CO-Sprout—A Pilot Double-Blinded Placebo-Controlled Randomised Trial of Broccoli Sprout Powder Supplementation for Pregnant Women with COVID-19 on the Duration of COVID-19-Associated Symptoms: Study Protocol
Abstract
:1. Introduction
2. Aims and Hypothesis
3. Trial Design
3.1. Sample Size
3.2. Participating Sites
3.3. Study Inclusion Criteria
- ≥18 years of age;
- Pregnant with singleton gestation at 20+0 to 36+0 weeks;
- Positive COVID-19 test either via viral PCR or RAT for SARS-CoV-2 within the preceding five days;
- Any vaccination status against SARS-CoV-2;
- Signs or symptoms of COVID-19 for ≤seven days before recruitment including but not limited to shortness of breath, anosmia, fevers, sore throat, headache, and myalgia;
- Able and willing to tolerate oral supplementation with a broccoli sprout extract for the full 14-day course;
- Able to understand the information provided in the participant information and consent form (PICF), and able to give written informed consent (with interpreter use as required).
3.4. Study Exclusion Criteria
- Currently using a broccoli sprout extract or supplement;
- Contraindications to use of a broccoli sprout extract (e.g., intolerance of broccoli);
- Significant uncertainty of gestational age;
- Unwillingness or inability to follow the procedures outlined in the PICF;
- Mentally, cognitively, or legally incapacitated or ineligible to provide informed consent;
- Currently recruited in another clinical trial using a pharmaceutical, herbal, or nutritional intervention (such trial interventions would also include: multivitamins, minerals, antiviral, immunomodulatory or complementary and alternative medicines);
- Currently on an antibiotic, antiviral, or monoclonal antibody treatment related to acute illness.
3.5. Study Recruitment
3.6. Randomisation
3.7. Interventions
3.8. Study Limitations
4. Study Outcomes
4.1. Primary Clinical Outcome
4.2. Secondary Clinical Outcomes
4.2.1. Maternal and Birthing Outcomes
- Birth outcomes including mode of delivery;
- Obstetric complications including post-partum haemorrhage (PPH), pre-eclampsia, preterm pre-labour rupture of membranes (PPROM), and stillbirth;
- Maternal death;
- Unplanned hospital presentation within 28 days;
- Admission to hospital for any reason with >24 h within 28 days;
- Total duration of hospital admissions within 28 days;
- Maternal biochemical, inflammatory, and anti-angiogenic markers;
- Medication related adverse events;
- Placental cellular and structural abnormalities (optional);
- Gastrointestinal microbiome population species as measured through optional faecal microbiome testing (optional).
4.2.2. Neonatal Outcomes
- 11.
- Birthweight and birthweight percentile;
- 12.
- COVID-19-positive polymerase chain reaction (PCR) swab in the neonate if testing performed as part of standard care;
- 13.
- Admission to neonatal unit and duration (special care nursery/neonatal intensive care unit);
- 14.
- Need for antibiotic therapy and duration of treatment;
- 15.
- Diagnosis of early-onset sepsis (EOS);
- 16.
- Diagnosis of late-onset sepsis;
- 17.
- Severe neonatal morbidity index (SNMI);
- At least 1 of the following morbidities:
- Bronchopulmonary dysplasia;
- Hypoxic-ischemic encephalopathy;
- Sepsis;
- Anaemia requiring transfusion;
- Patent ductus arteriosus;
- Intraventricular haemorrhage;
- Necrotizing enterocolitis;
- Retinopathy of prematurity.
- 18.
- Severe perinatal morbidity and mortality index (SPMMI).
- a.
- Includes any of the indicators from SNMI and additionally:
- Intrauterine foetal death;
- Neonatal death;
- Neonatal intensive care unit admission > 7 days.
4.2.3. Maternal Respiratory Outcomes If Requiring Hospitalisation
- 19.
- Documented SpO2 < 94%;
- 20.
- Admission to intensive care unit (ICU);
- 21.
- Requirement for any oxygen therapy (maximal FiO2);
- 22.
