Coenzyme Q10 Supplementation in Athletes: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Eligibility Criteria
2.2. Information Sources and Search Strategy
2.3. Selection and Data Collection Process
2.4. Data Items
- (1)
- Body composition outcomes such as Body Mass Index; Fat percentage (%); and Body mass or Weight (kg).
- (2)
- REDOX Balance and Oxidative Stress: Carbonyls; Catalase; Malonaldehyde (MDA); Glutathione Peroxidase (GPx); 8-ODHdG; Myeloperoxidase (MPO); NADPH oxidase; Cytosolic ROS; H2O2; Hydroperoxides; Scavenging activity against superoxide anion; TAC; TAS; Oxidative DNA damage; and Xanthine Oxidase (XO).
- (3)
- Biochemical outcomes: Alanine aminotransferase (ALT); Aspartate aminotransferase (AST); Blood urea nitrogen; Creatinine; Creatine Kinase (CK); Creatine phosphokinase (CPK); Free Fatty Acids (FFA); Gamma-glutamyl transpeptidase (γGT); Glucose; High-Density Lipoprotein (HDL); Lactate; Lactic acid clarity; Lactate score; Lactate pyruvate ratio score; non-esterified fatty acid (NEFA); Myoglobin; Phospholipids; Total cholesterol; Total bilirubin; Triglycerides; Uric Acid; and urine creatinine.
- (4)
- Performance outcomes were divided and shown in Table 2.
2.5. Methodological Quality Assessment
3. Results
3.1. Characterization of Included Studies
3.2. Body Composition and Biochemical Outcomes
3.3. Fatigue Markers
3.4. Performance Outcomes
3.5. Methodological Quality Assessment
4. Discussion
4.1. Limitations and Strengths
4.2. Future Directions and Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mok, A.; Khaw, K.T.; Luben, R.; Wareham, N.; Brage, S. Physical activity trajectories and mortality: Population based cohort study. BMJ 2019, 365, l2323. [Google Scholar] [CrossRef] [PubMed]
- Stewart, R.A.H.; Held, C.; Hadziosmanovic, N.; Armstrong, P.W.; Cannon, C.P.; Granger, C.B.; Hagström, E.; Hochman, J.S.; Koenig, W.; Lonn, E.; et al. Physical Activity and Mortality in Patients with Stable Coronary Heart Disease. J. Am. Coll. Cardiol. 2017, 70, 1689–1700. [Google Scholar] [CrossRef] [PubMed]
- Haugen, T.; Seiler, S.; Sandbakk, Ø.; Tønnessen, E. The Training and Development of Elite Sprint Performance: An Integration of Scientific and Best Practice Literature. Sports Med. Open 2019, 5, 44. [Google Scholar] [CrossRef] [PubMed]
- Stožer, A.; Vodopivc, P.; Križančić Bombek, L. Pathophysiology of exercise-induced muscle damage and its structural, functional, metabolic, and clinical consequences. Physiol. Res. 2020, 69, 565–598. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, P.M.; Hubal, M.J. Exercise-induced muscle damage in humans. Am. J. Phys. Med. Rehabil. 2002, 81, S52–S69. [Google Scholar] [CrossRef] [PubMed]
- Maughan, R.J.; Shirreffs, S.M. Nutrition for sports performance: Issues and opportunities. Proc. Nutr. Soc. 2012, 71, 112–119. [Google Scholar] [CrossRef]
- Vitale, K.; Getzin, A. Nutrition and Supplement Update for the Endurance Athlete: Review and Recommendations. Nutrients 2019, 11, 1289. [Google Scholar] [CrossRef]
- Peeling, P.; Castell, L.M.; Derave, W.; de Hon, O.; Burke, L.M. Sports Foods and Dietary Supplements for Optimal Function and Performance Enhancement in Track-and-Field Athletes. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 198–209. [Google Scholar] [CrossRef]
