Latent TB Infection, Vitamin D Status and COVID-19 Severity in Mongolian Patients
Abstract
:1. Introduction
2. Methods and Materials
2.1. Participants
2.2. Data Collection and Measurements
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
COVID-19 | coronavirus disease 2019 |
PCR | polymerase chain reaction |
COPD | chronic obstructive pulmonary disease |
95%CI | 95% confidence interval |
WHO | World Health Organization |
BCG | Bacille Calmette–Guérin vaccine |
BMI | body-mass index |
TB | tuberculosis |
PTB | pulmonary TB |
QFT-G | QuantiFERON®-TB Gold |
LOQ | limit of quantitation |
SARS-CoV-2 | severe acute respiratory syndrome coronavirus 2 |
sd | standard deviation |
ICU | intensive care unit |
NSAID | non-steroidal anti-inflammatory drugs |
ACE | angiotensin-converting enzyme |
ARB | angiotensin receptor blockers |
LMR | lymphocyte and monocyte ratio |
aPTT | activated partial thromboplastin clotting time |
TT | thrombin time (TT) |
INR | international normalized ratio |
PT | prothrombin time |
WBC | white blood cells |
HCT | hematocrit |
NEUT | neutrophils |
LYMPH | lymphocytes |
MON | monocytes |
CRP | C-reactive protein |
IL-6 | interleikin-6 |
PCT | procalcitonin. |
References
- Bromage, S.; Rich-Edwards, J.W.; Tselmen, D.; Baylin, A.; Houghton, L.A.; Baasanjav, N.; Ganmaa, D. Seasonal Epidemiology of Serum 25-Hydroxyvitamin D Concentrations among Healthy Adults Living in Rural and Urban Areas in Mongolia. Nutrients 2016, 8, 592. [Google Scholar] [CrossRef] [PubMed]
- Aranow, C. Vitamin D and the immune system. J. Investig. Med. Off. Publ. Am. Fed. Clin. Res. 2011, 59, 881–886. [Google Scholar] [CrossRef] [PubMed]
- Hewison, M. Vitamin D and the intracrinology of innate immunity. Mol. Cell. Endocrinol. 2010, 321, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Martineau, A.R.; Cantorna, M.T. Vitamin D for COVID-19: Where are we now? Nat. Rev. Immunol. 2022, 22, 529–530. [Google Scholar] [CrossRef] [PubMed]
- Luke, E.; Swafford, K.; Shirazi, G.; Venketaraman, V. TB and COVID-19: An Exploration of the Characteristics and Resulting Complications of Co-infection. Front. Biosci. (Sch. Ed.) 2022, 14, 6. [Google Scholar] [CrossRef] [PubMed]
- Koupaei, M.; Naimi, A.; Moafi, N.; Mohammadi, P.; Tabatabaei, F.S.; Ghazizadeh, S.; Heidary, M.; Khoshnood, S. Clinical Characteristics, Diagnosis, Treatment, and Mortality Rate of TB/COVID-19 Coinfectetd Patients: A Systematic Review. Front. Med. 2021, 8, 740593. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, J.M.; Subramanian, S.; Laird, E.; Griffin, G.; Kenny, R.A. Perspective: Vitamin D deficiency and COVID-19 severity—Plausibly linked by latitude, ethnicity, impacts on cytokines, ACE2 and thrombosis. J. Intern. Med. 2021, 289, 97–115. [Google Scholar] [CrossRef] [PubMed]
