An Early Mediterranean-Based Nutritional Intervention during Pregnancy Reduces Metabolic Syndrome and Glucose Dysregulation Rates at 3 Years Postpartum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Sociodemographic, Anthropometric, and Clinical Data
2.4. Biochemical Analysis
2.5. Dietary Assessment
2.6. Outcome Analysis
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IDF Diabetes Atlas. Available online: https://www.idf.org/e-library/epidemiology-research/diabetes-atlas/159-idf-diabetes-atlas-ninth-edition-2019.html (accessed on 22 April 2023).
- Bellamy, L.; Casas, J.P.; Hingorani, A.D.; Williams, D. Type 2 diabetes mellitus after gestational diabetes: A systematic review and meta-analysis. Lancet 2009, 373, 1773–1779. [Google Scholar] [CrossRef] [PubMed]
- Vounzoulaki, E.; Khunti, K.; Abner, S.C.; Tan, B.K.; Davies, M.J.; Gillies, C.L. Progression to type 2 diabetes in women with a known history of gestational diabetes: Systematic review and meta-analysis. BMJ 2020, 369, m1361. [Google Scholar] [CrossRef]
- Bengtson, A.M.; Ramos, S.Z.; Savitz, D.A.; Werner, E.F. Risk Factors for Progression From Gestational Diabetes to Postpartum Type 2 Diabetes: A Review. Clin. Obstet. Gynecol. 2021, 64, 234–243. [Google Scholar] [CrossRef]
- Kim, C.; Newton, K.M.; Knopp, R.H. Gestational diabetes and the incidence of type 2 diabetes: A systematic review. Diabetes Care 2002, 25, 1862–1868. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Kim, G.R.; Lee, S.J.; Kim, H.C. Gestational diabetes mellitus and the role of intercurrent type 2 diabetes on long-term risk of cardiovascular events. Sci. Rep. 2021, 11, 21140. [Google Scholar] [CrossRef]
- Shostrom, D.C.V.; Sun, Y.; Oleson, J.J.; Snetselaar, L.G.; Bao, W. History of Gestational Diabetes Mellitus in Relation to Cardiovascular Disease and Cardiovascular Risk Factors in US Women. Front. Endocrinol. 2017, 8, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plows, J.F.; Stanley, J.L.; Baker, P.N.; Reynolds, C.M.; Vickers, M.H. The Pathophysiology of Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2018, 19, 3342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johns, E.C.; Denison, F.C.; Norman, J.E.; Reynolds, R.M. Gestational Diabetes Mellitus: Mechanisms, Treatment, and Complications. Trends Endocrinol. Metab. 2018, 29, 743–754. [Google Scholar] [CrossRef]
- Sweeting, A.; Wong, J.; Murphy, H.R.; Ross, G.P. A Clinical Update on Gestational Diabetes Mellitus. Endocr. Rev. 2022, 43, 763–793. [Google Scholar] [CrossRef]
- Sharma, A.K.; Singh, S.; Singh, H.; Mahajan, D.; Kolli, P.; Mandadapu, G.; Kumar, B.; Kumar, D.; Kumar, S.; Jena, M.K. Deep Insight of the Pathophysiology of Gestational Diabetes Mellitus. Cells 2022, 11, 2672. [Google Scholar] [CrossRef]
- Li, M.; Zhang, C.Y.; Yue, C.Y. Effects of pre-pregnancy BMI and gestational weight gain on adverse pregnancy outcomes and complications of GDM. J. Obstet. Gynaecol. 2022, 42, 630–635. [Google Scholar] [CrossRef]
