Nutritional Strategies to Prevent Muscle Loss and Sarcopenia in Chronic Kidney Disease: What Do We Currently Know?
Abstract
:1. Introduction
2. Cause of Muscle Loss and Sarcopenia in CKD Patients
3. Malnutrition and Sarcopenia in Patients with Low-Protein Nutritional Therapy
4. Nutritional Strategies to Prevent or Improve Sarcopenia in Pre-Dialysis
- Formulation of diets containing different plant protein sources to provide a high-quality AA profile. This approach has also been used successfully in middle-aged patients with CKD, but the nutritional benefits of these combinations have not been investigated in older CKD patients [44].
- Consuming higher amounts of plant protein. This alternative may be attractive to people with CKD who find it difficult to adhere to a low-protein diet (LPD) or who experience some degree of muscle wasting when following a plant-based LPD.
- Combining plant and animal proteins.
- Supplementing plant-based LPDs with essential AA or KA. A vegetarian diet combined with a low-protein intake and amino acid/keto acid (AA/KA) supplementation appears to be a viable option for people with chronic kidney disease (CKD) and may provide adequate nutrition for those who adhere to this treatment. However, further research is needed to determine the effectiveness of these dietary strategies on postprandial muscle protein synthesis.
- Increasing plant sources to obtain high-quality AA profiles.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sabatino, A.; Cuppari, L.; Stenvinkel, P.; Lindholm, B.; Avesani, C.M. Sarcopenia in Chronic Kidney Disease: What Have We Learned so Far? J. Nephrol. 2021, 34, 1347–1372. [Google Scholar] [CrossRef] [PubMed]
- Sabatino, A.; Regolisti, G.; Delsante, M.; Di Motta, T.; Cantarelli, C.; Pioli, S.; Grassi, G.; Batini, V.; Gregorini, M.; Fiaccadori, E. Noninvasive Evaluation of Muscle Mass by Ultrasonography of Quadriceps Femoris Muscle in End-Stage Renal Disease Patients on Hemodialysis. Clin. Nutr. 2019, 38, 1232–1239. [Google Scholar] [CrossRef] [PubMed]
- Foley, R.N.; Wang, C.; Ishani, A.; Collins, A.J.; Murray, A.M. Kidney Function and Sarcopenia in the United States General Population: NHANES III. Am. J. Nephrol. 2007, 27, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Stenvinkel, P.; Carrero, J.J.; von Walden, F.; Ikizler, T.A.; Nader, G.A. Muscle Wasting in End-Stage Renal Disease Promulgates Premature Death: Established, Emerging and Potential Novel Treatment Strategies. Nephrol. Dial. Transplant. 2016, 31, 1070–1077. [Google Scholar] [CrossRef] [Green Version]
- Fouque, D.; Kalantar-Zadeh, K.; Kopple, J.; Cano, N.; Chauveau, P.; Cuppari, L.; Franch, H.; Guarnieri, G.; Ikizler, T.A.; Kaysen, G.; et al. A Proposed Nomenclature and Diagnostic Criteria for Protein-Energy Wasting in Acute and Chronic Kidney Disease. Kidney Int. 2008, 73, 391–398. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.-P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European Consensus on Definition and Diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [Green Version]
- Honda, H.; Qureshi, A.R.; Axelsson, J.; Heimburger, O.; Suliman, M.E.; Barany, P.; Stenvinkel, P.; Lindholm, B. Obese Sarcopenia in Patients with End-Stage Renal Disease Is Associated with Inflammation and Increased Mortality. Am. J. Clin. Nutr. 2007, 86, 633–638. [Google Scholar] [CrossRef] [Green Version]
- Raj, D.S.C.; Sun, Y.; Tzamaloukas, A.H. Hypercatabolism in Dialysis Patients. Curr. Opin. Nephrol. Hypertens. 2008, 17, 589–594. [Google Scholar] [CrossRef]