- Requirement for non-invasive ventilation and/or high flow nasal cannula;
- 23.
- Requirement for mechanical ventilation;
- 24.
- Requirement for ECMO;
- 25.
- Diagnosis of maternal acute respiratory distress syndrome (ARDS) as defined by the European Society of Intensive Care Medicine as new or worsening respiratory symptoms that includes a combination of acute hypoxaemia (PaO2/FiO2 ≤ 300 mm Hg) in a ventilated patient with positive end-expiratory pressure (PEEP) of at least 5 cm H2 and bilateral opacities not fully explained by heart failure or volume overload that occurs within 7 days of a clinical insult (37);
- 26.
- Maximal disease severity of COVID-19 as defined by the Society for Maternal Foetal Medicine (SMFM) [45].
5. Sample Collection and Storage
6. Proposed Analysis
7. Trial Related Matters
7.1. Adverse Events and Study Insurance
7.2. Trial Discontinuation or Modification
- Participant welfare and safety;
- The conduct of the trial in accordance with the Monash Health HREC-approved protocol;
- A failure to adhere to Monash Health Research Directorate and HREC conditions of approval;
- A recommendation from the trial group that the trial should cease completely due to safety concerns.
- The researchers have recruited, as per protocol, all trial participants (n = 60);
- Data collection and entry is complete, with subsequent independent verification;
- Database lock has occurred;
- Completed data analysis;
- The trial has been conducted as per Monash Health HREC approval and the necessary reporting (e.g., Annual Report, SAE) has been completed and acknowledged.
7.3. Unblinding
- To inform clinical management or under conditions of an SAE where disclosure of the intervention is necessary;
- At the conclusion of the trial to determine the effect of the intervention.
7.4. Ethics and Dissemination
8. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 23 November 2022).
- Wang, X.; Chen, X.; Zhang, K. Maternal infection with COVID-19 and increased risk of adverse pregnancy outcomes: A meta-analysis. J. Matern. Fetal Neonatal Med. 2022, 35, 9368–9375. [Google Scholar] [CrossRef] [PubMed]
- Allotey, J.; Stallings, E.; Bonet, M.; Yap, M.; Chatterjee, S.; Kew, T.; Debenham, L.; Llavall, A.C.; Dixit, A.; Zhou, D.; et al. Clinical manifestations, risk factors, and maternal and perinatal outcomes of coronavirus disease 2019 in pregnancy: Living systematic review and meta-analysis. BMJ 2020, 370, m3320. [Google Scholar] [CrossRef] [PubMed]
- Stock, S.J.; Moore, E.; Calvert, C.; Carruthers, J.; Denny, C.; Donaghy, J.; Hillman, S.; Hopcroft, L.E.M.; Hopkins, L.; Goulding, A.; et al. Pregnancy outcomes after SARS-CoV-2 infection in periods dominated by delta and omicron variants in Scotland: A population-based cohort study. Lancet Respir. Med. 2022, 10, 1129–1136. [Google Scholar] [CrossRef] [PubMed]
- Morgan, J.A.; Biggio, J.R., Jr.; Martin, J.K.; Mussarat, N.; Chawla, H.K.; Puri, P.; Williams, F.B. Maternal Outcomes after Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection in Vaccinated Compared with Unvaccinated Pregnant Patients. Obstet. Gynecol. 2022, 139, 107–109. [Google Scholar] [CrossRef] [PubMed]
- Blakeway, H.; Prasad, S.; Kalafat, E.; Heath, P.T.; Ladhani, S.N.; Le Doare, K.; Magee, L.A.; O’Brien, P.; Rezvani, A.; von Dadelszen, P.; et al. COVID-19 vaccination during pregnancy: Coverage and safety. Am. J. Obstet. Gynecol. 2022, 226, 236.e1–236.e14. [Google Scholar] [CrossRef] [PubMed]