- Zehravi, M.; Maqbool, M.; Ara, I. Correlation between obesity, gestational diabetes mellitus, and pregnancy outcomes: An overview. Int. J. Adolesc. Med. Health 2021, 33, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Teh, W.T.; Teede, H.J.; Paul, E.; Harrison, C.L.; Wallace, E.M.; Allan, C. Risk factors for gestational diabetes mellitus: Implications for the application of screening guidelines. Aust. N. Z. J. Obstet. Gynaecol. 2011, 51, 26–30. [Google Scholar] [CrossRef]
- Ben-Haroush, A.; Yogev, Y.; Hod, M. Epidemiology of gestational diabetes mellitus and its association with Type 2 diabetes. Diabet. Med. 2004, 21, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Casagrande, S.S.; Linder, B.; Cowie, C.C. Prevalence of gestational diabetes and subsequent Type 2 diabetes among U.S. women. Diabetes Res. Clin. Pract. 2018, 141, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, K.; Nielsen, M.F.; Kallfa, E.; Dubietyte, G.; Lauszus, F.F. Metabolic syndrome in women with previous gestational diabetes. Sci. Rep. 2021, 11, 11558. [Google Scholar] [CrossRef]
- Shen, Y.; Li, W.; Leng, J.; Zhang, S.; Liu, H.; Li, W.; Wang, L.; Tian, H.; Chen, J.; Qi, L.; et al. High risk of metabolic syndrome after delivery in pregnancies complicated by gestational diabetes. Diabetes Res. Clin. Pract. 2019, 150, 219–226. [Google Scholar] [CrossRef]
- Lai, M.; Al Rijjal, D.; Röst, H.L.; Dai, F.F.; Gunderson, E.P.; Wheeler, M.B. Underlying dyslipidemia postpartum in women with a recent GDM pregnancy who develop type 2 diabetes. eLife 2020, 9, e59153. [Google Scholar] [CrossRef] [PubMed]
- Mijatovic-Vukas, J.; Capling, L.; Cheng, S.; Stamatakis, E.; Louie, J.; Wah Cheung, N.; Markovic, T.; Ross, G.; Senior, A.; Brand-Miller, J.C.; et al. Associations of Diet and Physical Activity with Risk for Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis. Nutrients 2018, 10, 698. [Google Scholar] [CrossRef] [Green Version]
- Al Wattar, B.H.; Dodds, J.; Placzek, A.; Beresford, L.; Spyreli, E.; Moore, A.; Gonzalez Carreras, F.J.; Austin, F.; Murugesu, N.; Roseboom, T.J.; et al. Mediterranean-style diet in pregnant women with metabolic risk factors (ESTEEM): A pragmatic multicentre randomised trial. PLoS Med. 2019, 16, e1002857. [Google Scholar] [CrossRef]
- Assaf-Balut, C.; de la Torre, N.G.; Durán, A.; Bordiu, E.; del Valle, L.; Familiar, C.; Valerio, J.; Jimenez, I.; Herraiz, M.A.; Izquierdo, N.; et al. An Early, Universal Mediterranean Diet-Based Intervention in Pregnancy Reduces Cardiovascular Risk Factors in the “Fourth Trimester”. J. Clin. Med. 2019, 8, 1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Ferre, N.; Del Valle, L.; Torrejón, M.J.; Barca, I.; Calvo, M.I.; Matía, P.; Rubio, M.A.; Calle-Pascual, A.L. Diabetes mellitus and abnormal glucose tolerance development after gestational diabetes: A three-year, prospective, randomized, clinical-based, Mediterranean lifestyle interventional study with parallel groups. Clin. Nutr. 2015, 34, 579–585. [Google Scholar] [CrossRef]