- Rawson, E.S.; Miles, M.P.; Larson-Meyer, D.E. Dietary Supplements for Health, Adaptation, and Recovery in Athletes. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 188–199. [Google Scholar] [CrossRef]
- Arenas-Jal, M.; Suñé-Negre, J.M.; García-Montoya, E. Coenzyme Q10 supplementation: Efficacy, safety, and formulation challenges. Compr. Rev. Food Sci. Food Saf. 2020, 19, 574–594. [Google Scholar] [CrossRef]
- Raizner, A.E. Coenzyme Q(10). Methodist Debakey Cardiovasc. J. 2019, 15, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Hargreaves, I.; Heaton, R.A.; Mantle, D. Disorders of Human Coenzyme Q10 Metabolism: An Overview. Int. J. Mol. Sci. 2020, 21, 6695. [Google Scholar] [CrossRef] [PubMed]
- Akbari, A.; Mobini, G.R.; Agah, S.; Morvaridzadeh, M.; Omidi, A.; Potter, E.; Fazelian, S.; Ardehali, S.H.; Daneshzad, E.; Dehghani, S. Coenzyme Q10 supplementation and oxidative stress parameters: A systematic review and meta-analysis of clinical trials. Eur. J. Clin. Pharmacol. 2020, 76, 1483–1499. [Google Scholar] [CrossRef]
- Abdeen, A.; Abdelkader, A.; Elgazzar, D.; Aboubakr, M.; Abdulah, O.A.; Shoghy, K.; Abdel-Daim, M.; El-Serehy, H.A.; Najda, A.; El-Mleeh, A. Coenzyme Q10 supplementation mitigates piroxicam-induced oxidative injury and apoptotic pathways in the stomach, liver, and kidney. Biomed. Pharmacother. 2020, 130, 110627. [Google Scholar] [CrossRef] [PubMed]
- Sawaddiruk, P.; Apaijai, N.; Paiboonworachat, S.; Kaewchur, T.; Kasitanon, N.; Jaiwongkam, T.; Kerdphoo, S.; Chattipakorn, N.; Chattipakorn, S.C. Coenzyme Q10 supplementation alleviates pain in pregabalin-treated fibromyalgia patients via reducing brain activity and mitochondrial dysfunction. Free Radic. Res. 2019, 53, 901–909. [Google Scholar] [CrossRef]
- Pradhan, N.; Singh, C.; Singh, A. Coenzyme Q10 a mitochondrial restorer for various brain disorders. Naunyn Schmiedebergs Arch. Pharmacol. 2021, 394, 2197–2222. [Google Scholar] [CrossRef]
- Testai, L.; Martelli, A.; Flori, L.; Cicero, A.F.G.; Colletti, A. Coenzyme Q(10): Clinical Applications beyond Cardiovascular Diseases. Nutrients 2021, 13, 1697. [Google Scholar] [CrossRef]
- Pham, T.; MacRae, C.L.; Broome, S.C.; D’Souza, R.F.; Narang, R.; Wang, H.W.; Mori, T.A.; Hickey, A.J.R.; Mitchell, C.J.; Merry, T.L. MitoQ and CoQ10 supplementation mildly suppresses skeletal muscle mitochondrial hydrogen peroxide levels without impacting mitochondrial function in middle-aged men. Eur. J. Appl. Physiol. 2020, 120, 1657–1669. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Yang, K.L.; Zeng, L.T.; Wu, X.H.; Huang, H.Y. Effectiveness of Coenzyme Q10 Supplementation for Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Int. J. Endocrinol. 2018, 2018, 6484839. [Google Scholar] [CrossRef]
- Sue-Ling, C.B.; Abel, W.M.; Sue-Ling, K. Coenzyme Q10 as Adjunctive Therapy for Cardiovascular Disease and Hypertension: A Systematic Review. J. Nutr. 2022, 152, 1666–1674. [Google Scholar] [CrossRef]
