The Relationships between Various Factors and Sleep Status: A Cross-Sectional Study among Healthy Saudi Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample Size
2.3. Data Collection
2.3.1. Anthropometric Measurements
2.3.2. Biochemical Blood Analysis
2.3.3. Sociodemographic Characteristics
2.3.4. Sleep Index
2.3.5. Stress Scale
2.3.6. Global Physical Activity Questionnaire
2.3.7. Dietary Intake Assessment
2.4. Statistical Analysis
3. Results
3.1. General Characteristics of the Participants
3.2. Factors Associated with the Sleep Quality Scores
3.3. Multinomial Analysis of Factors Associated with the Dichotomous PSQI
3.4. Factors Associated with Sleep Duration Categories
3.5. Multinomial Logistic Regression of Factors Associated with Sleep Duration Categories
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sejbuk, M.; Mirończuk-Chodakowska, I.; Witkowska, A.M. Sleep Quality: A Narrative Review on Nutrition, Stimulants, Physical Activity as Important Factors. Nutrients 2022, 14, 1912. [Google Scholar] [CrossRef]
- Nochaiwong, S.; Ruengorn, C.; Thavorn, K.; Hutton, B.; Awiphan, R.; Phosuya, C.; Ruanta, Y.; Wongpakaran, N.; Wongpakaran, T. Global prevalence of mental health issues among the general population during the coronavirus disease-2019 pandemic: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 10173. [Google Scholar] [CrossRef]
- Wu, X.Y.; You, J.H.; Li, A.J.; He, Z.; Huang, C. Prevalence and risk factors of anxiety, depression and sleeping disturbances in china during the COVID-19 outbreak: A web-based cross-sectional study. Psychol. Health Med. 2021, 27, 698–706. [Google Scholar] [CrossRef]
- Osiogo, F.; Shalaby, R.; Adegboyega, S.; Hrabok, M.; Gusnowski, A.; Vuong, W.; Surood, S.; Greenshaw, A.J.; Agyapong, V.I.O. COVID-19 pandemic: Demographic and clinical correlates of disturbed sleep among 6041 Canadians. Int. J. Psychiatry Clin. Pract. 2021, 25, 164–171. [Google Scholar] [CrossRef]
- Alharbi, A.S.; Alshahrani, S.M.; Alsaadi, M.M.; AL-Jahdali, H.H.; Wali, S.O.; BaHammam, A.S. Sleep quality and insomnia during the COVID-19 lockdown among the Saudi public. Saudi Med. J. 2021, 42, 384–390. [Google Scholar] [CrossRef]
- Althakafi, K.; Alrashed, A.; Aljammaz, K.; Abdulwahab, I.; Hamza, R.; Hamad, A.; Alhejaili, K. Prevalence of short sleep duration and effect of co-morbid medical conditions—A cross-sectional study in Saudi Arabia. J. Fam. Med. Prim. Care 2019, 8, 3334. [Google Scholar] [CrossRef]
- Alfawaz, R.A.; Aljuraiban, G.S.; AlMarzooqi, M.A.; Alghannam, A.F.; BaHammam, A.S.; Dobia, A.M.; Alothman, S.A.; Aljuhani, O.; Saad Aljaloud, K. The recommended amount of physical activity, sedentary behavior, sleep duration for healthy Saudis: A joint consensus statement of the Saudi Public Health Authority. Ann. Thorac. Med. 2021, 16, 239. [Google Scholar] [CrossRef]
- Wu, Y.; Zhai, L.; Zhang, D. Sleep duration and obesity among adults: A meta-analysis of prospective studies. Sleep Med. 2014, 15, 1456–1462. [Google Scholar] [CrossRef]
- Ai, S.; Zhang, J.; Zhao, G.; Wang, N.; Li, G.; So, H.C.; Liu, Y.; Chau, S.W.H.; Chen, J.; Tan, X.; et al. Causal associations of short and long sleep durations with 12 cardiovascular diseases: Linear and nonlinear Mendelian randomization analyses in UK Biobank. Eur. Heart J. 2021, 42, 3349–3357. [Google Scholar] [CrossRef]