- Workeneh, B.T.; Mitch, W.E. Review of Muscle Wasting Associated with Chronic Kidney Disease. Am. J. Clin. Nutr. 2010, 91, 1128S–1132S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doucet, M.; Dubé, A.; Joanisse, D.R.; Debigaré, R.; Michaud, A.; Paré, M.-È.; Vaillancourt, R.; Fréchette, E.; Maltais, F. Atrophy and Hypertrophy Signalling of the Quadriceps and Diaphragm in COPD. Thorax 2010, 65, 963–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Testelmans, D.; Crul, T.; Maes, K.; Agten, A.; Crombach, M.; Decramer, M.; Gayan-Ramirez, G. Atrophy and Hypertrophy Signalling in the Diaphragm of Patients with COPD. Eur. Respir. J. 2010, 35, 549–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandri, M.; Sandri, C.; Gilbert, A.; Skurk, C.; Calabria, E.; Picard, A.; Walsh, K.; Schiaffino, S.; Lecker, S.H.; Goldberg, A.L. Foxo Transcription Factors Induce the Atrophy-Related Ubiquitin Ligase Atrogin-1 and Cause Skeletal Muscle Atrophy. Cell 2004, 117, 399–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crul, T.; Testelmans, D.; Spruit, M.A.; Troosters, T.; Gosselink, R.; Geeraerts, I.; Decramer, M.; Gayan-Ramirez, G. Gene Expression Profiling in Vastus Lateralis Muscle during an Acute Exacerbation of COPD. Cell. Physiol. Biochem. 2010, 25, 491–500. [Google Scholar] [CrossRef]
- Molina, P.; Carrero, J.J.; Bover, J.; Chauveau, P.; Mazzaferro, S.; Torres, P.U. European Renal Nutrition (ERN) and Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) Working Groups of the European Renal Association-European Dialysis Transplant Association (ERA-EDTA) Vitamin D, a Modulator of Musculoskeletal Health in Chronic Kidney Disease. J. Cachexia Sarcopenia Muscle 2017, 8, 686–701. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.L.; Wang, X.; England, B.K.; Price, S.R.; Ding, X.; Mitch, W.E. The Acidosis of Chronic Renal Failure Activates Muscle Proteolysis in Rats by Augmenting Transcription of Genes Encoding Proteins of the ATP-Dependent Ubiquitin-Proteasome Pathway. J. Clin. Investig. 1996, 97, 1447–1453. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, H.; Lee, I.H.; Du, J.; Mitch, W.E. Endogenous Glucocorticoids and Impaired Insulin Signaling Are Both Required to Stimulate Muscle Wasting under Pathophysiological Conditions in Mice. J. Clin. Investig. 2009, 119, 3059–3069. [Google Scholar] [CrossRef]
- DiNicolantonio, J.J.; O’Keefe, J.H. Low-Grade Metabolic Acidosis as a Driver of Insulin Resistance. Open Heart 2021, 8, e001788. [Google Scholar] [CrossRef] [PubMed]
- Hayata, H.; Miyazaki, H.; Niisato, N.; Yokoyama, N.; Marunaka, Y. Lowered Extracellular PH Is Involved in the Pathogenesis of Skeletal Muscle Insulin Resistance. Biochem. Biophys. Res. Commun. 2014, 445, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, J.; Cuthbert, C.; Hammond, V.A.; Alberti, K.G.M.M. The Effects of Metabolic Acidosis in Vivo on Insulin Binding to Isolated Rat Adipocytes. Metabolism 1982, 31, 553–557. [Google Scholar] [CrossRef]
- Franch, H.A.; Raissi, S.; Wang, X.; Zheng, B.; Bailey, J.L.; Price, S.R. Acidosis Impairs Insulin Receptor Substrate-1-Associated Phosphoinositide 3-Kinase Signaling in Muscle Cells: Consequences on Proteolysis. Am. J. Physiol.-Renal Physiol. 2004, 287, F700–F706. [Google Scholar] [CrossRef]
- Disthabanchong, S.; Niticharoenpong, K.; Radinahamed, P.; Stitchantrakul, W.; Ongphiphadhanakul, B.; Hongeng, S. Metabolic Acidosis Lowers Circulating Adiponectin through Inhibition of Adiponectin Gene Transcription. Nephrol. Dial. Transplant. 2011, 26, 592–598. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.A.; Hoehn, K.L.; Lawrence, R.T.; Sawbridge, L.; Talbot, N.A.; Tomsig, J.L.; Turner, N.; Cooney, G.J.; Whitehead, J.P.; Kraegen, E.W.; et al. Overexpression of the Adiponectin Receptor AdipoR1 in Rat Skeletal Muscle Amplifies Local Insulin Sensitivity. Endocrinology 2012, 153, 5231–5246. [Google Scholar] [CrossRef]
