Impact of Dietary Protein on the Management of Pediatric Short Bowel Syndrome
Abstract
:1. Introduction
1.1. Establishing Enteral Feeding
1.2. Types of Enteral Feeding: Amino-Acid-Based Formula Versus Breast Milk
1.3. Dietary Amino Acids and Intestinal Adaptation
1.3.1. Glutamine
1.3.2. Arginine
1.3.3. Citrulline
1.3.4. Protein in Solids
2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Modi, B.P.; Galloway, D.P.; Gura, K.; Nucci, A.; Plogsted, S.; Tucker, A.; Wales, P.W. ASPEN definitions in pediatric intestinal failure. J. Parenter. Enter. Nutr. 2022, 46, 42–59. [Google Scholar] [CrossRef] [PubMed]
- Duggan, C.P.; Jaksic, T. Pediatric intestinal failure. N. Engl. J. Med. 2017, 377, 666–675. [Google Scholar] [CrossRef] [PubMed]
- Diamond, I.R.; de Silva, N.; Pencharz, P.B.; Kim, J.H.; Wales, P.W. Group for the Improvement of Intestinal Function and Treatment. Neonatal short bowel syndrome outcomes after the establishment of the first Canadian multidisciplinary intestinal rehabilitation program: Preliminary experience. J. Pediatr. Surg. 2007, 42, 806–811. [Google Scholar] [CrossRef] [PubMed]
- Premkumar, M.H.; Soraisham, A.; Bagga, N.; Massieu, L.A.; Maheshwari, A. Nutritional management of short bowel syndrome. Clin. Perinatol. 2022, 49, 557–572. [Google Scholar] [CrossRef]
- Lonnerdal, B. Bioactive proteins in human milk-potential benefits for preterm infants. Clin. Perinatol. 2017, 44, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Jaksic, T. Current short bowel syndrome management: An era of improved outcomes and continued challenges. J. Pediatr. Surg. 2023, 58, 789–798. [Google Scholar] [CrossRef]
- Scolapio, J.S.; Fleming, C.R. Short bowel syndrome. Gastroenterol. Clin. North Am. 1998, 27, 467–479. [Google Scholar] [CrossRef]
- Avitzur, Y.; Courtney-Martin, G. Enteral approaches in malabsorption. Best Pract. Res. Clin. Gastroenterol. 2016, 30, 295–307. [Google Scholar] [CrossRef]
- Bines, J.E.; Taylor, R.G.; Justice, F.; Paris, M.C.; Sourial, M.; Nagy, E.; Emselle, S.; Catto-Smith, A.G.; Fuller, P.J. Influence of diet complexity on intestinal adaptation following massive small bowel resection in a preclinical model. J. Gastroenterol. Hepatol. 2002, 17, 1170–1179. [Google Scholar] [CrossRef]
- Arai, Y.; Kinoshita, Y.; Kobayashi, T.; Takahashi, Y.; Ohyama, T.; Yokota, N.; Sugai, Y.; Takano, S.; Hamasaki, Y.; Kaneko, U.; et al. A rare case of eosinophilic gastrointestinal disorders with short bowel syndrome after strangulated bowel obstruction. Surg. Case Rep. 2022, 14, 168. [Google Scholar] [CrossRef]
- Goulet, O.; Olieman, J.; Ksiazyk, J.; Spolidoro, J.; Tibboe, D.; Köhler, H.; Yagci, R.V.; Falconer, J.; Grimble, G.; Beattie, R.M. Neonatal short bowel syndrome as a model of intestinal failure: Physiological background for enteral feeding. Clin. Nutr. 2013, 32, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Bines, J.; Francis, D.; Hill, D. Reducing parenteral requirement in children with short bowel syndrome: Impact of an amino acid-based complete infant formula. J. Pediatr. Gastroenterol. Nutr. 1998, 26, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Ksiazyk, J.; Piena, M.; Kierkus, J.; Lyszkowska, M. Hydrolyzed versus nonhydrolyzed protein diet in short bowel syndrome in children. J. Pediatr. Gastroenterol. Nutr. 2002, 35, 615–618. [Google Scholar] [CrossRef] [PubMed]
- Shores, D.R.; Bullard, J.E.; Aucott, S.W.; Stewart, F.D.; Haney, C.; Tymann, H.; Miller, M.R.; Nonyane, B.A.; Schwarz, K.B. Implementation of feeding guidelines in infants at risk of intestinal failure. J. Perinatol. 2015, 35, 941–948. [Google Scholar] [CrossRef]
- De Greef, E.; Mahler, T.; Janssen, A.; Cuypers, H.; Veereman-Wauters, G. The influence of neocate in paediatric short bowel syndrome on PN weaning. J. Nutr. Metab. 2010, 2010, 297575. [Google Scholar] [CrossRef] [Green Version]
- Andorsky, D.J.; Lund, D.P.; Lillehei, C.W.; Jaksic, T.; Dicanzio, J.; Richardson, D.S.; Collier, S.B.; Lo, C.; Duggan, C. Nutritional and other postoperative management of neonates with short bowel syndrome correlates with clinical outcomes. J. Pediatr. 2001, 139, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Van Goudoever, J.B.; Carnielli, V.; Darmaun, D.; Sainz de Pipaon, M. ESPGHAN/ESPEN/ESPR/CSPEN working group on pediatric parenteral nutrition. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Amino acids. Clin. Nutr. 2018, 37, 2315–2323. [Google Scholar] [CrossRef] [Green Version]