- Zhang, T.; He, Q.; Xiu, H.; Zhang, Z.; Liu, Y.; Chen, Z.; Hu, H. Efficacy and Safety of Coenzyme Q10 Supplementation in the Treatment of Polycystic Ovary Syndrome: A Systematic Review and Meta-analysis. Reprod. Sci. 2023, 30, 1033–1048. [Google Scholar] [CrossRef]
- Drobnic, F.; Lizarraga, M.A.; Caballero-García, A.; Cordova, A. Coenzyme Q(10) Supplementation and Its Impact on Exercise and Sport Performance in Humans: A Recovery or a Performance-Enhancing Molecule? Nutrients 2022, 14, 1811. [Google Scholar] [CrossRef] [PubMed]
- Emami, A. The Impact of Pre-Cooling and CoQ(10) Supplementation on Mediators of Inflammatory Cytokines in Elite Swimmers. Nutr. Cancer 2020, 72, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Emami, A.; Bazargani-Gilani, B. Effect of oral CoQ(10) supplementation along with precooling strategy on cellular response to oxidative stress in elite swimmers. Food Funct. 2018, 9, 4384–4393. [Google Scholar] [CrossRef] [PubMed]
- Emami, A.; Tofighi, A.; Asri-Rezaei, S.; Bazargani-Gilani, B. The effect of short-term coenzyme Q10 supplementation and pre-cooling strategy on cardiac damage markers in elite swimmers. Br. J. Nutr. 2018, 119, 381–390. [Google Scholar] [CrossRef]
- Kon, M.; Tanabe, K.; Akimoto, T.; Kimura, F.; Tanimura, Y.; Shimizu, K.; Okamoto, T.; Kono, I. Reducing exercise-induced muscular injury in kendo athletes with supplementation of coenzyme Q10. Br. J. Nutr. 2008, 100, 903–909. [Google Scholar] [CrossRef]
- Shimizu, K.; Kon, M.; Tanimura, Y.; Hanaoka, Y.; Kimura, F.; Akama, T.; Kono, I. Coenzyme Q10 supplementation downregulates the increase of monocytes expressing toll-like receptor 4 in response to 6-day intensive training in kendo athletes. Appl. Physiol. Nutr. Metab. 2015, 40, 575–581. [Google Scholar] [CrossRef]
- Suzuki, Y.; Nagato, S.; Sakuraba, K.; Morio, K.; Sawaki, K. Short-term ubiquinol-10 supplementation alleviates tissue damage in muscle and fatigue caused by strenuous exercise in male distance runners. Int. J. Vitam. Nutr. Res. 2021, 91, 261–270. [Google Scholar] [CrossRef]
- Braun, B.; Clarkson, P.M.; Freedson, P.S.; Kohl, R.L. Effects of coenzyme Q10 supplementation on exercise performance, VO2max, and lipid peroxidation in trained cyclists. Int. J. Sport. Nutr. Exerc. Metab. 1991, 1, 353–365. [Google Scholar] [CrossRef]
- Deichmann, R.E.; Lavie, C.J.; Dornelles, A.C. Impact of coenzyme Q-10 on parameters of cardiorespiratory fitness and muscle performance in older athletes taking statins. Phys. Sportsmed. 2012, 40, 88–95. [Google Scholar] [CrossRef]
- Malm, C.; Svensson, M.; Ekblom, B.; Sjödin, B. Effects of ubiquinone-10 supplementation and high intensity training on physical performance in humans. Acta Physiol. Scand. 1997, 161, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Ostman, B.; Sjödin, A.; Michaëlsson, K.; Byberg, L. Coenzyme Q10 supplementation and exercise-induced oxidative stress in humans. Nutrition 2012, 28, 403–417. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Castro, J.; Guisado, R.; Kajarabille, N.; García, C.; Guisado, I.M.; de Teresa, C.; Ochoa, J.J. Coenzyme Q(10) supplementation ameliorates inflammatory signaling and oxidative stress associated with strenuous exercise. Eur. J. Nutr. 2012, 51, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Holloway, C.J.; Murray, A.J.; Mitchell, K.; Martin, D.S.; Johnson, A.W.; Cochlin, L.E.; Codreanu, I.; Dhillon, S.; Rodway, G.W.; Ashmore, T.; et al. Oral Coenzyme Q10 supplementation does not prevent cardiac alterations during a high altitude trek to everest base cAMP. High Alt. Med. Biol. 2014, 15, 459–467. [Google Scholar] [CrossRef]