- Li, N.; Yang, Y.; Cui, D.; Li, C.; Ma, R.C.W.; Li, J.; Yang, X. Effects of lifestyle intervention on long-term risk of diabetes in women with prior gestational diabetes: A systematic review and meta-analysis of randomized controlled trials. Obes. Rev. 2021, 22, e13122. [Google Scholar] [CrossRef]
- Assaf-Balut, C.; García De La Torre, N.; Durán, A.; Fuentes, M.; Bordiú, E.; Del Valle, L.; Familiar, C.; Ortolá, A.; Jiménez, I.; Herraiz, M.A.; et al. A Mediterranean diet with additional extra virgin olive oil and pistachios reduces the incidence of gestational diabetes mellitus (GDM): A randomized controlled trial: The St. Carlos GDM prevention study. PLoS ONE 2017, 12, e0185873. [Google Scholar] [CrossRef]
- Song, C.; Li, J.; Leng, J.; Ma, R.C.; Yang, X. Lifestyle intervention can reduce the risk of gestational diabetes: A meta-analysis of randomized controlled trials. Obes. Rev. 2016, 17, 960–969. [Google Scholar] [CrossRef]
- Guo, X.Y.; Shu, J.; Fu, X.H.; Chen, X.P.; Zhang, L.; Ji, M.X.; Liu, X.M.; Yu, T.T.; Sheng, J.Z.; Huang, H.F. Improving the effectiveness of lifestyle interventions for gestational diabetes prevention: A meta-analysis and meta-regression. BJOG 2019, 126, 311–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amati, F.; Hassounah, S.; Swaka, A. The Impact of Mediterranean Dietary Patterns During Pregnancy on Maternal and Offspring Health. Nutrients 2019, 11, 1098. [Google Scholar] [CrossRef] [Green Version]
- Duran, A.; Śaenz, S.; Torrejón, M.J.; Bordí, U.E.; Del Valle, L.; Galindo, M.; Perez, N.; Herraiz, M.A.; Izquierdo, N.; Rubio, M.A.; et al. Introduction of IADPSG criteria for the screening and diagnosis of gestational diabetes mellitus results in improved pregnancy outcomes at a lower cost in a large cohort of pregnant women: The St. Carlos Gestational Diabetes Study. Diabetes Care 2014, 37, 2442–2450. [Google Scholar] [CrossRef] [Green Version]
- da Silva, V.S.; Vieira, M.F.S. International Society for the Advancement of Kinanthropometry (ISAK) Global: International accreditation scheme of the competent anthropometrist. Rev. Bras. Cineantropom. Desempenho Hum. 2020, 22, e70517. [Google Scholar] [CrossRef]
- Mangla, A.G.; Dhamija, N.; Gupta, U.; Dhall, M. Anthropometric Markers as a Paradigm for Obesity Risk Assessment. J. Biosci. Med. 2020, 8, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Schröder, H.; Fitó, M.; Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Lamuela-Raventós, R.; Ros, E.; Salaverría, I.; Fiol, M.; et al. A Short Screener Is Valid for Assessing Mediterranean Diet Adherence among Older Spanish Men and Women. J. Nutr. 2011, 141, 1140–1145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De La Torre, N.G.; Assaf-Balut, C.; Varas, I.J.; Del Valle, L.; Durán, A.; Fuentes, M.; Del Prado, N.; Bordiú, E.; Valerio, J.J.; Herraiz, M.A.; et al. Effectiveness of following mediterranean diet recommendations in the real world in the incidence of gestational diabetes mellitus (Gdm) and adverse maternal-foetal outcomes: A prospective, universal, interventional study with a single group. the st carlos study. Nutrients 2019, 11, 1210. [Google Scholar] [CrossRef] [Green Version]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes—2023. Diabetes Care 2023, 46, S19–S40. [Google Scholar] [CrossRef]