- Ganmaa, D.; Munkhzul, B.; Fawzi, W.; Spiegelman, D.; Willett, W.C.; Bayasgalan, P.; Baasansuren, E.; Buyankhishig, B.; Oyun-Erdene, S.; Jolliffe, D.A.; et al. High-Dose Vitamin D(3) during Tuberculosis Treatment in Mongolia. A Randomized Controlled Trial. Am. J. Respir. Crit. Care Med. 2017, 196, 628–637. [Google Scholar] [CrossRef]
- Dissanayake, H.A.; de Silva, N.L.; Sumanatilleke, M.; de Silva, S.D.N.; Gamage, K.K.K.; Dematapitiya, C.; Kuruppu, D.C.; Ranasinghe, P.; Pathmanathan, S.; Katulanda, P. Prognostic and Therapeutic Role of Vitamin D in COVID-19: Systematic Review and Meta-analysis. J. Clin. Endocrinol. Metab. 2022, 107, 1484–1502. [Google Scholar] [CrossRef]
- Entrenas Castillo, M.; Entrenas Costa, L.M.; Vaquero Barrios, J.M.; Alcalá Díaz, J.F.; López Miranda, J.; Bouillon, R.; Quesada Gomez, J.M. Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: A pilot randomized clinical study. J. Steroid Biochem. Mol. Biol. 2020, 203, 105751. [Google Scholar] [CrossRef]
- Gibney, K.B.; MacGregor, L.; Leder, K.; Torresi, J.; Marshall, C.; Ebeling, P.R.; Biggs, B.A. Vitamin D deficiency is associated with tuberculosis and latent tuberculosis infection in immigrants from sub-Saharan Africa. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2008, 46, 443–446. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Yu, Y.; Fleming, J.; Wang, T.; Shen, S.; Wang, Y.; Fan, L.; Ma, J.; Gu, Y.; Chen, Y. Severe COVID-19 cases with a history of active or latent tuberculosis. Int. J. Tuberc. Lung Dis. Off. J. Int. Union Against Tuberc. Lung Dis. 2020, 24, 747–749. [Google Scholar] [CrossRef] [PubMed]
- Canetti, D.; Antonello, R.M.; Saderi, L.; Giro, M.; Goletti, D.; Sarmati, L.; Rodari, P.; Bocchino, M.; Schirò, M.; Riccardi, N.; et al. Impact of SARS-CoV-2 infection on tuberculosis outcome and follow-up in Italy during the first COVID-19 pandemic wave: A nationwide online survey. Le Infez. Med. 2022, 30, 418–426. [Google Scholar] [CrossRef]
- Tadolini, M.; Codecasa, L.R.; García-García, J.M.; Blanc, F.X.; Borisov, S.; Alffenaar, J.W.; Andréjak, C.; Bachez, P.; Bart, P.A.; Belilovski, E.; et al. Active tuberculosis, sequelae and COVID-19 co-infection: First cohort of 49 cases. Eur. Respir. J. 2020, 56, 2001398. [Google Scholar] [CrossRef] [PubMed]
- Stochino, C.; Villa, S.; Zucchi, P.; Parravicini, P.; Gori, A.; Raviglione, M.C. Clinical characteristics of COVID-19 and active tuberculosis co-infection in an Italian reference hospital. Eur. Respir. J. 2020, 56, 2001708. [Google Scholar] [CrossRef] [PubMed]