- Weston, S.B.; Zhou, S.; Weatherby, R.P.; Robson, S.J. Does exogenous coenzyme Q10 affect aerobic capacity in endurance athletes? Int. J. Sport. Nutr. 1997, 7, 197–206. [Google Scholar] [CrossRef]
- Mohammadi, M.; Naderi, A.; Siavoshi, H.; Mohammadi, F.; Abadi, M.P. The effect of short-term use of Coenzyme Q10 supplementation on selected physical and physiological characteristics of young male elite wrestlers. Rev. Bras. Nutr. Esportiva 2020, 14, 53–65. [Google Scholar]
- Ylikoski, T.; Piirainen, J.; Hanninen, O.; Penttinen, J. The effect of coenzyme Q10 on the exercise performance of cross-country skiers. Mol. Aspects Med. 1997, 18 (Suppl. S1), S283–S290. [Google Scholar] [CrossRef]
- Orlando, P.; Silvestri, S.; Galeazzi, R.; Antonicelli, R.; Marcheggiani, F.; Cirilli, I.; Bacchetti, T.; Tiano, L. Effect of ubiquinol supplementation on biochemical and oxidative stress indexes after intense exercise in young athletes. Redox Rep. 2018, 23, 136–145. [Google Scholar] [CrossRef]
- Snider, I.P.; Bazzarre, T.L.; Murdoch, S.D.; Goldfarb, A. Effects of coenzyme athletic performance system as an ergogenic aid on endurance performance to exhaustion. Int. J. Sport. Nutr. 1992, 2, 272–286. [Google Scholar] [CrossRef]
- Ghavami, A.; Mohammadi, H.; Hadi, A.; Ziaei, R.; Nattagh-Eshtivani, E.; Sheykhrobat, M.V.; Askari, G. Effects of Coenzyme Q10 Supplementation on Anthropometric Indices in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int. J. Prev. Med. 2020, 11, 181. [Google Scholar]
- Lahera, V.; de Las Heras, N.; López-Farré, A.; Manucha, W.; Ferder, L. Role of Mitochondrial Dysfunction in Hypertension and Obesity. Curr. Hypertens. Rep. 2017, 19, 11. [Google Scholar] [CrossRef] [PubMed]
- Heinonen, S.; Jokinen, R.; Rissanen, A.; Pietiläinen, K.H. White adipose tissue mitochondrial metabolism in health and in obesity. Obes. Rev. 2020, 21, e12958. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.; Leray, V.; Diez, M.; Serisier, S.; Le Bloc’h, J.; Siliart, B.; Dumon, H. Liver lipid metabolism. J. Anim. Physiol. Anim. Nutr. 2008, 92, 272–283. [Google Scholar] [CrossRef]
- Serra, D.; Mera, P.; Malandrino, M.I.; Mir, J.F.; Herrero, L. Mitochondrial fatty acid oxidation in obesity. Antioxid. Redox Signal. 2013, 19, 269–284. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.C.; Chang, P.S.; Chen, H.W.; Lee, P.F.; Chang, Y.C.; Tseng, C.Y.; Lin, P.T. Ubiquinone Supplementation with 300 mg on Glycemic Control and Antioxidant Status in Athletes: A Randomized, Double-Blinded, Placebo-Controlled Trial. Antioxidants 2020, 9, 823. [Google Scholar] [CrossRef] [PubMed]
- Pingitore, A.; Lima, G.P.; Mastorci, F.; Quinones, A.; Iervasi, G.; Vassalle, C. Exercise and oxidative stress: Potential effects of antioxidant dietary strategies in sports. Nutrition 2015, 31, 916–922. [Google Scholar] [CrossRef]