- Martínez-Larrad, M.T.; Fernández-Pérez, C.; Corbatón-Anchuelo, A.; Gabriel, R.; Lorenzo, C.; Serrano-Ríos, M. Revised waist circumference cut-off points for the criteria of abdominal obesity in the Spanish population: Multicenter nationwide Spanish population based study. Av. Diabetol. 2011, 27, 168–174. [Google Scholar] [CrossRef]
- Marcuello, C.; Calle-Pascual, A.L.; Fuentes, M.; Runkle, I.; Rubio, M.A.; Montañez, C.; Rojo-Martinez, G.; Soriguer, F.; Bordiu, E.; Goday, A.; et al. Prevalence of the metabolic syndrome in Spain using regional cutoff points for waist circumference: The [email protected] study. Acta Diabetol. 2013, 50, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.T.; Loria, C.M.; Smith, S.C. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.; Magny-Normilus, C.; McMahon, E.; Whittemore, R. Systematic Review of Lifestyle Interventions for Gestational Diabetes Mellitus in Pregnancy and the Postpartum Period. J. Obstet. Gynecol. Neonatal Nurs. 2022, 51, 115–125. [Google Scholar] [CrossRef]
- Moore, A.P.; D’Amico, M.I.; Cooper, N.A.M.; Thangaratinam, S. Designing a lifestyle intervention to reduce risk of type 2 diabetes in postpartum mothers following gestational diabetes: An online survey with mothers and health professionals. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018, 220, 106–112. [Google Scholar] [CrossRef] [Green Version]
- Hedeager Momsen, A.M.; Høtoft, D.; Ørtenblad, L.; Friis Lauszus, F.; Krogh, R.H.A.; Lynggaard, V.; Juel Christiansen, J.; Terkildsen Maindal, H.; Vinther Nielsen, C. Diabetes prevention interventions for women after gestational diabetes mellitus: An overview of reviews. Endocrinol. Diabetes Metab. 2021, 4, e00230. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, M.Y.; Yang, J.H.; Park, S.Y.; Yim, C.H.; Han, K.O.; Yoon, H.K.; Park, S. Nutritional risk factors of early development of postpartum prediabetes and diabetes in women with gestational diabetes mellitus. Nutrition 2011, 27, 782–788. [Google Scholar] [CrossRef]
- Huvinen, E.; Koivusalo, S.B.; Meinilä, J.; Valkama, A.; Tiitinen, A.; Rönö, K.; Stach-Lempinen, B.; Eriksson, J.G. Effects of a Lifestyle Intervention During Pregnancy and First Postpartum Year: Findings From the RADIEL Study. J. Clin. Endocrinol. Metab. 2018, 103, 1669–1677. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Wang, L.; Liu, H.; Zhang, S.; Tian, H.; Shen, Y.; Tuomilehto, J.; Yu, Z.; Yang, X.; Hu, G.; et al. β-Cell function or insulin resistance was associated with the risk of type 2 diabetes among women with or without obesity and a history of gestational diabetes. BMJ Open Diabetes Res. Care 2020, 8, e001060. [Google Scholar] [CrossRef]