- Della Guardia, L.; Thomas, M.; Cena, H. Insulin Sensitivity and Glucose Homeostasis Can Be Influenced by Metabolic Acid Load. Nutrients 2018, 10, 618. [Google Scholar] [CrossRef] [Green Version]
- Remuzzi, A. Vitamin D, Insulin Resistance, and Renal Disease. Kidney Int. 2007, 71, 96–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norman, A.W.; Frankel, J.B.; Heldt, A.M.; Grodsky, G.M. Vitamin D Deficiency Inhibits Pancreatic Secretion of Insulin. Science 1980, 209, 823–825. [Google Scholar] [CrossRef] [PubMed]
- Deleaval, P.; Luaire, B.; Laffay, P.; Jambut-Cadon, D.; Stauss-Grabo, M.; Canaud, B.; Chazot, C. Short-Term Effects of Branched-Chain Amino Acids-Enriched Dialysis Fluid on Branched-Chain Amino Acids Plasma Level and Mass Balance: A Randomized Cross-Over Study. J. Ren. Nutr. 2020, 30, 61–68. [Google Scholar] [CrossRef]
- Martins, A.M.; Dias Rodrigues, J.C.; de Oliveira Santin, F.G.; Barbosa Brito, F.D.S.; Bello Moreira, A.S.; Lourenço, R.A.; Avesani, C.M. Food Intake Assessment of Elderly Patients on Hemodialysis. J. Ren. Nutr. 2015, 25, 321–326. [Google Scholar] [CrossRef]
- Sabatino, A.; Regolisti, G.; Brusasco, I.; Cabassi, A.; Morabito, S.; Fiaccadori, E. Alterations of Intestinal Barrier and Microbiota in Chronic Kidney Disease. Nephrol. Dial. Transplant. 2015, 30, 924–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mafra, D.; Fouque, D. Gut Microbiota and Inflammation in Chronic Kidney Disease Patients. Clin. Kidney J. 2015, 8, 332–334. [Google Scholar] [CrossRef] [Green Version]
- Ramezani, A.; Raj, D.S. The Gut Microbiome, Kidney Disease, and Targeted Interventions. J. Am. Soc. Nephrol. 2014, 25, 657–670. [Google Scholar] [CrossRef] [Green Version]
- Stenvinkel, P.; Zoccali, C.; Ikizler, T.A. Obesity in CKD--What Should Nephrologists Know? J. Am. Soc. Nephrol. 2013, 24, 1727–1736. [Google Scholar] [CrossRef] [Green Version]
- Regolisti, G.; Maggiore, U.; Sabatino, A.; Gandolfini, I.; Pioli, S.; Torino, C.; Aucella, F.; Cupisti, A.; Pistolesi, V.; Capitanini, A.; et al. Interaction of Healthcare Staff’s Attitude with Barriers to Physical Activity in Hemodialysis Patients: A Quantitative Assessment. PLoS ONE 2018, 13, e0196313. [Google Scholar] [CrossRef] [Green Version]
- Cohen, S.; Nathan, J.A.; Goldberg, A.L. Muscle Wasting in Disease: Molecular Mechanisms and Promising Therapies. Nat. Rev. Drug Discov. 2015, 14, 58–74. [Google Scholar] [CrossRef]
- Çelik, G.; Oc, B.; Kara, I.; Yılmaz, M.; Yuceaktas, A.; Apiliogullari, S. Comparison of Nutritional Parameters among Adult and Elderly Hemodialysis Patients. Int. J. Med. Sci. 2011, 8, 628–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Alessandro, C.; Piccoli, G.B.; Barsotti, M.; Tassi, S.; Giannese, D.; Morganti, R.; Cupisti, A. Prevalence and Correlates of Sarcopenia among Elderly CKD Outpatients on Tertiary Care. Nutrients 2018, 10, 1951. [Google Scholar] [CrossRef] [Green Version]
- Windahl, K.; Faxén Irving, G.; Almquist, T.; Lidén, M.K.; van de Luijtgaarden, M.; Chesnaye, N.C.; Voskamp, P.; Stenvinkel, P.; Klinger, M.; Szymczak, M.; et al. Prevalence and Risk of Protein-Energy Wasting Assessed by Subjective Global Assessment in Older Adults With Advanced Chronic Kidney Disease: Results From the EQUAL Study. J. Ren. Nutr. 2018, 28, 165–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanafusa, N.; Lodebo, B.T.; Kopple, J.D. Current Uses of Dietary Therapy for Patients with Far-Advanced CKD. Clin. J. Am. Soc. Nephrol 2017, 12, 1190–1195. [Google Scholar] [CrossRef] [Green Version]
