams-Huet, B.; Pearle, M.S. Predictive Value of Kidney Stone Composition in the Detection of Metabolic Abnormalities. Am. J. Med. 2003, 115, 26–32. [Google Scholar] [CrossRef]
- Pak, C.Y.C.; Poindexter, J.R.; Peterson, R.D.; Heller, H.J. Biochemical and Physicochemical Presentations of Patients with Brushite Stones. J. Urol. 2004, 171, 1046–1049. [Google Scholar] [CrossRef]
- Muldowney, F.P.; Freaney, R.; Moloney, M.F. Importance of Dietary Sodium in the Hypercalciuria Syndrome. Kidney Int. 1982, 22, 292–296. [Google Scholar] [CrossRef]
- Giannini, S.; Nobile, M.; Sartori, L.; Dalle Carbonare, L.; Ciuffreda, M.; Corrò, P.; D’Angelo, A.; Calò, L.; Crepaldi, G. Acute Effects of Moderate Dietary Protein Restriction in Patients with Idiopathic Hypercalciuria and Calcium Nephrolithiasis. Am. J. Clin. Nutr. 1999, 69, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Peacock, M. Phosphate Metabolism in Health and Disease. Calcif. Tissue Int. 2021, 108, 3–15. [Google Scholar] [CrossRef]
- Pak, C.Y.C. Physicochemical Basis for Formation of Renal Stones of Calcium Phosphate Origin: Calculation of the Degree of Saturation of Urine with Respect to Brushite. J. Clin. Invest. 1969, 48, 1914–1922. [Google Scholar] [CrossRef] [PubMed]
- Simpson, D.P. Citrate Excretion: A Window on Renal Metabolism. Am. J. Physiol. 1983, 244, F223–F234. [Google Scholar] [CrossRef]
- Brennan, S.; Hering-Smith, K.; Hamm, L.L. Effect of pH on Citrate Reabsorption in the Proximal Convoluted Tubule. Am. J. Physiol. 1988, 255, F301–F306. [Google Scholar] [CrossRef] [PubMed]
- Von Unruh, G.E.; Voss, S.; Sauerbruch, T.; Hesse, A. Dependence of Oxalate Absorption on the Daily Calcium Intake. J. Am. Soc. Nephrol. 2004, 15, 1567–1573. [Google Scholar] [CrossRef]
- Evan, A.P.; Lingeman, J.E.; Coe, F.L.; Shao, Y.; Parks, J.H.; Bledsoe, S.B.; Phillips, C.L.; Bonsib, S.; Worcester, E.M.; Sommer, A.J.; et al. Crystal-Associated Nephropathy in Patients with Brushite Nephrolithiasis. Kidney Int. 2005, 67, 576–591. [Google Scholar] [CrossRef] [PubMed]
- Krambeck, A.E.; Handa, S.E.; Evan, A.P.; Lingeman, J.E. Brushite Stone Disease as a Consequence of Lithotripsy? Urol. Res. 2010, 38, 293–299. [Google Scholar] [CrossRef]
- Evan, A.P.; Lingeman, J.E.; Worcester, E.M.; Sommer, A.J.; Phillips, C.L.; Williams, J.C.; Coe, F.L. Contrasting Histopathology and Crystal Deposits in Kidneys of Idiopathic Stone Formers Who Produce Hydroxy Apatite, Brushite, or Calcium Oxalate Stones. Anat. Rec. 2014, 297, 731–748. [Google Scholar] [CrossRef]