- Miao, Z.; Wu, H.; Ren, L.; Bu, N.; Jiang, L.; Yang, H.; Zhang, J.; Guo, X. Long-Term Postpartum Outcomes of Insulin Resistance and β-cell Function in Women with Previous Gestational Diabetes Mellitus. Int. J. Endocrinol. 2020, 2020, 7417356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assaf-Balut, C.; Bordiú, E.; del Valle, L.; Lara, M.; Duran, A.; Rubio, M.A.; Familiar, C.; Herraiz, M.A.; Izquierdo, N.; Pérez, N.; et al. The impact of switching to the one-step method for GDM diagnosis on the rates of postpartum screening attendance and glucose disorder in women with prior GDM. The San Carlos Gestational Study. J. Diabetes Complicat. 2016, 30, 1360–1364. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, P.; Wang, L.; Zhang, S.; Liu, H.; Li, W.; Li, N.; Li, W.; Leng, J.; Wang, J.; et al. Gestational diabetes with diabetes and prediabetes risks: A large observational study. Eur. J. Endocrinol. 2018, 179, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Gantenbein, K.V.; Kanaka-Gantenbein, C. Mediterranean Diet as an Antioxidant: The Impact on Metabolic Health and Overall Wellbeing. Nutrients 2021, 13, 1951. [Google Scholar] [CrossRef]
- Diaz-Santana, M.V.; O’brien, K.M.; Park, Y.M.M.; Sandler, D.P.; Weinberg, C.R. Persistence of Risk for Type 2 Diabetes After Gestational Diabetes Mellitus. Diabetes Care 2022, 45, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, C.; de Gennaro, G.; Brocchi, A.; Minaldi, E.; Del Prato, S.; Bertolotto, A. Risk factors associated with postpartum impaired glucose regulation in women with previous gestational diabetes. J. Diabetes Complicat. 2021, 35, 107854. [Google Scholar] [CrossRef]
CG N = 369 | IG N = 1031 | p | |
---|---|---|---|
Age (Years) | 33 (29–36) | 34 (30–37) | 0.032 |
Race/Ethnicity | |||
Caucasian | 238 (64.8%) | 697 (67.7%) | 0.317 |
Hispanic | 117 (31.9%) | 313 (30.4%) | |
Others | 14 (3.3%) | 21 (1.9%) | |
Family History of | |||
Type 2 Diabetes | 13 (3.5%) | 41 (4.0%) | 0.333 |
Mets (>2 Components) | 66 (17.9%) | 215 (20.9%) | |
Previous History of | |||
Gdm/Miscarriages | 12 (3.3%)/112 (30.4%) | 37 (3.7%)/346 (33.6%) | 0.038 |
Educational Status | |||
University Degree | 232 (62.9%) | 734 (71.3%) | 0.005 |
Employment | 292 (79.6%) | 842 (81.7%) | 0.035 |
Number of Pregnancies | |||
Primiparous | 161 (43.6%) | 464 (45.2%) | 0.365 |
Smoker | |||
Never | 201 (54.6%) | 600 (58.2%) | 0.359 |
Current | 26 (7.1%) | 69 (6.7%) | |
Pre-Pregnancy Body Weight (kg) | 60 (54–68) | 60 (54–67) | 0.173 |
Pre-Pregnancy BMI (kg/m2) | 23.1 (20.6–26.0) | 23.0 (20.5–25.9) | 0.164 |
CG (369) | IG (1031) | p (CG vs. IG) | ||||
---|---|---|---|---|---|---|
3 Months PD | 3-Year PD | 3 Months PD | 3-Year PD | 3-M | 3 Years | |
BW (kg) | 66.5 (58.7–75.9) | 63.3 (56.0–70.8) | 64.9 (58.0–72.0) | 62.0 (55.6–68.9) | 0.108 | 0.604 |
BMI (kg/m2) | 25.3 (22.3–28.7) | 24.0 (21.3–27.1) | 24.2 (21.9–27.1) | 23.2 (21.1–25.7) | 0.015 | 0.025 |
BW-Change (kg) | 4.5 (1.9–7.4) | 2.5 (−0.1–5.9) | 4.4 (1.6–7.5) | 2.0 (−5.2–3.3) | 0.707 | 0.045 |
WC (cm) | 85 (78–93) | 80 (72–89) | 85 (79–92) | 79 (73–87) | 0.754 | 0.009 |
Fat mass (kg) | Na | 20.1 (14.3–25.2) | Na | 20.1 (15.6–24.8) | — | 0.676 |
sBP (mmHg) | 111 (103–118) | 111 (104–118) | 110 (102–119) | 111 (102–119) | 0.826 | 0.549 |