- Madan, M.; Baldwa, B.; Raja, A.; Tyagi, R.; Dwivedi, T.; Mohan, A.; Mittal, S.; Madan, K.; Hadda, V.; Tiwari, P.; et al. Impact of Latent Tuberculosis on Severity and Outcomes in Admitted COVID-19 Patients. Cureus 2021, 13, e19882. [Google Scholar] [CrossRef] [PubMed]
- McQuaid, C.F.; Vassall, A.; Cohen, T.; Fiekert, K.; White, R.G. The impact of COVID-19 on TB: A review of the data. Int. J. Tuberc. Lung Dis. Off. J. Int. Union Against Tuberc. Lung Dis. 2021, 25, 436–446. [Google Scholar] [CrossRef] [PubMed]
- Khayat, M.; Fan, H.; Vali, Y. COVID-19 promoting the development of active tuberculosis in a patient with latent tuberculosis infection: A case report. Respir. Med. Case Rep. 2021, 32, 101344. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H. Role of latent tuberculosis infections in reduced COVID-19 mortality: Evidence from an instrumental variable method analysis. Med. Hypotheses 2020, 144, 110214. [Google Scholar] [CrossRef]
- Sekaran, S.; Jagani, R.P.; Waleed, M.S.; Celi, C.S.V.; Marzban, S. Latent tuberculosis and COVID-19 disease. Discov. Rep. 2021, 4, e26. [Google Scholar] [CrossRef]
- Gupta, N.; Ish, P.; Gupta, A.; Malhotra, N.; Caminero, J.A.; Singla, R.; Kumar, R.; Yadav, S.R.; Dev, N.; Agrawal, S.; et al. A profile of a retrospective cohort of 22 patients with COVID-19 and active/treated tuberculosis. Eur. Respir. J. 2020, 56, 2003408. [Google Scholar] [CrossRef] [PubMed]
- Kumwichar, P.; Chongsuvivatwong, V. COVID-19 pneumonia and the subsequent risk of getting active pulmonary tuberculosis: A population-based dynamic cohort study using national insurance claims databases. EClinicalMedicine 2023, 56, 101825. [Google Scholar] [CrossRef] [PubMed]
- Vashishtha, V.M. Are BCG-induced non-specific effects adequate to provide protection against COVID-19? Hum. Vaccines Immunother. 2021, 17, 88–91. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Mao, Y.; Li, Y.; Qi, Y. BCG Vaccination: A potential tool against COVID-19 and COVID-19-like Black Swan incidents. Int. Immunopharmacol. 2022, 108, 108870. [Google Scholar] [CrossRef] [PubMed]
- Smolders, J.; van den Ouweland, J.; Geven, C.; Pickkers, P.; Kox, M. Letter to the Editor: Vitamin D deficiency in COVID-19: Mixing up cause and consequence. Metab. Clin. Exp. 2021, 115, 154434. [Google Scholar] [CrossRef] [PubMed]
- Sajadi, M.M.; Habibzadeh, P.; Vintzileos, A.; Shokouhi, S.; Miralles-Wilhelm, F.; Amoroso, A. Temperature, Humidity, and Latitude Analysis to Estimate Potential Spread and Seasonality of Coronavirus Disease 2019 (COVID-19). JAMA Netw. Open 2020, 3, e2011834. [Google Scholar] [CrossRef] [PubMed]
- Mecenas, P.; Bastos, R.; Vallinoto, A.C.R.; Normando, D. Effects of temperature and humidity on the spread of COVID-19: A systematic review. PLoS ONE 2020, 15, e0238339. [Google Scholar] [CrossRef] [PubMed]