- Cao, J.; Eshak, E.S.; Liu, K.; Muraki, I.; Cui, R.; Iso, H.; Tamakoshi, A.; Mori, M.; Kaneko, Y.; Tsuji, I.; et al. Sleep duration and risk of breast cancer: The JACC Study. Breast Cancer Res. Treat. 2019, 174, 219–225. [Google Scholar] [CrossRef]
- Irwin, M.R. Why sleep is important for health: A psychoneuroimmunology perspective. Annu. Rev. Psychol. 2015, 66, 143–172. [Google Scholar] [CrossRef] [PubMed]
- Halson, S.L.; Shaw, G.; Versey, N.; Miller, D.J.; Sargent, C.; Roach, G.D.; Nyman, L.; Carter, J.M.; Baar, K. Optimisation and Validation of a Nutritional Intervention to Enhance Sleep Quality and Quantity. Nutrients 2020, 12, 2579. [Google Scholar] [CrossRef] [PubMed]
- Sabia, S.; Fayosse, A.; Dumurgier, J.; van Hees, V.T.; Paquet, C.; Sommerlad, A.; Kivimäki, M.; Dugravot, A.; Singh-Manoux, A. Association of sleep duration in middle and old age with incidence of dementia. Nat. Commun. 2021, 12, 2289. [Google Scholar] [CrossRef] [PubMed]
- Itani, O.; Jike, M.; Watanabe, N.; Kaneita, Y. Short sleep duration and health outcomes: A systematic review, meta-analysis, meta-regression. Sleep Med. 2017, 32, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Nakamura, T.; Hayano, J.; Yamamoto, Y. Age and gender differences in objective sleep properties using large-scale body acceleration data in a Japanese population. Sci. Rep. 2021, 11, 9970. [Google Scholar] [CrossRef] [PubMed]
- Borowska, B.; Suder, A.; Kliś, K.; Wronka, I. Associations between Sleep Duration and Anthropometric Indices of Adiposity in Female University Students. Int. J. Environ. Res. Public Health 2022, 19, 11681. [Google Scholar] [CrossRef]
- McMahon, D.M.; Burch, J.B.; Youngstedt, S.D.; Wirth, M.D.; Hardin, J.W.; Hurley, T.G.; Blair, S.N.; Hand, G.A.; Shook, R.P.; Drenowatz, C.; et al. Chronobiology International The Journal of Biological and Medical Rhythm Research Relationships between chronotype, social jetlag, sleep, obesity and blood pressure in healthy young adults. Chronobiol. Int. 2019, 36, 493–509. [Google Scholar] [CrossRef]
- Gupta, P.; Srivastava, N.; Gupta, V.; Tiwari, S.; Banerjee, M. Association of sleep duration and sleep quality with body mass index among young adults. J. Fam. Med. Prim. Care 2022, 11, 3251. [Google Scholar] [CrossRef]
- Tuna, M.K.; Işık, A.C.; Madenci, Ö.Ç.; Kaya, K.S. Obesity effects on sleep quality with anthropometric and metabolic changes. Rev. Assoc. Med. Bras. 2022, 68, 574–578. [Google Scholar] [CrossRef]
- Maugeri, A.; Medina-Inojosa, J.R.; Kunzova, S.; Agodi, A.; Barchitta, M.; Sochor, O.; Lopez-Jimenez, F.; Geda, Y.E.; Vinciguerra, M. Sleep duration and excessive daytime sleepiness are associated with obesity independent of diet and physical activity. Nutrients 2018, 10, 1219. [Google Scholar] [CrossRef]
- Ferreira, C.R.T.; de Deus, M.B.B.; de Deus Morais, M.J.; Silva, R.P.M.; Schirmer, J. Sleep quality of urban public transport drivers in a city in the Western Amazon, Brazil. J. Hum. Growth Dev. 2022, 32, 43–54. [Google Scholar] [CrossRef]
- Liu, X.; Yan, G.; Bullock, L.; Barksdale, D.J.; Logan, J.G. An Examination of Psychological Stress, Fatigue, Sleep, Physical Activity in Chinese Americans. J. Immigr. Minor Health 2023, 25, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gu, S.; Wang, Z.; Li, H.; Xu, X.; Zhu, H.; Deng, S.; Ma, X.; Feng, G.; Wang, F.; et al. Relationship between stressful life events and sleep quality: Rumination as a mediator and resilience as a moderator. Front. Psychiatry 2019, 10, 348. [Google Scholar] [CrossRef]