- Cupisti, A.; Brunori, G.; Di Iorio, B.R.; D’Alessandro, C.; Pasticci, F.; Cosola, C.; Bellizzi, V.; Bolasco, P.; Capitanini, A.; Fantuzzi, A.L.; et al. Nutritional Treatment of Advanced CKD: Twenty Consensus Statements. J. Nephrol. 2018, 31, 457–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalantar-Zadeh, K.; Joshi, S.; Schlueter, R.; Cooke, J.; Brown-Tortorici, A.; Donnelly, M.; Schulman, S.; Lau, W.-L.; Rhee, C.M.; Streja, E.; et al. Plant-Dominant Low-Protein Diet for Conservative Management of Chronic Kidney Disease. Nutrients 2020, 12, 1931. [Google Scholar] [CrossRef]
- Kopple, J.D.; Fouque, D. Pro: The Rationale for Dietary Therapy for Patients with Advanced Chronic Kidney Disease. Nephrol. Dial. Transplant. 2018, 33, 373–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopple, J.D.; Monteon, F.J.; Shaib, J.K. Effect of Energy Intake on Nitrogen Metabolism in Nondialyzed Patients with Chronic Renal Failure. Kidney Int. 1986, 29, 734–742. [Google Scholar] [CrossRef] [Green Version]
- Oreopoulos, A.; Kalantar-Zadeh, K.; Sharma, A.M.; Fonarow, G.C. The Obesity Paradox in the Elderly: Potential Mechanisms and Clinical Implications. Clin. Geriatr. Med. 2009, 25, 643–659. [Google Scholar] [CrossRef] [PubMed]
- Volkert, D.; Beck, A.M.; Cederholm, T.; Cruz-Jentoft, A.; Goisser, S.; Hooper, L.; Kiesswetter, E.; Maggio, M.; Raynaud-Simon, A.; Sieber, C.C.; et al. ESPEN Guideline on Clinical Nutrition and Hydration in Geriatrics. Clin. Nutr. 2019, 38, 10–47. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhee, C.M.; Ahmadi, S.-F.; Kovesdy, C.P.; Kalantar-Zadeh, K. Low-Protein Diet for Conservative Management of Chronic Kidney Disease: A Systematic Review and Meta-Analysis of Controlled Trials. J. Cachexia Sarcopenia Muscle 2018, 9, 235–245. [Google Scholar] [CrossRef]
- Hahn, D.; Hodson, E.M.; Fouque, D. Low Protein Diets for Non-Diabetic Adults with Chronic Kidney Disease. Cochrane Database Syst. Rev. 2020, 10, CD001892. [Google Scholar] [CrossRef]
- Garibotto, G.; Sofia, A.; Parodi, E.L.; Ansaldo, F.; Bonanni, A.; Picciotto, D.; Signori, A.; Vettore, M.; Tessari, P.; Verzola, D. Effects of Low-Protein, and Supplemented Very Low-Protein Diets, on Muscle Protein Turnover in Patients With CKD. Kidney Int. Rep. 2018, 3, 701–710. [Google Scholar] [CrossRef] [Green Version]
- Castaneda, C.; Gordon, P.L.; Uhlin, K.L.; Levey, A.S.; Kehayias, J.J.; Dwyer, J.T.; Fielding, R.A.; Roubenoff, R.; Singh, M.F. Resistance Training to Counteract the Catabolism of a Low-Protein Diet in Patients with Chronic Renal Insufficiency. Ann. Intern. Med. 2001, 135, 965. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Suzuki, T.; Saito, K.; Yoshida, H.; Kobayashi, H.; Kato, H.; Katayama, M. Effects of Exercise and Amino Acid Supplementation on Body Composition and Physical Function in Community-Dwelling Elderly Japanese Sarcopenic Women: A Randomized Controlled Trial. J. Am. Geriatr. Soc. 2012, 60, 16–23. [Google Scholar] [CrossRef]
- Cupisti, A.; Bolasco, P. Keto-Analogues and Essential Aminoacids and Other Supplements in the Conservative Management of Chronic Kidney Disease. Panminerva Med. 2017, 59, 149–156. [Google Scholar] [CrossRef]
- Witard, O.C.; Jackman, S.R.; Breen, L.; Smith, K.; Selby, A.; Tipton, K.D. Myofibrillar Muscle Protein Synthesis Rates Subsequent to a Meal in Response to Increasing Doses of Whey Protein at Rest and after Resistance Exercise. Am. J. Clin. Nutr. 2014, 99, 86–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isaka, Y. Optimal Protein Intake in Pre-Dialysis Chronic Kidney Disease Patients with Sarcopenia: An Overview. Nutrients 2021, 13, 1205. [Google Scholar] [CrossRef]