- Townsel, C.; Moniz, M.H.; Wagner, A.L.; Zikmund-Fisher, B.J.; Hawley, S.; Jiang, L.; Stout, M.J. COVID-19 vaccine hesitancy among reproductive-aged female tier 1A healthcare workers in a United States Medical Center. J. Perinatol. 2021, 41, 2549–2551. [Google Scholar] [CrossRef] [PubMed]
- Stock, S.J.; Carruthers, J.; Calvert, C.; Denny, C.; Donaghy, J.; Goulding, A.; Hopcroft, L.E.M.; Hopkins, L.; McLaughlin, T.; Pan, J.; et al. SARS-CoV-2 infection and COVID-19 vaccination rates in pregnant women in Scotland. Nat. Med. 2022, 28, 504–512. [Google Scholar] [CrossRef]
- Kons, K.M.; Wood, M.L.; Peck, L.C.; Hershberger, S.M.; Kunselman, A.R.; Stetter, C.; Legro, R.S.; Deimling, T.A. Exclusion of Reproductive-aged Women in COVID-19 Vaccination and Clinical Trials. Womens Health Issues 2022, 32, 557–563. [Google Scholar] [CrossRef]
- Jorgensen, S.C.J.; Davis, M.R.; Lapinsky, S.E. A review of remdesivir for COVID-19 in pregnancy and lactation. J. Antimicrob. Chemother. 2021, 77, 24–30. [Google Scholar] [CrossRef]
- Favilli, A.; Mattei Gentili, M.; Raspa, F.; Giardina, I.; Parazzini, F.; Vitagliano, A.; Borisova, A.V.; Gerli, S. Effectiveness and safety of available treatments for COVID-19 during pregnancy: A critical review. J. Matern. Fetal Neonatal Med. 2022, 35, 2174–2187. [Google Scholar] [CrossRef]
- Mahn, A.; Perez, C.E.; Zambrano, V.; Barrientos, H. Maximization of Sulforaphane Content in Broccoli Sprouts by Blanching. Foods 2022, 11, 1906. [Google Scholar] [CrossRef] [PubMed]
- Sikorska-Zimny, K.; Beneduce, L. The Metabolism of Glucosinolates by Gut Microbiota. Nutrients 2021, 13, 2750. [Google Scholar] [CrossRef] [PubMed]
- Gozzi, N.; Chinazzi, M.; Dean, N.E.; Longini Jr, I.M.; Halloran, M.E.; Perra, N.; Vespignani, A. Estimating the impact of COVID-19 vaccine inequities: A modeling study. Nat. Commun. 2023, 14, 3272. [Google Scholar] [CrossRef] [PubMed]
- Mahn, A.; Castillo, A. Potential of Sulforaphane as a Natural Immune System Enhancer: A Review. Molecules 2021, 26, 752. [Google Scholar] [CrossRef] [PubMed]
- Ordonez, A.A.; Bullen, C.K.; Villabona-Rueda, A.F.; Thompson, E.A.; Turner, M.L.; Davis, S.L.; Komm, O.; Powell, J.D.; D’Alessio, F.R.; Yolken, R.H.; et al. Sulforaphane Exhibits In Vitro and In Vivo Antiviral Activity against Pandemic SARS-CoV-2 and Seasonal HCoV-OC43 Coronaviruses; Cold Spring Harbor Laboratory: Laurel Hollow, NY, USA, 2021. [Google Scholar] [CrossRef]
- Ordonez, A.A.; Bullen, C.K.; Villabona-Rueda, A.F.; Thompson, E.A.; Turner, M.L.; Merino, V.F.; Yan, Y.; Kim, J.; Davis, S.L.; Komm, O.; et al. Sulforaphane exhibits antiviral activity against pandemic SARS-CoV-2 and seasonal HCoV-OC43 coronaviruses in vitro and in mice. Commun. Biol. 2022, 5, 242. [Google Scholar] [CrossRef] [PubMed]
- Ulasov, A.V.; Rosenkranz, A.A.; Georgiev, G.P.; Sobolev, A.S. Nrf2/Keap1/ARE signaling: Towards specific regulation. Life Sci. 2022, 291, 120111. [Google Scholar] [CrossRef]
- Saha, S.; Buttari, B.; Panieri, E.; Profumo, E.; Saso, L. An Overview of Nrf2 Signaling Pathway and Its Role in Inflammation. Molecules 2020, 25, 5474. [Google Scholar] [CrossRef]
- Negrette-Guzmán, M.; Huerta-Yepez, S.; Tapia, E.; Pedraza-Chaverri, J. Modulation of mitochondrial functions by the indirect antioxidant sulforaphane: A seemingly contradictory dual role and an integrative hypothesis. Free. Radic. Biol. Med. 2013, 65, 1078–1089. [Google Scholar] [CrossRef]