- AlRasheed, M.M.; Al-Aqeel, S.; Alkadir, A.M.; bin Shuqiran, K.; Khurshid, F.; AlRasheed, N.M.; Al-kufeidy, R.M.; Alhaj, O.A.; Jahrami, H.; BaHammam, A.S. The Prevalence of Psychological Distress and Its Relationship to Sleep Quality in Saudi Arabia’s General Population During the COVID-19 Pandemic. Front. Psychiatry 2022, 12, 809040. [Google Scholar] [CrossRef] [PubMed]
- Pesonen, A.K.; Kahn, M.; Kuula, L.; Korhonen, T.; Leinonen, L.; Martinmäki, K.; Gradisar, M.; Lipsanen, J. Sleep and physical activity—The dynamics of bi-directional influences over a fortnight. BMC Public Health 2022, 22, 1160. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Boros, S. The effect of physical activity on sleep quality: A systematic review. Eur. J. Physiother. 2021, 23, 11–18. [Google Scholar] [CrossRef]
- De Nys, L.; Anderson, K.; Ofosu, E.F.; Ryde, G.C.; Connelly, J.; Whittaker, A.C. The effects of physical activity on cortisol and sleep: A systematic review and meta-analysis. Psychoneuroendocrinology 2022, 143, 105843. [Google Scholar] [CrossRef]
- Liu, X.; Huang, L.; Wu, Q.; Chen, Y.; Chen, X.; Chen, H.; Gao, J.; Xiao, Q. Sleep characteristic profiles and the correlation with spectrum of metabolic syndrome among older adult: A cross-sectional study. BMC Geriatr. 2022, 22, 414. [Google Scholar] [CrossRef]
- Gao, Q.; Kou, T.; Zhuang, B.; Ren, Y.; Dong, X.; Wang, Q. The Association between Vitamin D Deficiency and Sleep Disorders: A Systematic Review and Meta-Analysis. Nutrients 2018, 10, 1395. [Google Scholar] [CrossRef]
- Leung, W.; Singh, I.; McWilliams, S.; Stockler, S.; Ipsiroglu, O.S. Iron deficiency and sleep—A scoping review. Sleep Med. Rev. 2020, 51, 101274. [Google Scholar] [CrossRef]
- Geovanini, G.R.; Lorenzi-Filho, G.; de Paula, L.K.; Oliveira, C.M.; de Oliveira Alvim, R.; Beijamini, F.; Negrão, A.B.; von Schantz, M.; Knutson, K.L.; Krieger, J.E.; et al. Poor sleep quality and lipid profile in a rural cohort (The Baependi Heart Study). Sleep Med. 2019, 57, 30–35. [Google Scholar] [CrossRef]
- Suleiman, K.H.; Yates, B.C.; Berger, A.M.; Pozehl, B.; Meza, J. Translating the Pittsburgh Sleep Quality Index into Arabic. West. J. Nurs. Res. 2010, 32, 250–268. [Google Scholar] [CrossRef]
- Almadi, T.; Cathers, I.; Mansour, A.M.H.; Chow, C.M. An Arabic version of the perceived stress scale: Translation and validation study. Int. J. Nurs. Stud. 2012, 49, 84–89. [Google Scholar] [CrossRef]
- Doyle, C.; Khan, A.; Burton, N. Reliability and validity of a self-administered Arabic version of the Global Physical Activity Questionnaire (GPAQ-A). J. Sports Med. Phys. Fit. 2019, 59, 1221–1228. [Google Scholar] [CrossRef] [PubMed]
- Alkhalaf, M.M.; Edwards, C.A.; Combet, E. Validation of a food frequency questionnaire specific for salt intake in Saudi Arabian adults using urinary biomarker and repeated multiple pass 24-hour dietary recall. Proc. Nutr. Soc. 2015, 74, OCE5. [Google Scholar] [CrossRef]
- CDC. Defining Adult Overweight & Obesity. 2022. Available online: https://www.cdc.gov/obesity/basics/adult-defining.html (accessed on 30 December 2022).
- Aswathappa, J.; Garg, S.; Kutty, K.; Shankar, V. Neck Circumference as an Anthropometric Measure of Obesity in Diabetics. N. Am. J. Med. Sci. 2013, 5, 28. [Google Scholar] [CrossRef] [PubMed]
- Friedewald, W.T. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, without Use of the Preparative Ultracentrifuge—PubMed. 1972. Available online: https://pubmed.ncbi.nlm.nih.gov/4337382/ (accessed on 30 December 2022).