- Gambaro, G.; Croppi, E.; Coe, F.; Lingeman, J.; Moe, O.; Worcester, E.; Buchholz, N.; Bushinsky, D.; Curhan, G.C.; Ferraro, P.M.; et al. Metabolic Diagnosis and Medical Prevention of Calcium Nephrolithiasis and Its Systemic Manifestations: A Consensus Statement. J. Nephrol. 2016, 29, 715–734. [Google Scholar] [CrossRef]
Mean ± SD n (%) | |
---|---|
Number of patients | 65 |
Gender (men/women) | 46/19 |
Age (years) | 41.9 ± 13.0 |
BMI (kg/m2) a | 26.3 ± 4.3 |
BMI < 18.5 kg/m2 a | 2/64 (3.1) |
BMI 18.5–24.9 kg/m2 a | 27/64 (42.2) |
BMI 25.0–29.9 kg/m2 a | 24/64 (37.5) |
BMI > 30.0 kg/m2 a | 11/64 (17.2) |
Type 2 diabetes a | 2/64 (3.1) |
Hypertension a | 14/64 (21.9%) |
[13C2]Oxalate absorption (%) b | 9.8 ± 6.5 |
[13C2]Oxalate absorption < 10% b | 20/34 (58.8) |
[13C2]Oxalate absorption ≥ 10% b | 14/34 (41.2) |
Hypercalciuria | 55/65 (84.6) |
Idiopathic hypercalciuria c | 21/53 (39.6) |
Absorptive hypercalciuria c | 17/53 (32.1) |
Renal hypercalciuria c | 15/53 (28.3) |
Distal renal tubular acidosis (dRTA) d | 31/62 (50.0) |
Complete dRTA d | 2/62 (3.2) |
Incomplete dRTA d | 29/62 (46.8) |
Glomerular filtration rate (mL/min/1.73 m2) a | 91.5 ± 19.5 |
Family history of urolithiasis e | 29/58 (50.0) |
Age at first stone (years) a | 29.9 ± 11.9 |
Duration of stone disease (years) a | 11.8 ± 9.6 |
Stone passages in the last 12 months f | 9 ± 15 |
Stone passages total g | 38 ± 81 |
Type of stone removal a | |
Spontaneous passage (patients) a | 48/64 (75.0) |
Ureteroscopy (patients) a | 55/64 (85.9) |
Extracorporeal shock wave lithotripsy (patients) a | 53/64 (82.8) |
Percutaneous nephrolithotomy (patients) a | 28/64 (45.3) |
Open surgery (patients) a | 15/64 (23.4) |
Laterality h | |
Bilateral | 42/62 (67.7) |
Right | 9/62 (14.5) |
Left | 11/62 (17.7) |
Anatomical abnormalities a | 12/64 (18.8) |
Kidney cysts a | 4/64 (6.3) |
Stenosis a | 4/64 (6.3) |
Ureteral duplication a | 1/64 (1.6) |
Medullary sponge kidney a | 3/64 (4.7) |
Habitual Diet n = 65 Mean ± SD | Balanced Diet n = 65 Mean ± SD | p Value | |
---|---|---|---|
Volume (L/24 h) | 2.494 ± 0.795 | 2.400 ± 0.526 | 0.388 |
Density (g/cm3) | 1.009 ± 0.004 | 1.006 ± 0.003 | <0.001 |
Urinary pH | 6.57 ± 0.30 | 6.54 ± 0.31 | 0.410 |
Sodium (mmol/24 h) | 179 ± 65 | 102 ± 33 | <0.001 |
Potassium (mmol/24 h) | 65 ± 21 | 55 ± 16 | <0.001 |
Calcium (mmol/24 h) | 8.20 ± 3.09 | 7.12 ± 2.73 | <0.001 |
Magnesium (mmol/24 h) | 5.17 ± 1.87 | 4.90 ± 1.42 | 0.188 |
Ammonium (mmol/24 h) a | 27.8 ± 10.6 | 28.4 ± 9.8 | 0.753 |
Chloride (mmol/24 h) | 183 ± 73 | 109 ± 32 | <0.001 |
Phosphate (mmol/24 h) | 32.7 ± 9.0 | 27.2 ± 6.5 | <0.001 |
Sulfate (mmol/24 h) | 21.8 ± 6.6 | 17.7 ± 3.7 | <0.001 |
Creatinine (mmol/24 h) | 15.05 ± 4.14 | 14.55 ± 3.84 | 0.060 |