- Dana, A.-H.; Alejandro, S.-P. Role of sulforaphane in endoplasmic reticulum homeostasis through regulation of the antioxidant response. Life Sci. 2022, 299, 120554. [Google Scholar] [CrossRef]
- Ruhee, R.T.; Suzuki, K. The Integrative Role of Sulforaphane in Preventing Inflammation, Oxidative Stress and Fatigue: A Review of a Potential Protective Phytochemical. Antioxidants 2020, 9, 521. [Google Scholar] [CrossRef]
- Olagnier, D.; Farahani, E.; Thyrsted, J.; Blay-Cadanet, J.; Herengt, A.; Idorn, M.; Hait, A.; Hernaez, B.; Knudsen, A.; Iversen, M.B.; et al. SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate. Nat. Commun. 2020, 11, 4938. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, D.; Machado, M.R.; Alves, J.V.; Fraga-Silva, T.F.C.; Martins, R.B.; Campos, L.C.B.; Francisco, D.F.; Couto, A.E.S.; Bonato, V.L.D.; Arruda, E.; et al. Cytokine storm in individuals with severe COVID-19 decreases endothelial cell antioxidant defense via downregulation of the Nrf2 transcriptional factor. Am. J. Physiol. Heart Circ. Physiol. 2023, 325, H252–H263. [Google Scholar] [CrossRef] [PubMed]
- Cuadrado, A.; Pajares, M.; Benito, C.; Jimenez-Villegas, J.; Escoll, M.; Fernandez-Gines, R.; Garcia Yague, A.J.; Lastra, D.; Manda, G.; Rojo, A.I.; et al. Can Activation of NRF2 Be a Strategy against COVID-19? Trends Pharmacol. Sci. 2020, 41, 598–610. [Google Scholar] [CrossRef] [PubMed]
- Langston-Cox, A.; Muccini, A.M.; Marshall, S.A.; Yap; Palmer, K.R.; Wallace, E.M.; Ellery, S.J. Sulforaphane improves syncytiotrophoblast mitochondrial function after in vitro hypoxic and superoxide injury. Placenta 2020, 96, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Langston-Cox, A.; Leo, C.H.; Tare, M.; Wallace, E.M.; Marshall, S.A. Sulforaphane improves vascular reactivity in mouse and human arteries after “preeclamptic-like” injury. Placenta 2020, 101, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Mohebbi, A.; Haybar, H.; Nakhaei Moghaddam, F.; Rasti, Z.; Vahid, M.A.; Saki, N. Biomarkers of endothelial dysfunction are associated with poor outcome in COVID-19 patients: A systematic review and meta-analysis. Rev. Med. Virol. 2023, 33, e2442. [Google Scholar] [CrossRef] [PubMed]
- Fields, N.J.; Palmer, K.R.; Nisi, A.; Marshall, S.A. Preeclampsia to COVID-19: A journey towards improved placental and vascular function using sulforaphane. Placenta 2023. [Google Scholar] [CrossRef] [PubMed]
- Langston-Cox, A.G.; Marshall, S.A.; Palmer, K.R.; Wallace, E.M. Prolong: A double-blind randomised placebo-controlled trial of broccoli sprout extract in women with early onset preeclampsia. A clinical trial protocol. BMJ Open 2019, 9, e027493. [Google Scholar] [CrossRef]
- Langston-Cox, A.G.; Anderson, D.; Creek, D.J.; Palmer, K.R.; Marshall, S.A.; Wallace, E.M. Sulforaphane Bioavailability and Effects on Blood Pressure in Women with Pregnancy Hypertension. Reprod. Sci. 2021, 28, 1489–1497. [Google Scholar] [CrossRef]
- Warpsinski, G.; Smith, M.J.; Srivastava, S.; Keeley, T.P.; Siow, R.C.M.; Fraser, P.A.; Mann, G.E. Nrf2-regulated signaling in brain endothelial cells adapted to physiological oxygen levels: Consequences for sulforaphane mediated protection against hypoxia-reoxygenation. Redox Biol. 2020, 37, 101708. [Google Scholar] [CrossRef]