- Al-Daghri, N.M.; Al-Attas, O.S.; Alokail, M.S.; Alkharfy, K.M.; Yousef, M.; Sabico, S.L.; Chrousos, G.P. Diabetes mellitus type 2 and other chronic non-communicable diseases in the central region, Saudi Arabia (riyadh cohort 2): A decade of an epidemic. BMC Med. 2011, 9, 76. [Google Scholar] [CrossRef] [PubMed]
- Buysse, D.J.; Reynolds, C.F.; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Chang, K.T.; Lin, Y.A.; Tzeng, I.S.; Chuang, H.H.; Chen, J.Y. Association between self-reported sleep duration and serum lipid profile in a middle-aged and elderly population in Taiwan: A community-based, crosssectional study. BMJ Open 2017, 7, e015964. [Google Scholar] [CrossRef]
- Smiley, A.; King, D.; Harezlak, J.; Dinh, P.; Bidulescu, A. The association between sleep duration and lipid profiles: The NHANES 2013–2014. J. Diabetes Metab. Disord. 2019, 18, 315–322. [Google Scholar] [CrossRef]
- Vargas, C.A.; Guzmán-Guzmán, I.P.; Caamaño-Navarrete, F.; Jerez-Mayorga, D.; Chirosa-Ríos, L.J.; Delgado-Floody, P. Syndrome metabolic markers, fitness and body fat is associated with sleep quality in women with severe/morbid obesity. Int. J. Environ. Res. Public Health 2021, 18, 9294. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhang, X.; Duan, Y.; Mo, T.; Liu, W.; Ma, Y.; Yin, P. The Relationship Between Sleep Duration and Blood Lipids Among Chinese Middle-Aged and Older Adults: Cross-Lagged Path Analysis From CHARLS. Front. Public Health 2022, 10, 868059. [Google Scholar] [CrossRef] [PubMed]
- Ohishi, M.; Kubozono, T.; Higuchi, K.; Akasaki, Y. Hypertension, cardiovascular disease, nocturia: A systematic review of the pathophysiological mechanisms. Hypertens. Res. 2021, 44, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Victor, R.G.; Li, N.; Blyler, C.A.; Mason, O.R.; Chang, L.C.; Moy, N.P.B.; Rashid, M.A.; Weiss, J.P.; Handler, J.; Brettler, J.W.; et al. Nocturia as an Unrecognized Symptom of Uncontrolled Hypertension in Black Men Aged 35 to 49 Years. J. Am. Heart Assoc. Cardiovasc. Cerebrovasc. Dis. 2019, 8, e010794. [Google Scholar] [CrossRef]
- Moraes, W.; Poyares, D.; Zalcman, I.; de Mello, M.T.; Bittencourt, L.R.; Santos-Silva, R.; Tufik, S. Association between body mass index and sleep duration assessed by objective methods in a representative sample of the adult population. Sleep Med. 2013, 14, 312–318. [Google Scholar] [CrossRef]
- Chiang, J.K.; Lin, Y.C.; Lu, C.M.; Kao, Y.H. Snoring Index and Neck Circumference as Predictors of Adult Obstructive Sleep Apnea. Healthcare 2022, 10, 2543. [Google Scholar] [CrossRef]
- Zhao, Y.; Yan, X.; Liang, C.; Wang, L.; Zhang, H.; Yu, H. Incorporating neck circumference or neck-to-height ratio into the GOAL questionnaire to better detect and describe obstructive sleep apnea with application to clinical decisions. Front. Neurosci. 2022, 16, 1754. [Google Scholar] [CrossRef]
- Gangwar, A.; Tiwari, S.; Rawat, A.; Verma, A.; Singh, K.; Kant, S.; Garg, R.K.; Singh, P.K. Circadian Preference, Sleep Quality, Health-impairing Lifestyles Among Undergraduates of Medical University. Cureus 2018, 10, e2856. [Google Scholar] [CrossRef]