- Mourtzoukou, E.G.; Falagas, M.E. Exposure to cold and respiratory tract infections. Int. J. Tuberc. Lung Dis. Off. J. Int. Union Against Tuberc. Lung Dis. 2007, 11, 938–943. [Google Scholar]
- Eccles, R.; Wilkinson, J.E. Exposure to cold and acute upper respiratory tract infection. Rhinology 2015, 53, 99–106. [Google Scholar] [CrossRef]
- Ganmaa, D.; Enkhmaa, D.; Nasantogtokh, E.; Sukhbaatar, S.; Tumur-Ochir, K.-E.; Manson, J. Vitamin D, respiratory infections, and chronic disease: Review of meta-analyses and randomized clinical trials. J. Intern. Med. 2022, 291, 141–164. [Google Scholar] [CrossRef]
- Martineau, A.R.; Jolliffe, D.A.; Greenberg, L.; Aloia, J.F.; Bergman, P.; Dubnov-Raz, G.; Esposito, S.; Ganmaa, D.; Ginde, A.A.; Goodall, E.C.; et al. Vitamin D supplementation to prevent acute respiratory infections: Individual participant data meta-analysis. Health Technol. Assess. (Winch. Engl.) 2019, 23, 1–44. [Google Scholar] [CrossRef]
- Jolliffe, D.A.; Ganmaa, D.; Wejse, C.; Raqib, R.; Haq, M.A.; Salahuddin, N.; Daley, P.K.; Ralph, A.P.; Ziegler, T.R.; Martineau, A.R. Adjunctive vitamin D in tuberculosis treatment: Meta-analysis of individual participant data. Eur. Respir. J. 2019, 53, 1802003. [Google Scholar] [CrossRef]
- Varikasuvu, S.R.; Thangappazham, B.; Vykunta, A.; Duggina, P.; Manne, M.; Raj, H.; Aloori, S. COVID-19 and vitamin D (Co-VIVID study): A systematic review and meta-analysis of randomized controlled trials. Expert Rev. Anti-Infect. Ther. 2022, 20, 907–913. [Google Scholar] [CrossRef]
- Chetty, V.V.; Chetty, M. Potential benefit of vitamin D supplementation in people with respiratory illnesses, during the COVID-19 pandemic. Clin. Transl. Sci. 2021, 14, 2111–2116. [Google Scholar] [CrossRef]
- Jagdagsuren, D.; Hayashida, T.; Takano, M.; Gombo, E.; Zayasaikhan, S.; Kanayama, N.; Tsuchiya, K.; Oka, S. The second molecular epidemiological study of HIV infection in Mongolia between 2010 and 2016. PLoS ONE 2017, 12, e0189605. [Google Scholar] [CrossRef]
Characteristics | All Patients | Non-Severe | Severe | |
---|---|---|---|---|
N = 270 | N = 125 | N = 145 | ||
Sex | Female, n (%) | 167 (62%) | 84 (67%) | 83 (57%) |
Male, n (%) | 103 (38%) | 41 (33%) | 62 (43%) | |
Age, years, mean (sd) | 56 (18) | 52 (17) | 59.5 (17) | |
Education 1 | University/polytechnic, n (%) | 121 (45%) | 54 (43%) | 67 (46%) |
Secondary school or lower, n (%) | 128 (48%) | 55 (44%) | 73 (50%) | |
NA | 21 (8%) | 16 (13%) | 5 (3%) | |
Occupation | Unemployment | 32 (12%) | 16 (13%) | 16 (11%) |
Salary employed | 83 (31%) | 46 (37%) | 37 (26%) | |
Self employed | 40 (15%) | 14 (11%) | 26 (18%) | |
Retired | 115 (43%) | 49 (39%) | 66 (46%) | |