- Higgins, M.R.; Izadi, A.; Kaviani, M. Antioxidants and Exercise Performance: With a Focus on Vitamin E and C Supplementation. Int. J. Environ. Res. Public Health 2020, 17, 8452. [Google Scholar] [CrossRef]
- Suzuki, K.; Tominaga, T.; Ruhee, R.T.; Ma, S. Characterization and Modulation of Systemic Inflammatory Response to Exhaustive Exercise in Relation to Oxidative Stress. Antioxidants 2020, 9, 401. [Google Scholar] [CrossRef]
- Quindry, J.; Dumke, C.; Slivka, D.; Ruby, B. Impact of extreme exercise at high altitude on oxidative stress in humans. J. Physiol. 2016, 594, 5093–5104. [Google Scholar] [CrossRef]
- Gholnari, T.; Aghadavod, E.; Soleimani, A.; Hamidi, G.A.; Sharifi, N.; Asemi, Z. The Effects of Coenzyme Q10 Supplementation on Glucose Metabolism, Lipid Profiles, Inflammation, and Oxidative Stress in Patients With Diabetic Nephropathy: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Am. Coll. Nutr. 2018, 37, 188–193. [Google Scholar] [CrossRef]
- Zahedi, H.; Eghtesadi, S.; Seifirad, S.; Rezaee, N.; Shidfar, F.; Heydari, I.; Golestan, B.; Jazayeri, S. Effects of CoQ10 Supplementation on Lipid Profiles and Glycemic Control in Patients with Type 2 Diabetes: A randomized, double blind, placebo-controlled trial. J. Diabetes Metab. Disord. 2014, 13, 81. [Google Scholar] [CrossRef] [PubMed]
- Papa, S.; Martino, P.L.; Capitanio, G.; Gaballo, A.; De Rasmo, D.; Signorile, A.; Petruzzella, V. The oxidative phosphorylation system in mammalian mitochondria. Adv. Exp. Med. Biol. 2012, 942, 3–37. [Google Scholar] [CrossRef] [PubMed]
- Neufer, P.D. The Bioenergetics of Exercise. Cold Spring Harb. Perspect. Med. 2018, 8, a029678. [Google Scholar] [CrossRef] [PubMed]
- Purpura, M.; Rathmacher, J.A.; Sharp, M.H.; Lowery, R.P.; Shields, K.A.; Partl, J.M.; Wilson, J.M.; Jäger, R. Oral Adenosine-5′-triphosphate (ATP) Administration Increases Postexercise ATP Levels, Muscle Excitability, and Athletic Performance Following a Repeated Sprint Bout. J. Am. Coll. Nutr. 2017, 36, 177–183. [Google Scholar] [CrossRef]
- Farsi, F.; Mohammadshahi, M.; Alavinejad, P.; Rezazadeh, A.; Zarei, M.; Engali, K.A. Functions of Coenzyme Q10 Supplementation on Liver Enzymes, Markers of Systemic Inflammation, and Adipokines in Patients Affected by Nonalcoholic Fatty Liver Disease: A Double-Blind, Placebo-Controlled, Randomized Clinical Trial. J. Am. Coll. Nutr. 2016, 35, 346–353. [Google Scholar] [CrossRef]
- Liao, P.; Zhang, Y.; Liao, Y.; Zheng, N.J.; Zhang, X. Effects of coenzyme Q10 supplementation on liver mitochondrial function and aerobic capacity in adolescent athletes. Zhongguo Ying Yong Sheng Li Xue Za Zhi 2007, 23, 491–494. [Google Scholar]
- Tornero-Aguilera, J.F.; Jimenez-Morcillo, J.; Rubio-Zarapuz, A.; Clemente-Suárez, V.J. Central and Peripheral Fatigue in Physical Exercise Explained: A Narrative Review. Int. J. Environ. Res. Public Health 2022, 19, 3909. [Google Scholar] [CrossRef]
- Ball, D.; Maughan, R.J. Fatigue as a limitation to performance. Exp. Physiol. 2021, 106, 2291–2293. [Google Scholar] [CrossRef]