Uric acid (mmol/24 h) | 3.88 ± 1.10 | 3.32 ± 0.76 | <0.001 |
Oxalate (mmol/24 h) | 0.383 ± 0.120 | 0.303 ± 0.077 | <0.001 |
Citrate (mmol/24 h) | 2.257 ± 1.430 | 2.092 ± 1.212 | 0.612 |
AP Uric acid (×109) | 0.33 ± 0.39 | 0.30 ± 0.35 | 0.933 |
AP Calcium oxalate index | 1.29 ± 0.58 | 0.96 ± 0.52 | <0.001 |
AP Struvite index a | 11.73 ± 13.88 | 8.53 ± 7.29 | 0.083 |
AP Brushite index | 8.51 ± 4.94 | 6.33 ± 3.39 | 0.001 |
RS Uric acid | 0.50 ± 0.58 | 0.47 ± 0.52 | 0.965 |
RS Calcium oxalate | 5.81 ± 2.58 | 5.01 ± 2.61 | 0.006 |
RS Struvite a | 0.17 ± 0.18 | 0.14 ± 0.13 | 0.516 |
RS Apatite (×10−28) | 1.51 ± 3.37 | 0.62 ± 1.57 | 0.005 |
RS Brushite | 2.01 ± 0.82 | 1.68 ± 0.70 | 0.002 |
Reference Range | Habitual Diet n = 65 n (%) | Balanced Diet n = 65 n (%) | p Value | |
---|---|---|---|---|
Volume (L/24 h) | <2.000 | 17 (26.2) | 15 (23.1) | 0.832 |
≥2.000 | 48 (73.8) | 50 (76.9) | 0.832 | |
Urinary pH | <6.50 | 25 (38.5) | 23 (35.4) | 0.824 |
6.50–6.79 | 27 (41.5) | 31 (47.7) | 0.523 | |
≥6.80 | 13 (20.0) | 11 (16.9) | 0.774 | |
Phosphate (mmol/24 h) | <35.0 | 37 (56.9) | 58 (89.2) | <0.001 |
≥35.0 | 28 (43.1) | 7 (10.8) | <0.001 | |
Calcium (mmol/24 h) | <5.0 | 10 (15.4) | 13 (20.0) | 0.508 |
5.0–7.9 | 24 (36.9) | 32 (49.2) | 0.185 | |
≥8.0 | 31 (47.7) | 20 (30.8) | 0.019 | |
Oxalate (mmol/24 h) | <0.500 | 54 (83.1) | 64 (98.5) | 0.002 |
≥0.500 | 11 (16.9) | 1 (1.5) | 0.002 | |
Citrate (mmol/24 h) | <1.700 | 21 (32.3) | 25 (38.5) | 0.344 |
≥1.700 | 44 (67.7) | 40 (61.5) | 0.344 |
Habitual Diet | Balanced Diet | |||||
---|---|---|---|---|---|---|
dRTA n = 31 Mean ± SD | Non-dRTA n = 31 Mean ± SD | p Value | dRTA n = 31 Mean ± SD | Non-dRTA n = 31 Mean ± SD | p Value | |
Volume (L/24 h) | 2.522 ± 0.716 | 2.545 ± 0.834 | 0.930 | 2.418 ± 0.519 | 2.407 ± 0.553 | 0.637 |
Density (g/cm3) | 1.008 ± 0.003 | 1.010 ± 0.004 | 0.052 | 1.005 ± 0.003 | 1.006 ± 0.003 | 0.042 |
Urinary pH | 6.70 ± 0.23 | 6.49 ± 0.31 | 0.011 | 6.65 ± 0.24 | 6.44 ± 0.34 | 0.024 |
Calcium (mmol/24 h) | 7.06 ± 2.73 | 9.36 ± 3.00 | 0.002 | 6.15 ± 2.00 | 8.03 ± 2.48 | 0.001 |
Chloride (mmol/24 h) | 175 ± 70 | 197 ± 73 | 0.173 | 104 ± 29 | 120 ± 30 | 0.034 |
Phosphate (mmol/24 h) | 30.3 ± 8.5 | 35.1 ± 8.9 | 0.038 | 25.5 ± 4.6 | 29.1 ± 7.8 | 0.012 |
Creatinine (mmol/24 h) | 13.96 ± 4.03 | 16.40 ± 3.71 | 0.011 | 13.74 ± 3.38 | 15.65 ± 3.83 | 0.059 |
Citrate (mmol/24 h) | 1.796 ± 1.177 | 2.798 ± 1.478 | 0.006 | 1.488 ± 1.069 | 2.653 ± 0.968 | <0.001 |
AP Uric acid (×109) | 0.19 ± 0.10 | 0.41 ± 0.48 | 0.042 | 0.21 ± 0.18 | 0.38 ± 0.46 | 0.069 |
AP Struvite index a | 16.35 ± 18.31 | 8.24 ± 6.68 | 0.042 | 10.70 ± 8.59 | 6.95 ± 5.60 | 0.073 |