- Cox, A.G.; Gurusinghe, S.; Abd Rahman, R.; Leaw, B.; Chan, S.T.; Mockler, J.C.; Murthi, P.; Marshall, S.A.; Lim, R.; Wallace, E.M. Sulforaphane improves endothelial function and reduces placental oxidative stress in vitro. Pregnancy Hypertens. 2019, 16, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gasparello, J.; D’Aversa, E.; Papi, C.; Gambari, L.; Grigolo, B.; Borgatti, M.; Finotti, A.; Gambari, R. Sulforaphane inhibits the expression of interleukin-6 and interleukin-8 induced in bronchial epithelial IB3-1 cells by exposure to the SARS-CoV-2 Spike protein. Phytomedicine 2021, 87, 153583. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Wang, J.; Jian, F.; Xiao, T.; Song, W.; Yisimayi, A.; Huang, W.; Li, Q.; Wang, P.; An, R.; et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 2022, 602, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Lau, J.J.; Cheng, S.M.S.; Leung, K.; Lee, C.K.; Hachim, A.; Tsang, L.C.H.; Yam, K.W.H.; Chaothai, S.; Kwan, K.K.H.; Chai, Z.Y.H.; et al. Real-world COVID-19 vaccine effectiveness against the Omicron BA.2 variant in a SARS-CoV-2 infection-naive population. Nat. Med. 2023, 29, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Yagishita, Y.; Fahey, J.W.; Dinkova-Kostova, A.T.; Kensler, T.W. Broccoli or Sulforaphane: Is It the Source or Dose That Matters? Molecules 2019, 24, 3593. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Chang, L.; Liu, G.; Wang, X.; Yang, Y.; Hashimoto, K. Long-lasting beneficial effects of maternal intake of sulforaphane glucosinolate on gut microbiota in adult offspring. J. Nutr. Biochem. 2022, 109, 109098. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.T.; Bahry, A.M.; Shen, K.Q.; Armstrong, E.A.; Yager, J.Y. Consumption of broccoli sprouts during late gestation and lactation confers protection against developmental delay induced by maternal inflammation. Behav. Brain Res. 2016, 307, 239–249. [Google Scholar] [CrossRef]
- Black, A.M.; Armstrong, E.A.; Scott, O.; Juurlink, B.J.H.; Yager, J.Y. Broccoli sprout supplementation during pregnancy prevents brain injury in the newborn rat following placental insufficiency. Behav. Brain Res. 2015, 291, 289–298. [Google Scholar] [CrossRef]
- Fujita, Y.; Fujita, A.; Ishima, T.; Hirai, A.; Suzuki, S.; Suganuma, H.; Hashimoto, K. Dietary intake of glucoraphanin during pregnancy and lactation prevents the behavioral abnormalities in the offspring after maternal immune activation. Neuropsychopharmacol. Rep. 2020, 40, 268–274. [Google Scholar] [CrossRef]
- Wang, B.; Kulikowicz, E.; Lee, J.K.; Koehler, R.C.; Yang, Z.J. Sulforaphane Protects Piglet Brains from Neonatal Hypoxic-Ischemic Injury. Dev. Neurosci. 2020, 42, 124–134. [Google Scholar] [CrossRef]
- Shook, L.L.; Sullivan, E.L.; Lo, J.O.; Perlis, R.H.; Edlow, A.G. COVID-19 in pregnancy: Implications for fetal brain development. Trends Mol. Med. 2022, 28, 319–330. [Google Scholar] [CrossRef]
- Menni, C.; Valdes, A.M.; Polidori, L.; Antonelli, M.; Penamakuri, S.; Nogal, A.; Louca, P.; May, A.; Figueiredo, J.C.; Hu, C.; et al. Symptom prevalence, duration, and risk of hospital admission in individuals infected with SARS-CoV-2 during periods of omicron and delta variant dominance: A prospective observational study from the ZOE COVID Study. Lancet 2022, 399, 1618–1624. [Google Scholar] [CrossRef]
- SMFM. Management Considerations for Pregnant Patients with COVID-19. Available online: https://s3.amazonaws.com/cdn.smfm.org/media/2734/SMFM_COVID_Management_of_COVID_pos_preg_patients_2-2-21_(final).pdf (accessed on 27 December 2021).