- Barsotti, G.; Guiducci, A.; Ciardella, F.; Giovannetti, S. Effects on Renal Function of a Low-Nitrogen Diet Supplemented with Essential Amino Acids and Ketoanalogues and of Hemodialysis and Free Protein Supply in Patients with Chronic Renal Failure. Nephron 1981, 27, 113–117. [Google Scholar] [CrossRef]
- Kovesdy, C.P.; Kopple, J.D.; Kalantar-Zadeh, K. Management of Protein-Energy Wasting in Non-Dialysis-Dependent Chronic Kidney Disease: Reconciling Low Protein Intake with Nutritional Therapy. Am. J. Clin. Nutr. 2013, 97, 1163–1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kielstein, H.; Suntharalingam, M.; Perthel, R.; Song, R.; Schneider, S.M.; Martens-Lobenhoffer, J.; Jäger, K.; Bode-Böger, S.M.; Kielstein, J.T. Role of the Endogenous Nitric Oxide Inhibitor Asymmetric Dimethylarginine (ADMA) and Brain-Derived Neurotrophic Factor (BDNF) in Depression and Behavioural Changes: Clinical and Preclinical Data in Chronic Kidney Disease. Nephrol. Dial. Transplant. 2015, 30, 1699–1705. [Google Scholar] [CrossRef] [Green Version]
- Gagnebin, Y.; Jaques, D.A.; Rudaz, S.; de Seigneux, S.; Boccard, J.; Ponte, B. Exploring Blood Alterations in Chronic Kidney Disease and Haemodialysis Using Metabolomics. Sci. Rep. 2020, 10, 19502. [Google Scholar] [CrossRef]
- Verzola, D.; Picciotto, D.; Saio, M.; Aimasso, F.; Bruzzone, F.; Sukkar, S.G.; Massarino, F.; Esposito, P.; Viazzi, F.; Garibotto, G. Low Protein Diets and Plant-Based Low Protein Diets: Do They Meet Protein Requirements of Patients with Chronic Kidney Disease? Nutrients 2020, 13, 83. [Google Scholar] [CrossRef]
- Garibotto, G.; Sofia, A.; Saffioti, S.; Bonanni, A.; Mannucci, I.; Verzola, D. Amino Acid and Protein Metabolism in the Human Kidney and in Patients with Chronic Kidney Disease. Clin. Nutr. 2010, 29, 424–433. [Google Scholar] [CrossRef]
- Koppe, L.; Cassani de Oliveira, M.; Fouque, D. Ketoacid Analogues Supplementation in Chronic Kidney Disease and Future Perspectives. Nutrients 2019, 11, 2071. [Google Scholar] [CrossRef] [Green Version]
- Zemchenkov, A.; Konakova, I.N. Efficacy of the Essential Amino Acids and Keto-Analogues on the CKD Progression Rate in Real Practice in Russia—City Nephrology Registry Data for Outpatient Clinic. BMC Nephrol. 2016, 17, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milovanova, L.; Fomin, V.; Moiseev, S.; Taranova, M.; Milovanov, Y.; Lysenko Kozlovskaya, L.; Kozlov, V.; Kozevnikova, E.; Milovanova, S.; Lebedeva, M.; et al. Effect of Essential Amino Acid Ketoanalogues and Protein Restriction Diet on Morphogenetic Proteins (FGF-23 and Klotho) in 3b-4 Stages Chronic Kidney Disease Patients: A Randomized Pilot Study. Clin. Exp. Nephrol. 2018, 22, 1351–1359. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.-L.; Sung, J.-M.; Kao, M.-D.; Wang, M.-C.; Tseng, C.-C.; Chen, S.-T. Nonprotein Calorie Supplement Improves Adherence to Low-Protein Diet and Exerts Beneficial Responses on Renal Function in Chronic Kidney Disease. J. Ren. Nutr. 2013, 23, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Noce, A.; Marrone, G.; Ottaviani, E.; Guerriero, C.; Di Da.aniele, F.; Pietroboni Zaitseva, A.; Di Daniele, N. Uremic Sarcopenia and Its Possible Nutritional Approach. Nutrients 2021, 13, 147. [Google Scholar] [CrossRef]