- Ruiz, A.J.; Rondon Sepúlveda, M.A.; Franco, O.H.; Cepeda, M.; Hidalgo Martinez, P.; Amado Garzón, S.B.; Salazar Ibarra, E.R.; Otero Mendoza, L. The associations between sleep disorders and anthropometric measures in adults from three Colombian cities at different altitudes. Maturitas 2016, 94, 1–10. [Google Scholar] [CrossRef]
- Ikeda, Y.; Morita, E.; Muroi, K.; Arai, Y.; Ikeda, T.; Takahashi, T.; Shiraki, N.; Doki, S.; Hori, D.; Oi, Y.; et al. Relationships between sleep efficiency and lifestyle evaluated by objective sleep assessment: SLeep Epidemiology Project at University of Tsukuba. Nagoya J. Med. Sci. 2022, 84, 554–569. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Lu, X.; Che, B.; Yu, J. Sleep Status and the Associated Factors: A Large Cross-Sectional Study in Shaanxi Province, China. Public Health 2021, 18, 1250. [Google Scholar] [CrossRef] [PubMed]
- Griffin, S.C.; Williams, A.B.; Mladen, S.N.; Perrin, P.B.; Dzierzewski, J.M.; Rybarczyk, B.D. Reciprocal Effects Between Loneliness and Sleep Disturbance in Older Americans. J. Aging Health 2020, 32, 1156–1164. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.L.; Rong, C.X.; Bo, C.; Min, B.Y.; Hong, L.J.; Wei, Z.X.; Zhong, D.; Hao, W.; Quan, M.S.; Hua, Z.W.; et al. Gender-specific Association of Sleep Duration with Body Mass Index, Waist Circumference, Body Fat in Chinese Adults. Biomed. Environ. Sci. 2017, 30, 157–169. [Google Scholar] [CrossRef]
- Štefan, L.; Horvatin, M.; Baić, M. Are sedentary behaviors associated with sleep duration? A cross-sectional case from Croatia. Int. J. Environ. Res. Public Health 2019, 16, 200. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, R.; Tan, A.; Ye, B.; Zhang, X.; Wang, Y.; Zou, Y.; Ma, L.; Chen, G.; Li, R.; et al. Long sleep duration predicts a higher risk of obesity in adults: A meta-analysis of prospective cohort studies. J. Public Health 2019, 41, e158–e168. [Google Scholar] [CrossRef]
- Liu, H.; Chen, G.; Wen, J.; Wang, A.; Mu, Y.; Dou, J.; Gu, W.; Zang, L.; Zhang, S.; Lyu, Z. Association between sleep duration and incidence of type 2 diabetes in China: The REACTION study. Chin. Med. J. 2022, 135, 1242–1248. [Google Scholar] [CrossRef]
- Tchernof, A.; Després, J.P. Pathophysiology of human visceral obesity: An update. Physiol. Rev. 2013, 93, 359–404. [Google Scholar] [CrossRef]
- Bastard, J.-P.; Maachi, M.; Lagathu, C.; Kim, M.J.; Caron, M.; Vidal, H.; Capeau, J.; Feve, B. Recent Advances in the Relationship between Obesity, Inflammation, Insulin Resistance. Eur. Cytokine Netw. 2006, 17, 4–12. [Google Scholar]
- Vgontzas, A.N. Does obesity play a major role in the pathogenesis of sleep apnoea and its associated manifestations via inflammation, visceral adiposity, insulin resistance? Arch. Physiol. Biochem. 2008, 114, 211–223. [Google Scholar] [CrossRef]
- Li, Y.; Vgontzas, A.N.; Fernandez-Mendoza, J.; Kritikou, I.; Basta, M.; Pejovic, S.; Gaines, J.; Bixler, E.O. Objective, but Not Subjective, Sleepiness is Associated With Inflammation in Sleep Apnea. Sleep 2017, 40, zsw033. [Google Scholar] [CrossRef]
- Hong, S.; Mills, P.J.; Loredo, J.S.; Adler, K.A.; Dimsdale, J.E. The association between interleukin-6, sleep, demographic characteristics. Brain Behav. Immun. 2005, 19, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Mamalaki, E.; Tsapanou, A.; Anastasiou, C.A.; Kosmidis, M.H.; Dardiotis, E.; Hadjigeorgiou, G.M.; Sakka, P.; Scarmeas, N.; Yannakoulia, M. Associations between sleep and obesity indices in older adults: Results from the HELIAD study. Aging Clin. Exp. Res. 2019, 31, 1645–1650. [Google Scholar] [CrossRef] [PubMed]