- Skough, K.; Krossén, C.; Heiwe, S.; Theorell, H.; Borg, K. Effects of resistance training in combination with coenzyme Q10 supplementation in patients with post-polio: A pilot study. J. Rehabil. Med. 2008, 40, 773–775. [Google Scholar] [CrossRef]
- Gökbel, H.; Gül, I.; Belviranl, M.; Okudan, N. The effects of coenzyme Q10 supplementation on performance during repeated bouts of supramaximal exercise in sedentary men. J. Strength Cond. Res. 2010, 24, 97–102. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria | |
---|---|---|
Population | Athletes from 17 years old | Non-athletes |
Intervention | Coenzyme Q10 supplementation | No Coenzyme Q10 supplementation or presence of another type of supplementation or medication |
Control | Subjects who did not receive COQ10 supplementation from 17 years of age | Patients with diseases, undergoing medication, or exposed to pharmacological interventions |
Outcomes | Metabolic, physiological, and athletic performance parameters | No Metabolic, physiological, and athletic performance parameters |
Study | Intervention | Reviews; Case reports; Letters to editors; comments, etc. |
Performance Outcomes | Description | Data Extracted from the Main Indicators |
---|---|---|
Aerobic Capacity | The ability of the body to produce energy via metabolic processes dependent on oxygen and are used to oxidize macromolecules to generate energy. | VO2 Máx, RER, Speed, Maximal O2 consumption; O2 uptake. |
Hemodynamic profile | Refers to the description of the characteristics and behavior of an individual’s cardiovascular system. | HR, DBP, SBP, BP, Submax Pulse, and HR rate at lactate threshold. |
Neuromuscular | Relationship between the nervous system and the muscles of the body to provide movement. | Total Work, Muscle strength, Power, 10 × 10-s, 15 × 10-s, 30-s tests, Maximal workload. |
Anaerobic threshold parameters | Related to the point during physical exertion when lactic acid production begins to exceed the body’s ability to remove it, resulting in a significant increase in blood. | ANT, AET, Workload at lactate threshold |
Author, Year | Age (Yrs) | Gender | Modality | Country | n | Category | Protocol of CoQ10 Supplementation | ||
---|---|---|---|---|---|---|---|---|---|
Route of Administration | Dosage (mg) | Administration Time | |||||||
Braun et al., 1991 [29] | 21.9 * | M | Cyclists | USA | 12 | Amateurs | OA | 100 | 60 days |
Castro et al., 2012 [33] | 41.2 | M | Runner | Spain | 10 | Amateurs | OA | 30 | Uninformed |
Deichmann et al., 2012 [30] | 63.6 | M/F | Triathlon | USA | 19 | Amateurs | OA | 200 | 6 weeks |
Emani et al., 2018 [24] | 17.0 | M | Swimmers | Iran | 36 | Elite | OA | 300 | 2 weeks |
Emani et al., 2018 [25] | 17.0 | M | Swimmers | Iran | 36 | Elite | OA | 300 | 2 weeks |
Emani et al., 2020 [23] | 17.0 | M | Swimmers | Iran | 36 | Elite | OA | 300 | 2 weeks |
Holloway et al., 2014 [34] | 46.3 | M/F | Climbers | UK | 23 | Amateurs | OA | 300 | 22 days |
Kon et al., 2008 [26] | 20.5 | M | Kendo | Japan | 18 | Elite | OA | 100 | 2 weeks |
Malm et al., 1997 [31] | 20–34 | M | Runner and Cyclists | Sweden | 18 | Amateurs | OA | 120 | 22 days |