Type of residence | Centrally heated, n (%) | 203 (75%) | 93 (74%) | 110 (76%) |
Not centrally heated, n (%) | 38 (14%) | 15 (12%) | 23 (16%) | |
Ger (Yurt), n (%) | 29 (11%) | 17 (14%) | 12 (8%) | |
Patient actively smoking | Yes, n (%) | 39 (14%) | 19 (15%) | 20 (14%) |
Household PTB contact | Yes, n (%) | 38 (14%) | 15 (12%) | 23 (16%) |
BCG scar | Yes, n (%) | 230 (85%) | 123 (98%) | 107 (74%) |
Serum 25(OH)D, mean (sd) | 18 (11) | 17 (12) | 18 (10) | |
Serum 25(OH)D2 | <10 ng/mL, n (%) | 86 (32%) | 42 (34%) | 44 (31%) |
≥10 ng/mL, n (%) | 181 (68%) | 83 (66%) | 98 (69%) | |
Vitamin D supplementation use | Yes, n (%) | 186 (69%) | 86 (69%) | 100 (69%) |
Vitamin D supplementation dose | None | 84 (31%) | 39 (31%) | 45 (31%) |
<1000 | 29 (101%) | 9 (7%) | 20 (14%) | |
1000–2000 | 22 (8%) | 8 (6%) | 14 (10%) | |
<2000 | 135 (50%) | 69 (55%) | 66 (46%) | |
BMI, kg/m2, mean (sd) | 27 (5) | 28 (6) | 26 (5) | |
BMI, kg/m2 | <30 | 207 (77%) | 89 (71%) | 118 (81%) |
≥30 | 63 (23%) | 36 (29%) | 27 (19%) | |
COVID-19 severity category (WHO) | Mild, n (%) | 32 (12%) | 32 (26%) | 0 (0%) |
Moderate, n (%) | 125 (46%) | 93 (74%) | 0 (0%) | |
Severe, n (%) | 86 (32%) | 0 (0%) | 86 (59%) | |
Critical, n (%) | 59 (22%) | 0 (0%) | 59 (41%) | |
Comorbidity | Any, n (%) | 109 (40%) | 54 (43%) | 55 (38%) |
Diabetes, n (%) | 38 (14%) | 16 (13%) | 22 (15%) | |
Hypertension, n (%) | 128 (47%) | 63 (50%) | 65 (45%) | |
COPD, n (%) | 36 (13%) | 8 (6%) | 28 (19%) | |
Heart Attack/Stroke, n (%) | 13 (5%) | 5 (4%) | 8 (6%) | |
Heart Failure, n (%) | 3 (1%) | 0 (0%) | 3 (2%) | |
Bypass, n (%) | 12 (4%) | 4 (3%) | 8 (6%) | |
Sleep Apnea, n (%) | 54 (20%) | 16 (13%) | 38 (26%) | |
Kidney Stone, n (%) | 5 (2%) | 3 (2%) | 2 (1%) | |
Kidney Failure, n (%) | 11 (4%) | 4 (3%) | 7 (5%) | |
Chronic liver disease, n (%) | 16 (6%) | 9 (7%) | 7 (5%) | |
Hypercalcemia, n (%) | 1 (0.4%) | 0 (0%) | 1 (1%) | |
Parathyroid disease, n (%) | 38 (14%) | 3 (2%) | 12 (8%) | |
Sarcoidosis, n (%) | 9 (3%) | 1 (1%) | 8 (6%) | |
TB, n (%) | 11 (4%) | 1 (1%) | 10 (7%) | |
Advanced cancer, n (%) | 13 (5%) | 7 (6%) | 6 (4%) | |
Vaccination doses 2 | No | 24 (9%) | 5 (4%) | 19 (13%) |
I dose | 20 (7%) | 3 (2%) | 17 (12%) | |
Full dose | 101 (37%) | 63 (50%) | 38 (26%) | |
Boosting (III) doses | 109 (40%) | 46 (37%) | 63 (43%) | |
Boosting (IV) doses | 16 (6%) | 8 (6%) | 8 (6%) | |
QFT-G | Negative | 159 (59%) | 72 (58%) | 87 (60%) |
Positive | 49 (18%) | 26 (21%) | 23 (16%) | |
Indetermined | 5 (2%) | 1 (1%) | 4 (3%) | |
Other | 57 (21%) | 26 (21%) | 31 (21%) | |
Fever | None | 177 (66%) | 83 (66%) | 94 (65%) |
Mild, n (%) | 55 (20%) | 13 (10%) | 42 (29%) | |
Moderate, n (%) | 35 (13%) | 27 (22%) | 8 (6%) | |