dBP (mmHg) | 71 (65–76) | 74 (68–79) | 70 (65–76) | 70 (66–75) | 0.927 | 0.003 |
T-Chol (mg/dL) | 200 (176–224) | 179 (158–192) | 192 (174–217) | 171 (156–196) | 0.006 | 0.048 |
HDL-CHOL (mg/dL) | 62 (55–71) | 55(49–63) | 61 (54–72) | 58 (51–66) | 0.881 | 0.004 |
LDL-Chol (mg/dL) | 122 (103–144) | 112 (87–117) | 113 (96–133) | 102 (86–116) | 0.001 | 0.002 |
Triglycerides (g/L) | 73 (55–97) | 72 (52–98) | 68 (54–92) | 67 (54–87) | 0.050 | 0.058 |
Apo B (mg/dL) | 89 (75–103) | 79 (69–92) | 83 (73–97) | 79 (69–91) | 0.007 | 0.681 |
FSI (μIU/mL) | 6.1 (3.9–10.3) | 7.4 (4.3–10.9) | 4.5 (2.6–8.0) | 5.4 (3.1–8.9) | 0.000 | 0.009 |
HOMA-IR | 1.4 (0.9–2.2) | 1.8 (1.0–2.8) | 1.1 (0.7–2.0) | 1.4 (1.0–2.3) | 0.001 | 0.008 |
FS Glucose (mg/dL) | 84 (80–90) | 90 (85–96) | 82 (79–89) | 89 (83–95) | 0.040 | 0.195 |
2h-OGTT (mg/dL) | Na | 98 (85–119) | Na | 94 (81–109) | — | 0.037 |
HbA1c-IFCC % | 5.3 (5.1–5.5) | 5.3 (5.1–5.5) | 5.3 (5.1–5.5) | 5.4 (5.2–5.5) | 0.635 | 0.132 |
cPR (mg/dL) | 0.20 (0.10–0.44) | 0.14 (0.04–0.29) | 0.15 (0.07–0.31) | 0.11 (0.05–0.29) | 0.005 | 0.020 |
Phisycal activity Score | −2 (−2;−1) | −2 (−2;−1) | −2 (−2;−1) | −1 (−2;−1) | 0.801 | 0.006 |
Nutrition Score | 4 (1; 6) | 2 (−1;4) | 4 (2; 7) | 1 (0;5) | 0.200 | 0.013 |
MEDAS Score | 6 (5–7) | 7 (5–8) | 6 (5–8) | 7 (6–8) | 0.002 | 0.047 |
CG (369) vs. IG (1031) | GDM (290) vs. NGT (1110) | |||||
---|---|---|---|---|---|---|
N (%) | RR (95% CI) IG | p | N (%) | RR (95% CI) GDM | p | |
Panel A. 3 months | ||||||
Glycemic Status | ||||||
IFG | 18 (4.9) vs. 29 (2.8) | 0.68 (0.47–0.98) | 0.046 | 19 (6.6) vs. 28 (2.6) | 1.33 (1.05–1.69) | 0.002 |
Prediabetes (HBA1c ≥ 5.7%) | 20 (5.4) vs. 71 (6.9) | 1.29 (0.72–2.33) | 0.242 | 30 (10.1) vs. 61 (5.3) | 1.25 (1.03–1.52) | 0.006 |
MetS components | ||||||
Raised (WC ≥ 89.5 cm) | 69 (18.7) vs. 202 (19.3) | 1.06 (0.78–1.44) | 0.386 | 99 (34.1) vs.172 (15.5) | 1.30 (1.18–1.42) | 0.000 |
Raised sBP ≥ 130 mmHg | 13 (3.5) vs. 52 (5.0) | 1.46 (0.78–2.70) | 0.147 | 22 (7.6) vs. 43 (3.9) | 1.26 (1.00–1.38) | 0.033 |
Raised dBP ≥ 85 mmHg | 16 (4.3) vs. 52 (5.0) | 1.17 (0.66–2.08) | 0.351 | 25 (8.6) vs. 43 (3.9) | 1.22 (1.02–1.46) | 0.007 |
Raised TRIG ≥ 150 mg/dL | 26 (7.0) vs. 68 (6.5) | 0.93 (0.58–1.49) | 0.427 | 26 (8.7) vs. 68 (6.1) | 1.08 (0.95–1.22) | 0.125 |
Reduced HDL-C < 50 mg/dL | 35 (9.5) vs. 92 (8.9) | 0.94 (0.62–1.41) | 0.409 | 38 (13.1) vs. 89 (8.0) | 1.08 (0.96–1.20) | 0.098 |
AGR | 30 (8.1) vs. 98 (9.5) | 1.05 (0.65–1.69) | 0.435 | 46 (16.2) vs. 82 (7.4) | 1.31 (1.10–1.55) | 0.000 |
Raised HOMA-IR ≥ 3.5 | 21 (5.7) vs. 46 (4.5) | 0.77 (0.46–1.32) | 0.308 | 18 (6.2) vs. 49 (4.4) | 1.05 (0.91–1.21) | 0.303 |
>2 componets of MetS | 22 (5.8) vs. 54 (5.3) | 0.94 (0.47–1.90) | 0.493 | 32 (10.6) vs. 44 (4.0) | 1.40 (1.07–1.84) | 0.002 |
Panel B. 3 Years | ||||||
Glycemic Status | ||||||
IFG | 47 (12.8) vs.102(9.9) | 0.86 (0.59–1.27) | 0.254 | 77 (30.3) vs. 72 (6.5) | 1.64 (1.39–1.94) | 0.000 |