Mohammadi et al., 2020 [36] | 18.5 | M | Wrestlers | Brazil | 20 | Elite | OA | 100 | 6 weeks |
Orlando et al., 2018 [38] | 26.0 | M | Rugby | Italy | 21 | Amateurs | OA | 200 | 4 weeks |
Ostman et al., 2012 [32] | 19–44 | M | Runner, Cross-country skiers, tennis, ice hockey | Sweden | 23 | Amateurs | OA | 90 | 8 weeks |
Shimizu et al., 2015 [27] | 20.4 | M | Kendo | Japan | 18 | Elite | OA | 300 | 2 weeks |
Suzuki et al., 2020 [28] | 18–25 | M | Runner | Japan | 16 | Amateurs | OA | 100 | 11 days |
Weston et al., 1997 [35] | 24.8 | M | Cyclists and Triatlon | Australia | 18 | Elite | OA | 250 | 4 weeks |
Yikioski et al., 1997 [37] | - | M | Cross-country Skiers | Finland | 25 | Elite | OA | 90 | 12 weeks |
Author, Year | Body Composition | Biochemical Parameters | |||
---|---|---|---|---|---|
REDOX Balance | Lipid and Glucose Profile | Kidney/Liver Damage Markers | Fatigue Markers | ||
Braun et al., 1991 [29] | - | = MDA | - | - | - |
Castro et al., 2012 [33] | - | ↑ CAT; TAS ↓ Basal and induced membrane hydroperoxides and 8-OHdG = GPx | = Phospholipids; TG; total cholesterol | = Urine creatinine ↓ Total bilirubin | - |
Deichmann et al., 2012 [30] | - | - | - | - | = CPK, LA score; LA pyruvate ratio score |
Emani et al., 2018 [24] | = BMI, BF (%); Body mass (kg); | ↓ LPO; ↑ TAC | - | - | ↓ CK; Myoglobin |
Emani et al., 2018 [25] | = BMI, BF (%); Body mass (kg); | ↓ Carbonyls; 8-OhdG = H2O2 | - | ↓ ALT; AST; GGT | ↓ CK, LA, NADPH oxidase |
Emani et al., 2020 [23] | = BMI, BF (%); Body mass (kg); | ↓ MPO; XO | - | - | - |
Holloway et al., 2014 [34] | = Body mass (kg); ↓ BMI, BF (kg) | - | ↓ HDL; Total cholesterol = Glucose; TG = NEFA | = Creatinine | = LA |
Kon et al., 2008 [26] | = Body weight (kg); BF (%) | ↓ LPO = Scavenging activity against superoxide anion | - | - | ↓ CK; Myoglobin |
Malm et al., 1997 [31] | = Body weight (kg) | - | - | - | = Max lactate; Submax lactate; RPE |
Mohammadi et al., 2020 [36] | = BMI; Body mass (kg) | - | - | - | ↑ Fatigue index |
Orlando et al., 2018 [38] | - | ↓ Cytosolic ROS = Oxidative DNA damage | - | - | ↓ CK; Myoglobin |
Ostman et al., 2012 [32] | = BMI; Body mass (kg) | = Hypoxanthine | - | = Uric Acid | = CK |
Shimizu et al., 2015 [27] | = BMI, BF (%); Body mass (kg); | - | - | - | - |
Snider et al., 1992 [39] | - | - | = Glucose; FFA | - | = LA; = Time to exhaustion; RPE |
Suzuki et al., 2020 [28] | - | - | - | ↓ ALT; AST = Blood urea nitrogen; Creatinine; Uric Acid | ↓ CK; Fatigue (%); LDH; |
Weston et al., 1997 [35] | = Body mass (kg) | - | - | - | = Exhaustion |
Yikioski et al., 1997 [37] | - | - | - | - | = Lactic acid clearance |
Author, Year | Performance Outcomes | |||
---|---|---|---|---|
Aerobic Capacity | Hemodynamic Profile | Neuromuscular Outcomes | Bioenergetic Outcomes | |
Braun et al., 1991 [29] | ↑ aVO2 Máx = VO2; RER = RER | = HR | ↑ Total Work (W) | - |
Deichmann et al., 2012 [30] | = VO2 Máx; RER | - | ↑ Muscle strength (repetitions) | = Difference in ANT; ↑ Time to anaerobic threshold |
Emani et al., 2018b [25] | = VO2 Máx | - | = Max power (W) | - |
Holloway et al., 2014 [34] | - | = HR; DBP; SBP | - | - |