- Smith, G.I.; Atherton, P.; Reeds, D.N.; Mohammed, B.S.; Rankin, D.; Rennie, M.J.; Mittendorfer, B. Dietary Omega-3 Fatty Acid Supplementation Increases the Rate of Muscle Protein Synthesis in Older Adults: A Randomized Controlled Trial. Am. J. Clin. Nutr. 2011, 93, 402–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zambon, A.; Pirillo, A.; Zambon, S.; Norata, G.D.; Catapano, A.L. Omega N-3 Supplementation: Exploring the Cardiovascular Benefits Beyond Lipoprotein Reduction. Curr. Atheroscler. Rep. 2020, 22, 74. [Google Scholar] [CrossRef] [PubMed]
- Cupisti, A.; Avesani, C.M.; D’Alessandro, C.; Garibotto, G. Nutritional Management of Kidney Diseases: An Unmet Need in Patient Care. J. Nephrol. 2020, 33, 895–897. [Google Scholar] [CrossRef]
- Kistler, B.M.; Moore, L.W.; Benner, D.; Biruete, A.; Boaz, M.; Brunori, G.; Chen, J.; Drechsler, C.; Guebre-Egziabher, F.; Hensley, M.K.; et al. The International Society of Renal Nutrition and Metabolism Commentary on the National Kidney Foundation and Academy of Nutrition and Dietetics KDOQI Clinical Practice Guideline for Nutrition in Chronic Kidney Disease. J. Ren. Nutr. 2021, 31, 116–120.e1. [Google Scholar] [CrossRef]
- Joshi, S.; Hashmi, S.; Shah, S.; Kalantar-Zadeh, K. Plant-Based Diets for Prevention and Management of Chronic Kidney Disease. Curr. Opin. Nephrol. Hypertens. 2020, 29, 16–21. [Google Scholar] [CrossRef]
- González-Ortiz, A.; Xu, H.; Avesani, C.M.; Lindholm, B.; Cederholm, T.; Risérus, U.; Ärnlöv, J.; Espinosa-Cuevas, A.; Carrero, J.J. Plant-Based Diets, Insulin Sensitivity and Inflammation in Elderly Men with Chronic Kidney Disease. J. Nephrol. 2020, 33, 1091–1101. [Google Scholar] [CrossRef]
- Wilkinson, S.B.; Tarnopolsky, M.A.; Macdonald, M.J.; Macdonald, J.R.; Armstrong, D.; Phillips, S.M. Consumption of Fluid Skim Milk Promotes Greater Muscle Protein Accretion after Resistance Exercise than Does Consumption of an Isonitrogenous and Isoenergetic Soy-Protein Beverage. Am. J. Clin. Nutr. 2007, 85, 1031–1040. [Google Scholar] [CrossRef] [Green Version]
- Campbell, W.W.; Barton, M.L.; Cyr-Campbell, D.; Davey, S.L.; Beard, J.L.; Parise, G.; Evans, W.J. Effects of an Omnivorous Diet Compared with a Lactoovovegetarian Diet on Resistance-Training-Induced Changes in Body Composition and Skeletal Muscle in Older Men. Am. J. Clin. Nutr. 1999, 70, 1032–1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Churchward-Venne, T.A.; Burd, N.A.; Breen, L.; Tarnopolsky, M.A.; Phillips, S.M. Myofibrillar Protein Synthesis Following Ingestion of Soy Protein Isolate at Rest and after Resistance Exercise in Elderly Men. Nutr. Metab. 2012, 9, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
References | Study Features | Subjects | Aim of the Study | Intervention | Observed Effects | Conclusions |
---|---|---|---|---|---|---|
Rhee et al., (2018) [45] | Meta-analysis: Randomized, self-controlled, parallel, and cross-over trials. Included 16 controlled trials of a low-protein diet in CKD, each with at least 30 participants. | CKD patients Exclusion criteria: ESRD patients and those receiving dialysis treatment | Evidence of the impact of a low-protein diet in the management of uremia and its complications in patients with CKD. | Studies were divided into groups:
| Low-protein diet vs. higher-protein diets:
| A low-protein diet:
|
Barsotti et al., (1981) [53] | RCT study | 56 CKD patients | Evaluate the effects on renal function of an LPD supplemented with essential amino acids and KAs and of hemodialysis and free protein supply in CKD patients. | 1° group: n = 31 cases: conventional LPD; 2° group: n = 12 cases: VLPD supplemented with essential amino acids and Kas; 3° group: n = 13 cases: no dietary intervention. | In the 1° group: ↓ creatinine clearance linearly with time; In the 2° group: creatinine clearance remained constant with only one exception in which it continued to decline; In the 3° group: the deterioration of creatinine clearance was markedly accelerated. | LPD supplemented with KAs and amino acids allowed a slowing of the progression of renal disease and reduced CV risk. |