- Yazdanpanah, M.H.; Farjam, M.; Naghizadeh, M.M.; Jedi, F.; Mohebi, K.; Homayounfar, R. Sleep duration and anthropometric indices in an Iranian population: The Fasa PERSIAN cohort study. Sci. Rep. 2021, 11, 16249. [Google Scholar] [CrossRef] [PubMed]
- Nishiguchi, S.; Yamada, M.; Kajiwara, Y.; Sonoda, T.; Yoshimura, K.; Kayama, H.; Tanigawa, T.; Yukutake, T.; Aoyama, T. Effect of physical activity at midlife on skeletal muscle mass in old age in community-dwelling older women: A cross-sectional study. J. Clin. Gerontol. Geriatr. 2014, 5, 18–22. [Google Scholar] [CrossRef]
- Lee, P.F.; Ho, C.C.; Yeh, D.P.; Hung, C.T.; Chang, Y.C.; Liu, C.C.; Tseng, C.Y.; Hsieh, X.Y. Cross-sectional associations of physical fitness performance level and sleep duration among older adults: Results from the national physical fitness survey in Taiwan. Int. J. Environ. Res. Public Health 2020, 17, 388. [Google Scholar] [CrossRef]
- St-Onge, M.P.; Mikic, A.; Pietrolungo, C.E. Effects of diet on sleep quality. Adv. Nutr. 2016, 7, 938–949. [Google Scholar] [CrossRef]
- Tavakoli, A.; Mirzababaei, A.; Mirzaei, K. Association between low carbohydrate diet (LCD) and sleep quality by mediating role of inflammatory factors in women with overweight and obesity: A cross-sectional study. Food Sci. Nutr. 2021, 9, 6252–6261. [Google Scholar] [CrossRef]
- Štefan, L.; Vrgoč, G.; Rupčić, T.; Sporiš, G.; Sekulić, D. Sleep Duration and Sleep Quality Are Associated with Physical Activity in Elderly People Living in Nursing Homes. Int. J. Environ. Res. Public Health 2018, 15, 2512. [Google Scholar] [CrossRef]
PSQI Scores | |||
---|---|---|---|
Good Sleep (<5) | Poor Sleep (≥5) | p-Value | |
Age (years) | 36.91 ± 12.59 | 34.87 ± 12.76 | 0.19 |
Sex | 0.25 | ||
Males | 47 (14.6%) | 274 (85.4%) | |
Females | 31 (18.7%) | 135 (81.3%) | |
Education | 0.34 | ||
Secondary or less | 17 (13.4%) | 110 (86.6%) | |
University | 61 (16.9%) | 299 (83.1%) | |
Family income (>10,000 SAR/month) | 0.07 | ||
<10,000 (SAR) | 22 (12.0%) | 161 (88.0%) | |
≥10,000 (SAR) | 55 (18.2%) | 247 (81.8%) | |
Marital status | 0.11 | ||
Married | 44 (18.7%) | 191 (81.3%) | |
Single | 34 (13.5%) | 218 (86.5%) | |
Stress (PSS) | 12.49 ± 6.60 | 17.85 ± 6.98 | <0.001 |
Anthropometrics | |||
BMI (kg/m2) | 25.74 ± 5.30 | 28.15 ± 6.23 | <0.001 |
NC (cm) | 34.56 ± 3.87 | 35.26 ± 4.10 | 0.16 |
WC (cm) | 82.55 ± 15.17 | 87.88 ± 16.78 | <0.001 |
WHR (ratio) | 0.84 ± 0.11 | 0.86 ± 0.11 | 0.05 |
Fat percentage % | 32.63 ± 9.85 | 36.65 ± 10.60 | <0.001 |
Muscle mass (kg) | 34.15 ± 11.96 | 34.73 ± 11.35 | 0.68 |
Biochemical data | |||
Fasting glucose levels (mg/dL) | 93.90 ± 18.94 | 92.63 ± 18.65 | 0.61 |
Fasting insulin levels (μU/mL) | 9.63 ± 6.21 | 11.85 ± 19.24 | 0.36 |
Cholesterol (mg/dL) | 181.68 ± 39.75 | 183.64 ± 40.94 | 0.72 |
TG (mg/dL) | 73.73 ± 34.44 | 89.98 ± 59.35 | <0.001 |
LDL (mg/dL) | 107.61 ± 33.90 | 108.57 ± 33.30 | 0.83 |
HDL (mg/dL) | 55.15 ± 15.83 | 52.07 ± 11.11 | 0.06 |
Diet | |||
Energy intake (kcal/day) | 3824 ± 1630.38 | 4306 ± 1913.70 | 0.02 |