Prediabetes (HbA1c ≥ 5.7%) | 58 (13.7) vs. 19 (1.7) | 0.90 (0.80–1.00) | 0.018 | 34 (11.8) vs. 43 (3.9) | 1.41 (1.15–1.73) | 0.000 |
IGT | 4 (1.2) vs. 9 (0.9) | 0.72 (0.21–2.46) | 0.403 | 10 (3.4) vs. 3 (0.3) | 2.97 (1.13–7.79) | 0.000 |
MetS components | ||||||
BMI ≥ 30 (kg/m2) | 28 (7.7) vs. 62 (6.1) | 0.79 (0.49–1.24) | 0.175 | 40 (13.8) vs. 46 (4.1) | 1.73 (1.38–2.17) | 0.000 |
Raised (WC ≥ 89.5 cm) | 34 (9.2) vs. 45 (4.4) | 0.55 (0.33–0.92) | 0.017 | 29 (10.0) vs. 50 (4.5) | 1.23 (1.04–1.47) | 0.003 |
Raised sBP ≥ 130 mmHg | 6 (1.8) vs. 21 (2.1) | 1.04 (0.40–2.72) | 0.574 | 14 (4.8) vs. 13 (1.2) | 1.43 (1.01–2.05) | 0.020 |
Raised dBP ≥ 85 mmHg | 35 (9.3) vs. 3 (0.5) | 0.76 (0.69–0.84) | 0.001 | 8 (2.8) vs. 30 (2.7) | 1.02 (0.86–1.20) | 0.480 |
Raised TRIG ≥150 mg/dL | 32 (8.6) vs. 43 (4.2) | 0.59 (0.36–0.96) | 0.023 | 26 (9.0) vs. 49 (4.4) | 1.19 (0.98–1.26) | 0.131 |
Reduced HDL-C < 50 mg/dL | 78 (21.1)vs.153 (14.8) | 0.83 (0.67–0.98) | 0.048 | 67 (21.7) vs.164 (14.8) | 1.09 (0.99–1.14) | 0.103 |
AGR | 8 (22.0) vs. 112 (10.9) | 0.97 (0.76–1.24) | 0.439 | 89 (30.1) vs.104 (9.4) | 1.52 (1.33–1.73) | 0.001 |
Raised HOMA-IR ≥ 3.5 | 61 (16.6) vs. 118 (11.5) | 0.66 (0.38–1.17) | 0.100 | 56 (19.4) vs.123 (11.1) | 1.22 (1.00–1.50) | 0.022 |
>2 componets of MetS | 17 (4.5) vs. 15 (1.5) | 0.51 (0.36–0.76) | 0.003 | 18 (6.2) vs. 14 (1.3) | 1.56 (1.09–2.25) | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melero, V.; Arnoriaga, M.; Barabash, A.; Valerio, J.; del Valle, L.; Martin O’Connor, R.; de Miguel, M.P.; Diaz, J.A.; Familiar, C.; Moraga, I.; et al. An Early Mediterranean-Based Nutritional Intervention during Pregnancy Reduces Metabolic Syndrome and Glucose Dysregulation Rates at 3 Years Postpartum. Nutrients 2023, 15, 3252. https://doi.org/10.3390/nu15143252
Melero V, Arnoriaga M, Barabash A, Valerio J, del Valle L, Martin O’Connor R, de Miguel MP, Diaz JA, Familiar C, Moraga I, et al. An Early Mediterranean-Based Nutritional Intervention during Pregnancy Reduces Metabolic Syndrome and Glucose Dysregulation Rates at 3 Years Postpartum. Nutrients. 2023; 15(14):3252. https://doi.org/10.3390/nu15143252
Chicago/Turabian StyleMelero, Verónica, Maria Arnoriaga, Ana Barabash, Johanna Valerio, Laura del Valle, Rocio Martin O’Connor, Maria Paz de Miguel, Jose Angel Diaz, Cristina Familiar, Inmaculada Moraga, and et al. 2023. "An Early Mediterranean-Based Nutritional Intervention during Pregnancy Reduces Metabolic Syndrome and Glucose Dysregulation Rates at 3 Years Postpartum" Nutrients 15, no. 14: 3252. https://doi.org/10.3390/nu15143252
APA StyleMelero, V., Arnoriaga, M., Barabash, A., Valerio, J., del Valle, L., Martin O’Connor, R., de Miguel, M. P., Diaz, J. A., Familiar, C., Moraga, I., Duran, A., Cuesta, M., Torrejon, M. J., Martinez-Novillo, M., Moreno, M., Romera, G., Runkle, I., Pazos, M., Rubio, M. A., ... Calle-Pascual, A. L. (2023). An Early Mediterranean-Based Nutritional Intervention during Pregnancy Reduces Metabolic Syndrome and Glucose Dysregulation Rates at 3 Years Postpartum. Nutrients, 15(14), 3252. https://doi.org/10.3390/nu15143252