Zemchenkov et al., (2016) [60] | RCT Study | Intervention group: n = 96 CKD patients stage 3B-5; Control group: n = 96. | Evaluate the effect of LPD supplemented with EAAs/KAs therapy on the rate of eGFR decline in CKD patients stage 3B-5. | LPD (0.60 g protein/kg body weight/day—30 kcal/kg/day of energy) + EAA/KA (prescribed dose—one pill per 5 kg body weight) | In the treatment group: ss ↓ of eGFR rate. | The study showed a reduction in CKD progression, particularly in older patients with higher time-averaged proteinuria and lower phosphate levels, particularly in women. |
Milovanova et al., (2018) [61] | RCT Study | 79 CKD 3b-4 patients | Compare the possibilities of LPD + KA and isolated LPD in their impact on FGF-23 in patients with CKD stage 3b to 4. | 1° group: n = 42 patients: LPD + KA; 2° group: n = 37 patients: LPD. | In the 1° group: ss ↓ BMI and muscle body mass; In the 2° group: ss ↓ FGF-23. | PD + KA provides support for nutrition status and contributes to more efficient correction of FGF-23. A prolonged LPD alone may lead to malnutrition. |
Wu et al., (2013) [62] | RCT Study | 109 CKD 3–4 patients Intervention group: n= 55; Control group: n = 54. | Evaluate the effects of an NPC supplement on renal function and nutritional status in patients on a low-protein diet. | All groups: daily protein intake of 0.6 to 0.8 g and a daily energy intake of 30 to 35 kcal/kg; Intervention group: + 200-kcal NPC supplement daily. | In the intervention group:
| The NPC supplement improved patient adherence to the low-protein diet and reduced urine protein excretion in patients with CKD. |
Gonzalez-Ortiz et al., (2020) [69] | Cross-sectional Study | 418 CKD stage 3–5 patients | Explore associations between adherence to plant-based diets and measures of insulin sensitivity and inflammation in men with CKD stage 3–5. | Information from 7-day food records was used to evaluate the adherence to a PBDi, which scores the intake of plant foods positively and animal foods negatively. | A higher PBDi score remained associated with higher glucose disposal rate and insulin sensitivity, as well as with lower levels of IL-6 and CRP. | Adherence to a plant-based diet was associated with higher insulin sensitivity and lower inflammation, supporting a possible role of plant-based diets in the prevention of metabolic complications of CKD. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massini, G.; Caldiroli, L.; Molinari, P.; Carminati, F.M.I.; Castellano, G.; Vettoretti, S. Nutritional Strategies to Prevent Muscle Loss and Sarcopenia in Chronic Kidney Disease: What Do We Currently Know? Nutrients 2023, 15, 3107. https://doi.org/10.3390/nu15143107
Massini G, Caldiroli L, Molinari P, Carminati FMI, Castellano G, Vettoretti S. Nutritional Strategies to Prevent Muscle Loss and Sarcopenia in Chronic Kidney Disease: What Do We Currently Know? Nutrients. 2023; 15(14):3107. https://doi.org/10.3390/nu15143107
Chicago/Turabian StyleMassini, Giulia, Lara Caldiroli, Paolo Molinari, Francesca Maria Ida Carminati, Giuseppe Castellano, and Simone Vettoretti. 2023. "Nutritional Strategies to Prevent Muscle Loss and Sarcopenia in Chronic Kidney Disease: What Do We Currently Know?" Nutrients 15, no. 14: 3107. https://doi.org/10.3390/nu15143107