Fat (gm) | 72 ± 38.17 | 70 ± 42.05 | 0.71 |
Carbohydrates (gm) | 258 ± 138.40 | 233 ± 134.79 | 0.14 |
Proteins (gm) | 79 ± 37.67 | 73 ± 43.44 | 0.21 |
Physical activity | |||
Total MET | 1524.42 ± 1512.67 | 1513.27 ± 2824.86 | 0.97 |
Sitting | 36.71 ± 13.46 | 38.05 ± 12.62 | 0.40 |
Smoking | |||
No | 70 (16.6%) | 352 (83.4%) | 0.38 |
Yes | 8 (12.3%) | 57 (87.7%) |
aOR | 95% CI | p-Value | |
---|---|---|---|
Energy intake Kcal/day | 1.00 | 1.00; 1.00 | 0.16 |
BMI (kg/m2) | 1.09 | 0.99; 1.20 | 0.08 |
WC (cm) | 1.05 | 1.00; 1.10 | 0.06 |
NC (cm) | 0.90 | 0.79; 1.02 | 0.09 |
Carbohydrates (gm) | 0.996 | 0.993; 0.999 | <0.001 |
Proteins (gm) | 1.00 | 0.99; 1.01 | 0.66 |
Stress | 1.15 | 1.09; 1.22 | <0.001 |
Age, years | 0.98 | 0.95; 1.01 | 0.26 |
Income (≥10,000 vs. <10,000 *) | 0.56 | 0.27; 1.17 | 0.12 |
Marital status (single vs. married *) | 2.97 | 1.32; 6.71 | <0.001 |
TG (mg/dL) | 1.01 | 1.002; 1.02 | 0.01 |
HDL (mg/dL) | 0.98 | 0.95; 1.01 | 0.14 |
Sleep Duration Categories | |||||
---|---|---|---|---|---|
>7 h | 6–7 h | 5–6 h | <5 h | p-Value | |
Age (years) | 32.46 ± 13.12 | 38.30 ± 12.87 | 36.20 ± 12.64 | 35.24 ± 12.09 | <0.001 |
Sex | 0.17 | ||||
Males | 97 (30.2%) | 48 (15.0%) | 76 (23.7%) | 100 (31.2%) | |
Females | 36 (21.8%) | 28 (17.0%) | 50 (30.3%) | 51 (30.9%) | |
Education | 0.54 | ||||
Secondary or less | 40 (31.5%) | 19 (15.0%) | 28 (22.0%) | 40 (31.5%) | |
University | 93 (25.9%) | 57 (15.9%) | 98 (27.3%) | 111 (30.9%) | |
Family income (SAR/month) | 0.34 | ||||
<10,000 (SAR) | 54 (29.7%) | 25 (13.7%) | 41 (22.5%) | 62 (34.1%) | |
≥10,000 (SAR) | 78 (25.8%) | 51 (16.9%) | 84 (27.8%) | 89 (29.5%) | |
Marital status | <0.001 | ||||
Married | 48 (20.4%) | 43 (18.3%) | 69 (29.4%) | 75 (31.9%) | |
Single | 85 (33.9%) | 33 (13.1%) | 57 (22.7%) | 76 (30.3%) | |
Anthropometrics | |||||
BMI (kg/m2) | 26.81 ± 5.88 | 26.83 ± 5.71 | 28.88 ± 6.11 | 28.18 ± 6.49 | 0.02 |
WC (cm) | 84.09 ± 15.20 | 86.05 ± 16.27 | 90.16 ± 17.46 | 87.55 ± 17.03 | 0.02 |
NC (cm) | 33.95 ± 3.54 | 34.77 ± 4.06 | 35.82 ± 4.33 | 35.83 ± 4.08 | <0.0001 |
WHR (ratio) | 0.83 ± 0.10 | 0.84 ± 0.11 | 0.87 ± 0.11 | 0.88 ± 0.12 | <0.0001 |
Fat percentage % | 35.94 ± 11.17 | 33.99 ± 10.01 | 36.76 ± 10.58 | 36.57 ± 10.26 | 0.28 |
Muscle mass (Kg) | 34.96 ± 12.21 | 38.38 ± 13.25 | 32.92 ± 11.37 | 33.90 ± 9.35 | <0.001 |
Diet | |||||
Energy intake (kcal/day) | 4095 ± 1773 | 4314 ± 2019.90 | 4442 ± 1993.69 | 4106 ± 1779.95 | 0.37 |
Fat (gm) | 73 ± 38.60 | 80± 41.85 | 67 ± 35.65 | 65 ± 47.01 | 0.05 |
Carbohydrates (gm) | 251 ± 121.65 | 262 ± 15 | 241 ± 126.77 | 206 ± 134.51 | <0.001 |
Proteins (gm) | 74 ± 41.41 | 86 ± 42.94 | 73 ± 40.85 | 67 ± 43.75 | 0.01 |
Labs | |||||
Fasting glucose levels (mg/dL) | 90.40 ± 15.33 | 91.05 ± 8.59 | 94.17 ± 19.69 | 94.98 ± 23.94 | 0.22 |
Fasting insulin levels (mg/dL) | 10.73 ± 8.34 | 10.14 ± 9.50 | 14.34 ± 32.66 | 10.60 ± 7.07 | 0.35 |
Cholesterol (mg/dL) | 177.09 ± 34.86 | 190.51 ± 45.82 | 186.40 ± 41.79 | 182.40 ± 41.41 | 0.16 |
TG (mg/dL) | 71.20 ± 33.38 | 82.20 ± 33.80 | 99.70 ± 60.41 | 94.56 ± 73.58 | <0.001 |
LDL (mg/dL) | 102.17 ± 28.43 | 113.42 ± 36.22 | 111.35 ± 33.00 | 108.83 ± 35.75 | 0.11 |
HDL (mg/dL) | 53.79 ± 14.88 | 53.46 ± 10.71 | 51.38 ± 10.38 | 51.97 ± 11.31 | 0.45 |