Severe, n (%) | 3 (1%) | 2 (2%) | 1 (1%) | |
Cough | None | 14 (5%) | 7 (6%) | 7 (5%) |
Mild, n (%) | 141 (52%) | 28 (22%) | 113 (78%) | |
Moderate, n (%) | 85 (32%) | 69 (55%) | 16 (11%) | |
Severe, n (%) | 30 (11%) | 21 (17%) | 9 (6%) | |
Sore throat | None | 104 (39%) | 46 (37%) | 58 (40%) |
Mild, n (%) | 105 (39%) | 32 (26%) | 73 (50%) | |
Moderate, n (%) | 50 (19%) | 39 (31%) | 11 (8%) | |
Severe, n (%) | 11 (4%) | 8 (6%) | 3 (2%) | |
Stuffy or runny nose | None | 180 (67%) | 87 (70%) | 93 (64%) |
Mild, n (%) | 70 (26%) | 21 (17%) | 49 (34%) | |
Moderate, n (%) | 15 (6%) | 13 (10%) | 2 (1%) | |
Severe, n (%) | 5 (2%) | 4 (3%) | 1 (1%) | |
Chest pain | None | 87 (32%) | 43 (34%) | 44 (30%) |
Mild, n (%) | 102 (38%) | 23 (18%) | 79 (55%) | |
Moderate, n (%) | 59 (22%) | 44 (35%) | 15 (10%) | |
Severe, n (%) | 22 (8%) | 15 (12%) | 7 (5%) | |
Headache | None | 70 (26%) | 36 (29%) | 34 (23%) |
Mild, n (%) | 118 (48%) | 33 (26%) | 85 (59%) | |
Moderate, n (%) | 63 (23%) | 43 (34%) | 20 (14%) | |
Severe, n (%) | 19 (7%) | 13 (10%) | 6 (4%) | |
Fatigue | None | 32 (12%) | 12 (10%) | 20 (14%) |
Mild, n (%) | 99 (37%) | 31 (25%) | 68 (47%) | |
Moderate, n (%) | 90 (33%) | 52 (42%) | 38 (26%) | |
Severe, n (%) | 49 (18%) | 30 (24%) | 19 (13%) | |
Nausea | None | 189 (70%) | 91 (73%) | 98 (68%) |
Mild, n (%) | 55 (20%) | 22 (18%) | 33 (23%) | |
Moderate, n (%) | 23 (9%) | 10 (8%) | 13 (9%) | |
Severe, n (%) | 3 (1%) | 2 (2%) | 1 (1%) | |
Diarrhea | None | 250 (93%) | 119 (95%) | 131 (90%) |
Mild, n (%) | 17 (6%) | 4 (3%) | 13 (9%) | |
Moderate, n (%) | 2 (0.7%) | 1 (1%) | 1 (1%) | |
Severe, n (%) | 1 (0.4%) | 1 (1%) | 0 (0%) | |
Sense of taste | Usual, n (%) | 41 (15%) | 28 (22%) | 13 (9%) |
Less than usual, n (%) | 33 (12%) | 16 (13%) | 17 (12%) | |
No sense of taste, n (%) | 196 (73%) | 81 (65%) | 115 (79%) | |
Sense of smell | Usual, n (%) | 46 (17%) | 31 (25%) | 15 (10%) |
Less than usual, n (%) | 26 (10%) | 12 (10%) | 14 (10%) | |
No sense of taste, n (%) | 198 (74%) | 82 (66%) | 116 (80%) |
Proportion of Severe (%) | Univariable Model | Multivariable Model | ||||
---|---|---|---|---|---|---|
Variables | OR (95% CI) | p-Value | OR (95% CI) | p-Value | ||
Gender | Female | 83 (50) | Ref | |||
Male | 62 (60) | 1.53 (0.93, 2.52) | 0.09 | 2.15 (1.17, 3.94) | 0.01 | |
Age | <40 | 22 (39) | Ref | Ref | ||
40–60 | 47 (52) | 1.69 (0.86, 3.33) | 0.13 | 1.45 (0.63, 3.34) | 0.38 | |
>60 | 76 (61) | 2.45 (1.28, 4.67) | 0.007 | 2.56 (1.17, 5.63) | 0.02 | |
Occupation | Salary employed | 16 (50) | Ref | |||
Self employed | 37 (45) | 0.8 (0.36, 1.82) | 0.6 | |||
Retired | 26 (65) | 1.86 (0.72, 4.8) | 0.2 | |||
Unemployed | 66 (57) | 1.35 (0.61, 2.95) | 0.46 | |||