AP Brushite index | 8.55 ± 4.60 | 7.85 ± 4.32 | 0.529 | 7.19 ± 4.11 | 5.42 ± 2.10 | 0.100 |
RS Uric acid | 0.30 ± 0.16 | 0.62 ± 0.71 | 0.042 | 0.34 ± 0.28 | 0.60 ± 0.67 | 0.078 |
RS Struvite a | 0.23 ± 0.23 | 0.12 ± 0.10 | 0.024 | 0.19 ± 0.15 | 0.11 ± 0.09 | 0.016 |
RS Brushite | 1.85 ± 0.81 | 2.15 ± 0.85 | 0.157 | 1.68 ± 0.72 | 1.68 ± 0.59 | 0.695 |
Idiopathic Hypercalciuria n (%) | Absorptive Hypercalciuria n (%) | Renal Hypercalciuria n (%) | p Value | |
---|---|---|---|---|
Number of patients | 21/53 (39.6) | 17/53 (32.1) | 15/53 (28.3) | |
Gender (men/women) | 17/4 (81.0/19.0) | 13/4 (76.5/23.5) | 9/6 (60.0/40.0) | 0.353 |
Calcium (mmol/24 h) Mean ± SD | Calcium (mmol/24 h) Mean ± SD | Calcium (mmol/24 h) Mean ± SD | p Value | |
Habitual diet | 8.30 ± 2.24 | 8.74 ± 2.58 | 10.0 ± 2.40 | 0.113 |
Balanced diet | 6.79 ± 1.86 | 7.11 ± 1.48 | 8.85 ± 2.68 | 0.011 |
p Value | 0.001 | 0.003 | 0.048 |
Habitual Diet n = 43 Mean ± SD | Balanced Diet n = 43 Mean | p Value | |
---|---|---|---|
Energy (kcal/day) | 2256 ± 485 | 2355 | 0.347 |
Carbohydrates (g/day) | 264 ± 71 | 327 | <0.001 |
Fat (g/day) | 84 ± 19 | 81 | 0.237 |
Protein (g/day) | 84 ± 19 | 71 | <0.001 |
Methionine (mg/day) | 1644 ± 426 | 1415 | 0.002 |
Cystine (mg/day) | 1052 ± 267 | 835 | <0.001 |
Purines (mg/day) | 420 ± 143 | 449 | 0.176 |
Cholesterol (mg/day) | 330 ± 81 | 195 | <0.001 |
Fiber (g/day) | 20.6 ± 7.2 | 31.0 | <0.001 |
Sodium (mg/day) a | 4033 ± 1213 | 2300 | <0.001 |
Potassium (mg/day) | 3010 ± 705 | 3390 | 0.001 |
Calcium (mg/day) | 837 ± 360 | 977 | 0.004 |
Magnesium (mg/day) | 360 ± 113 | 341 | 0.560 |
Phosphate (mg/day) | 1225 ± 300 | 1432 | <0.001 |
Oxalate (mg/day) | 111 ± 43 | 121 | 0.049 |
Alcohol (g/day) | 10.0 ± 15.4 | 0 | <0.001 |
Water (mL/day) | 3462 ± 969 | 3437 | 0.507 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siener, R.; Pitzer, M.S.; Speller, J.; Hesse, A. Risk Profile of Patients with Brushite Stone Disease and the Impact of Diet. Nutrients 2023, 15, 4092. https://doi.org/10.3390/nu15184092
Siener R, Pitzer MS, Speller J, Hesse A. Risk Profile of Patients with Brushite Stone Disease and the Impact of Diet. Nutrients. 2023; 15(18):4092. https://doi.org/10.3390/nu15184092
Chicago/Turabian StyleSiener, Roswitha, Maria Sofie Pitzer, Jan Speller, and Albrecht Hesse. 2023. "Risk Profile of Patients with Brushite Stone Disease and the Impact of Diet" Nutrients 15, no. 18: 4092. https://doi.org/10.3390/nu15184092
APA StyleSiener, R., Pitzer, M. S., Speller, J., & Hesse, A. (2023). Risk Profile of Patients with Brushite Stone Disease and the Impact of Diet. Nutrients, 15(18), 4092. https://doi.org/10.3390/nu15184092