Physical Activity | |||||
Total MET | 1266.49 ± 1620.09 | 1741.89 ± 4150.20 | 2034.53 ± 3177.40 | 1175.71 ± 1765.39 | 0.03 |
Sitting | 38.98 ± 12.86 | 36.48 ± 12.65 | 37.30 ± 12.27 | 38.04 ± 13.10 | 0.54 |
Stress (PSS) | 17.27 ± 7.93 | 15.62 ± 8.07 | 16.50 ± 6.46 | 17.87 ± 6.54 | 0.12 |
Smoking | 0.91 | ||||
No | 115 (27.3%) | 64 (15.2%) | 110 (26.1%) | 132 (31.4%) | |
Yes | 18 (27.7%) | 12 (18.5%) | 16 (24.6%) | 19 (29.2%) |
Model 1 | Model 2 | Model 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
Variables | aOR | 95%CI | p | aOR | 95%CI | p | aOR | 95%CI | p |
Gender | 0.81 | 0.24; 2.74 | 0.73 | 0.39 | 0.13; 1.19 | 0.09 | 0.51 | 0.17; 1.56 | 0.23 |
Age | 1.03 | 0.99; 1.06 | 0.10 | 0.99 | 0.96; 1.02 | 0.53 | 0.99 | 0.96; 1.02 | 0.40 |
BMI (kg/m2) | 0.99 | 0.88; 1.12 | 0.91 | 1.07 | 0.96; 1.20 | 0.20 | 1.11 | 1.00; 1.24 | 0.05 |
WC (cm) | 0.98 | 0.93; 1.03 | 0.37 | 0.96 | 0.91; 1.01 | 0.10 | 0.93 | 0.88; 0.97 | <0.001 |
NC (cm) | 1.01 | 0.86; 1.19 | 0.88 | 1.14 | 0.99; 1.31 | 0.07 | 1.23 | 1.08; 1.41 | <0.001 |
Fat (gm) | 1.00 | 0.99; 1.01 | 0.65 | 1.00 | 0.99; 1.01 | 0.90 | 1.00 | 0.99; 1.01 | 0.66 |
Carbohydrates (gm) | 1.00 | 0.99; 1.004 | 0.74 | 1.00 | 0.99; 1.003 | 0.93 | 0.99 | 0.992; 0.999 | 0.01 |
Proteins (gm) | 1.00 | 0.99; 1.01 | 0.36 | 0.99 | 0.98; 1.00 | 0.21 | 1.00 | 0.99; 1.01 | 0.82 |
Fasting glucose levels (mg/dL) | 0.99 | 0.97; 1.02 | 0.47 | 0.99 | 0.97; 1.02 | 0.55 | 1.00 | 0.98; 1.02 | 0.91 |
Total MET | 1.00 | 1.00; 1.00 | 0.28 | 1.00 | 1.00; 1.00 | 0.29 | 1.00 | 1.00; 1.00 | 0.14 |
Stress | 0.99 | 0.95; 1.04 | 0.80 | 1.02 | 0.97; 1.07 | 0.41 | 1.04 | 0.99; 1.09 | 0.07 |
Marital status (single vs. married *) | 0.65 | 0.29; 1.46 | 0.29 | 0.46 | 0.22; 0.96 | 0.03 | 0.70 | 0.34; 1.44 | 0.33 |
Average muscle mass | 1.03 | 0.99; 1.06 | 0.12 | 0.96 | 0.93; 0.99 | 0.01 | 0.98 | 0.95; 1.01 | 0.20 |
Cholesterol (mg/dL) | 1.01 | 0.99; 1.02 | 0.58 | 1.00 | 0.98; 1.02 | 0.93 | 0.99 | 0.98; 1.01 | 0.37 |
TG (mg/dL) | 1.00 | 0.99; 1.02 | 0.52 | 1.01 | 1.00; 1.02 | <0.001 | 1.01 | 1.004; 1.02 | <0.001 |
LDL (mg/dL) | 1.00 | 0.99; 1.02 | 0.67 | 1.00 | 0.99; 1.02 | 0.72 | 1.01 | 0.99; 1.03 | 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AL-Musharaf, S.; Albedair, B.; Alfawaz, W.; Aldhwayan, M.; Aljuraiban, G.S. The Relationships between Various Factors and Sleep Status: A Cross-Sectional Study among Healthy Saudi Adults. Nutrients 2023, 15, 4090. https://doi.org/10.3390/nu15184090
AL-Musharaf S, Albedair B, Alfawaz W, Aldhwayan M, Aljuraiban GS. The Relationships between Various Factors and Sleep Status: A Cross-Sectional Study among Healthy Saudi Adults. Nutrients. 2023; 15(18):4090. https://doi.org/10.3390/nu15184090
Chicago/Turabian StyleAL-Musharaf, Sara, Basmah Albedair, Waad Alfawaz, Madhawi Aldhwayan, and Ghadeer S. Aljuraiban. 2023. "The Relationships between Various Factors and Sleep Status: A Cross-Sectional Study among Healthy Saudi Adults" Nutrients 15, no. 18: 4090. https://doi.org/10.3390/nu15184090
APA StyleAL-Musharaf, S., Albedair, B., Alfawaz, W., Aldhwayan, M., & Aljuraiban, G. S. (2023). The Relationships between Various Factors and Sleep Status: A Cross-Sectional Study among Healthy Saudi Adults. Nutrients, 15(18), 4090. https://doi.org/10.3390/nu15184090