Malm et al., 1997 [31] | = VO2; Cycling VO2 peak; Running VO2 Máx; Submax VO2 | = Submax pulse; and respiratory quotient | = 30-s test (W·kg·bw) ↓ Average of mean power output; Power output (W·kg·bw); 10 × 10 s test (W·kg·bw); 15 × 10 s (W·kg·bw) | - |
Mohammadi et al., 2020 [36] | - | - | ↑ Average power (W); Maximum power (W); Power at least (W) = Curl up; Press up | - |
Orlando et al., 2018 [38] | = Average speed (km/h); Max speed (%); Time 75% max speed | - | - | - |
Ostman et al., 2012 [32] | = Maximal O2 consumption (L/min); O2 consumption | = HR rate at lactate threshold; Maximal HR (beats/min) | = Maximal workload (W); Mean power output (W) | = Workload at lactate threshold |
Snider et al., 1992 [39] | - | - | - | - |
Suzuki et al., 2020 [28] | - | - | - | - |
Weston et al., 1997 [35] | = O2 uptake; VO2 peak | = BP; HR | - | - |
Yikioski et al., 1997 [37] | = VO2 Max | - | - | ↑ AET; ANT; |
Studies | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | % |
---|---|---|---|---|---|---|---|---|---|
Braun, 1991 [29] | Y | Y | Y | Y | N | N | Y | Y | 75 |
Castro, 2012 [33] | Y | Y | Y | Y | N | N | Y | Y | 75 |
Deichmann, 2012 [30] | Y | Y | Y | Y | N | N | Y | Y | 75 |
Emami, 2018a [24] | Y | Y | Y | Y | N | N | Y | Y | 75 |
Emami, 2018b [25] | Y | Y | Y | Y | N | N | Y | Y | 75 |
Emami, 2020 [23] | Y | Y | Y | Y | N | N | Y | Y | 75 |
Holloway, 2014 [34] | Y | Y | Y | Y | N | N | Y | Y | 75 |
Kon, 2008 [26] | Y | Y | Y | Y | N | N | Y | Y | 75 |
Malm, 1997 [31] | Y | Y | Y | Y | N | N | Y | Y | 75 |
Mohammadi, 2020 [36] | Y | Y | Y | Y | N | N | Y | Y | 75 |
Orlando, 2018 [38] | Y | Y | Y | Y | N | N | Y | Y | 75 |
Ostman, 2012 [32] | Y | Y | Y | Y | N | N | Y | Y | 75 |
Shimizu, 2015 [27] | Y | Y | Y | Y | N | N | Y | Y | 75 |
Snider, 1992 [39] | Y | Y | Y | Y | N | N | Y | Y | 75 |
Suzuki, 2006 [28] | Y | Y | Y | Y | N | N | Y | Y | 75 |
Weston, 1997 [35] | Y | Y | Y | Y | N | N | Y | Y | 75 |
Yikioski et al., 1997 [37] | Y | Y | Y | Y | N | N | Y | Y | 75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, M.S.d.S.; Fidelis, D.E.d.S.; Aidar, F.J.; Badicu, G.; Greco, G.; Cataldi, S.; Santos, G.C.J.; de Souza, R.F.; Ardigò, L.P. Coenzyme Q10 Supplementation in Athletes: A Systematic Review. Nutrients 2023, 15, 3990. https://doi.org/10.3390/nu15183990
Fernandes MSdS, Fidelis DEdS, Aidar FJ, Badicu G, Greco G, Cataldi S, Santos GCJ, de Souza RF, Ardigò LP. Coenzyme Q10 Supplementation in Athletes: A Systematic Review. Nutrients. 2023; 15(18):3990. https://doi.org/10.3390/nu15183990
Chicago/Turabian StyleFernandes, Matheus Santos de Sousa, Débora Eduarda da Silvia Fidelis, Felipe J. Aidar, Georgian Badicu, Gianpiero Greco, Stefania Cataldi, Gabriela Carvalho Jurema Santos, Raphael Frabrício de Souza, and Luca Paolo Ardigò. 2023. "Coenzyme Q10 Supplementation in Athletes: A Systematic Review" Nutrients 15, no. 18: 3990. https://doi.org/10.3390/nu15183990
APA StyleFernandes, M. S. d. S., Fidelis, D. E. d. S., Aidar, F. J., Badicu, G., Greco, G., Cataldi, S., Santos, G. C. J., de Souza, R. F., & Ardigò, L. P. (2023). Coenzyme Q10 Supplementation in Athletes: A Systematic Review. Nutrients, 15(18), 3990. https://doi.org/10.3390/nu15183990