Education | University/polytechnic | 61 (60) | Ref | |||
Secondary/lower | 79 (53) | 0.75 (0.45, 1.25) | 0.27 | |||
Type of residence | Centrally heated | 110 (54) | Ref | |||
Not centrally heated | 23 (61) | 1.3 (0.64, 2.63) | 0.47 | |||
Ger (Yurt) | 12 (41) | 0.6 (0.27, 1.31) | 0.2 | |||
Smoking | No | 125 (54) | Ref | |||
Yes | 20 (51) | 0.89 (0.45, 1.76) | 0.74 | |||
Alcohol consumption | No | 127 (52) | Ref | |||
Yes | 18 (69) | 2.07 (0.87, 4.95) | 0.1 | |||
QFT-G | Negative | 87 (55) | Ref | |||
Positive | 23 (47) | 0.73 (0.39, 1.39) | 0.34 | |||
Indetermined | 4 (80) | 3.31 (0.36, 30.25) | 0.29 | |||
BCG | No | 38 (95) | Ref | |||
Yes | 107 (47) | 0.05 (0.01, 0.19) | <0.001 | 0.04 (0.01, 0.16) | <0.001 | |
Serum 25(OH)D | ≥10 ng/mL, n (%) | 98 (54) | Ref | |||
<10 ng/mL, n (%) | 44 (51) | 0.89 (0.53, 1.48) | 0.65 | |||
Vitamin D Supplementation | Yes | 45 (54) | Ref | |||
No | 100 (54) | 1.01 (0.6, 1.69) | 1 | |||
BMI, kg/m2 | <30 | 118 (57) | Ref | |||
≥30 | 27 (43) | 0.57 (0.32, 1) | 0.05 | 0.57 (0.27, 1.2) | 0.14 | |
COVID-19 vaccination | Yes | 19 (79) | Ref | Ref | ||
No | 126 (51) | 0.28 (0.1, 0.76) | 0.01 | 0.26 (0.08, 0.85) | 0.03 | |
Comorbidity | Yes | 90 (56) | Ref | |||
No | 55 (51) | 0.8 (0.49, 1.31) | 0.38 | |||
Active tuberculosis | No | 135 (52) | Ref | |||
Yes | 10 (91) | 9.19 (1.16, 72.77) | 0.04 | 10.56 (1.2, 93) | 0.03 | |
Diabetes | No | 123 (53) | Ref | |||
Yes | 22 (58) | 1.22 (0.61, 2.44) | 0.58 | |||
Hypertension history | No | 80 (56) | Ref | |||
Yes | 65 (51) | 0.8 (0.49, 1.29) | 0.36 | |||
COPD | No | 117 (50) | Ref | Ref | ||
Yes | 28 (78) | 3.5 (1.53, 8) | 0.003 | 4.41 (1.76, 11.09) | 0.002 | |
History of heart attack | No | 137 (53) | Ref | |||
Yes | 8 (62) | 1.4 (0.45, 4.4) | 0.56 | |||
History of coronary bypass | No | 137 (53) | Ref | |||
Yes | 8 (67) | 1.77 (0.52, 6.01) | 0.36 | |||
Diagnosed as sleep apnea | No | 107 (50) | Ref | |||
Yes | 38 (70) | 1.22 (0.61, 2.44) | 0.58 | |||
Kidney failure or dialysis | No | 138 (53) | Ref | |||
Yes | 7 (64) | 1.53 (0.44, 5.37) | 0.5 | |||
Severe liver disease or cirrhosis | No | 138 (54) | Ref | |||
Yes | 7 (44) | 0.65 (0.24, 1.81) | 0.41 | |||
Parathyroid | No | 133 (52) | Ref | |||
Yes | 12 (80) | 3.67 (1.01, 13.31) | 0.05 | 4.35 (0.96, 19.8) | 0.06 | |
Sarcoid | No | 137 (53) | Ref | |||
Yes | 8 (89) | 7.24 (0.89, 58.72) | 0.06 | 4.56 (0.46, 45.45) | 0.2 | |
Advanced cancer | No | 139 (54) | Ref | |||
Yes | 6 (46) | 1.22 (0.61, 2.44) | 0.58 | |||
Antiviral drug use | Yes | 135 (57) | Ref | |||
No | 10 (31) | 0.35 (0.16, 0.76) | 0.009 | 0.55 (0.22, 1.36) | 0.19 | |
Corticosteroid use | Yes | 64 (48) | Ref | Ref | ||
No | 81 (59) | 1.56 (0.96, 2.52) | 0.07 | 1.55 (0.85, 2.81) | 0.15 | |