- Kotlyar, A.M.; Grechukhina, O.; Chen, A.; Popkhadze, S.; Grimshaw, A.; Tal, O.; Taylor, H.S.; Tal, R. Vertical transmission of coronavirus disease 2019: A systematic review and meta-analysis. Am. J. Obstet. Gynecol. 2021, 224, 35–53.e3. [Google Scholar] [CrossRef]
- Knuesel, I.; Chicha, L.; Britschgi, M.; Schobel, S.A.; Bodmer, M.; Hellings, J.A.; Toovey, S.; Prinssen, E.P. Maternal immune activation and abnormal brain development across CNS disorders. Nat. Rev. Neurol. 2014, 10, 643–660. [Google Scholar] [CrossRef]
- Boulanger-Bertolus, J.; Pancaro, C.; Mashour, G.A. Increasing Role of Maternal Immune Activation in Neurodevelopmental Disorders. Front. Behav. Neurosci. 2018, 12, 230. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fields, N.J.; Palmer, K.R.; Rolnik, D.L.; Yo, J.; Nold, M.F.; Giles, M.L.; Krishnaswamy, S.; Serpa Neto, A.; Hodges, R.J.; Marshall, S.A. CO-Sprout—A Pilot Double-Blinded Placebo-Controlled Randomised Trial of Broccoli Sprout Powder Supplementation for Pregnant Women with COVID-19 on the Duration of COVID-19-Associated Symptoms: Study Protocol. Nutrients 2023, 15, 3980. https://doi.org/10.3390/nu15183980
Fields NJ, Palmer KR, Rolnik DL, Yo J, Nold MF, Giles ML, Krishnaswamy S, Serpa Neto A, Hodges RJ, Marshall SA. CO-Sprout—A Pilot Double-Blinded Placebo-Controlled Randomised Trial of Broccoli Sprout Powder Supplementation for Pregnant Women with COVID-19 on the Duration of COVID-19-Associated Symptoms: Study Protocol. Nutrients. 2023; 15(18):3980. https://doi.org/10.3390/nu15183980
Chicago/Turabian StyleFields, Neville J., Kirsten R. Palmer, Daniel L. Rolnik, Jennifer Yo, Marcel F. Nold, Michelle L. Giles, Sushena Krishnaswamy, Ary Serpa Neto, Ryan J. Hodges, and Sarah A. Marshall. 2023. "CO-Sprout—A Pilot Double-Blinded Placebo-Controlled Randomised Trial of Broccoli Sprout Powder Supplementation for Pregnant Women with COVID-19 on the Duration of COVID-19-Associated Symptoms: Study Protocol" Nutrients 15, no. 18: 3980. https://doi.org/10.3390/nu15183980
APA StyleFields, N. J., Palmer, K. R., Rolnik, D. L., Yo, J., Nold, M. F., Giles, M. L., Krishnaswamy, S., Serpa Neto, A., Hodges, R. J., & Marshall, S. A. (2023). CO-Sprout—A Pilot Double-Blinded Placebo-Controlled Randomised Trial of Broccoli Sprout Powder Supplementation for Pregnant Women with COVID-19 on the Duration of COVID-19-Associated Symptoms: Study Protocol. Nutrients, 15(18), 3980. https://doi.org/10.3390/nu15183980