NSAID | Yes | 86 (53) | Ref | |||
No | 59 (55) | 1.1 (0.67, 1.8) | 0.7 | |||
ACE inhibitors | Yes | 95 (55) | Ref | |||
No | 50 (51) | 0.84 (0.51, 1.39) | 0.51 | |||
ARBs | Yes | 118 (57) | Ref | |||
No | 27 (42) | 0.54 (0.31, 0.96) | 0.04 | 0.57 (0.28, 1.18) | 0.13 |
Variables | Mean (sd) in Severe Group | Univariable Model | Multivariable Model | ||
---|---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | ||
LMR | 8 (37) | 0.99 (0.99, 1.01) | 0.72 | ||
Fibrinogen (g/L) | 3.9 (1.2) | 0.96 (1.47, 1.47) | 0.11 | ||
aPTT (s) | 45 (28) | 1 (1.06, 1.06) | 0.09 | 1.02 (0.98, 1.06) | 0.31 |
TT (s) | 20.5 (7.4) | 1.06 (1.24, 1.24) | 0.001 | 1.17 (1.06, 1.29) | 0.001 |
INR | 1.16 (1) | 0.55 (4.09, 4.09) | 0.43 | ||
PT (s) | 13.9 (3.7) | 0.9 (1, 1) | 0.06 | 0.94 (0.88, 1.01) | 0.1 |
WBC (103/µL) | 6.9 (4.8) | 0.97 (1.08, 1.08) | 0.31 | ||
HCT (%) | 36.2 (9.2) | 0.91 (0.98, 0.98) | 0.002 | 0.97 (0.93, 1.01) | 0.10 |
NEUT (103/µL) | 5.7 (10.4) | 0.99 (1.08, 1.08) | 0.11 | ||
LYMPH (103/µL) | 2.3 (3) | 0.95 (1.11, 1.11) | 0.56 | ||
MON (103/µL) | 0.7 (1.3) | 0.91 (2.02, 2.02) | 0.13 | ||
Ferritin (ng/mL) | 392.8 (420.9) | 1 (1, 1) | 0.47 | ||
CRP (ng/mL) | 27,291.2 (28,792.7) | 1 (1, 1) | <0.001 | 1 (1, 1) | <0.001 |
IL-6 (pg/mL) | 30 (260) | 1 (1.03, 1.03) | 0.07 | 1.01 (0.99, 1.02) | 0.42 |
D-Dimer (mu g/mL) | 0.5 (0.2) | 6.8 (175.1, 175.1) | <0.001 | 1.07 (0.82, 1.38) | 0.63 |
PCT (ng/mL) | 0.3 (0.2) | 0.34 (2.57, 2.57) | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganmaa, D.; Chinbayar, T.; Khudaykov, P.; Nasantogtoh, E.; Ariunbuyan, S.; Enkhtsetseg, T.; Sarangua, G.; Chan, A.; Tserendagva, D. Latent TB Infection, Vitamin D Status and COVID-19 Severity in Mongolian Patients. Nutrients 2023, 15, 3979. https://doi.org/10.3390/nu15183979
Ganmaa D, Chinbayar T, Khudaykov P, Nasantogtoh E, Ariunbuyan S, Enkhtsetseg T, Sarangua G, Chan A, Tserendagva D. Latent TB Infection, Vitamin D Status and COVID-19 Severity in Mongolian Patients. Nutrients. 2023; 15(18):3979. https://doi.org/10.3390/nu15183979
Chicago/Turabian StyleGanmaa, Davaasambuu, Tserendorj Chinbayar, Polyna Khudaykov, Erdenebileg Nasantogtoh, Sukhbaatar Ariunbuyan, Tserenkhuu Enkhtsetseg, Ganbold Sarangua, Andrew Chan, and Dalkh Tserendagva. 2023. "Latent TB Infection, Vitamin D Status and COVID-19 Severity in Mongolian Patients" Nutrients 15, no. 18: 3979. https://doi.org/10.3390/nu15183979
APA StyleGanmaa, D., Chinbayar, T., Khudaykov, P., Nasantogtoh, E., Ariunbuyan, S., Enkhtsetseg, T., Sarangua, G., Chan, A., & Tserendagva, D. (2023). Latent TB Infection, Vitamin D Status and COVID-19 Severity in Mongolian Patients. Nutrients, 15(18), 3979. https://doi.org/10.3390/nu15183979