- Capriati, T.; Nobili, V.; Stronati, L.; Cucchiara, S.; Laureti, F.; Liguori, A.; Tyndall, E.; Diamanti, A. Enteral nutrition in pediatric intestinal failure: Does initial feeding impact on intestinal adaptation? Expert Rev. Gastroenterol. Hepatol. 2017, 11, 741–748. [Google Scholar] [CrossRef]
- Samela, K.; Mokha, J.; Emerick, K.; Davidovics, Z.H. Transition to a tube feeding formula with real food ingredients in pediatric patients with intestinal failure. Nutr. Clin. Pract. 2017, 32, 277–281. [Google Scholar] [CrossRef]
- Zong, W.; Troutt, R.; Merves, J. Blenderized enteral nutrition in pediatric short gut syndrome: Tolerance and clinical outcomes. Nutr. Clin. Pract. 2022, 37, 913–920. [Google Scholar] [CrossRef]
- Tappenden, K.A. Anatomical and physiological considerations in short bowel syndrome: Emphasis on intestinal adaptation and the role of enterohormones. Nutr. Clin. Pract. 2023, 38, S27–S34. [Google Scholar] [CrossRef] [PubMed]
- Le Beyec, J.; Billiauws, L.; Bado, A.; Joly, F.; Le Gall, M. Short Bowel Syndrome: A Paradigm for Intestinal Adaptation to Nutrition? Annu. Rev. Nutr. 2020, 23, 299–321. [Google Scholar] [CrossRef] [PubMed]
- Venick, R.S. Predictors of Intestinal Adaptation in Children. Gastroenterol. Clin. 2019, 48, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Tappenden, K.A. Mechanisms of enteral nutrient-enhanced intestinal adaptation. Gastroenterology 2006, 130, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Sukhotnik, I.; Siplovich, L.; Shiloni, E.; Mor-Vaknin, N.; Harmon, C.M.; Coran, A.G. Intestinal adaptation in short-bowel syndrome in infants and children: A collective review. Pediatr. Surg. Int. 2002, 18, 258–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, F.J.; Wang, L.X.; Yang, H.S.; Hu, A.; Yin, Y.L. Review: The roles and functions of glutamine on intestinal health and performance of weaning pigs. Animal 2019, 13, 2727–2735. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.H.; Kim, H. The roles of glutamine in the intestine and its implication in intestinal diseases. Int. J. Mol. Sci. 2017, 18, 1051. [Google Scholar] [CrossRef] [Green Version]
- Ameho, C.K.; Adjei, A.A.; Harrison, E.K.; Takeshita, K.; Morioka, T.; Arakaki, Y.; Ito, E.; Suzuki, I.; Kulkarni, A.D.; Kawajiri, A.; et al. Prophylactic effect of dietary glutamine supplementation on interleukin 8 and tumour necrosis factor α production in trinitrobenzene sulphonic acid induced colitis. Gut 1997, 41, 487–493. [Google Scholar] [CrossRef] [Green Version]
- Anderson, P.M.; Lalla, R.V. Glutamine for amelioration of radiation and chemotherapy associated mucositis during cancer therapy. Nutrients 2020, 12, 1675. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, Y.; Wei, Y.; Fan, S.; Xia, L.; Chen, Q.; Lu, Y.; Wu, D.; Liu, X.; Peng, X. Glutamine alleviates intestinal injury in a murine burn sepsis model by maintaining intestinal intraepithelial lymphocyte homeostasis. Eur. J. Pharmacol. 2023, 940, 175480. [Google Scholar] [CrossRef]
- Guo, M.; Li, Y.; Li, J. Effect of growth hormone, glutamine, and enteral nutrition on intestinal adaptation in patients with short bowel syndrome. Turk. J. Gastroenterol. 2013, 24, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Wales, P.W.; Nasr, A.; de Silva, N.; Yamada, J. Human growth hormone and glutamine for patients with short bowel syndrome. Cochrane Database Syst. Rev. 2010, 16, CD006321. [Google Scholar] [CrossRef] [PubMed]
- Byrne, T.A.; Wilmore, D.W.; Iyer, K.; Dibaise, J.; Clancy, K.; Robinson, M.K.; Chang, P.; Gertner, J.M.; Lautz, D. Growth hormone, glutamine, and an optimal diet reduces parenteral nutrition in patients with short bowel syndrome: A prospective, randomized, placebo-controlled, double-blind clinical trial. Ann. Surg. 2005, 242, 655–661. [Google Scholar] [CrossRef]
- Jeppese, P.B. Pharmacologic options for intestinal rehabilitation in patients with short bowel syndrome. J. Parenter. Enter. Nutr. 2014, 38, 45S–52S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popolo, A.; Adesso, S.; Pinto, A.; Autore, G.; Marzocco, S. L-Arginine and its metabolites in kidney and cardiovascular disease. Amino Acids 2014, 46, 2271–2286. [Google Scholar] [CrossRef]
- Marealle, A.I.; Siervo, S.M.; Wassel, L.; Bluck, A.M.; Prentice, O.; Minzi, P.; Sasi, A.; Kamuhabwa, D.; Soka, J.; Makani, S.E. A pilot study of a non-invasive oral nitrate stable isotopic method suggests that arginine and citrulline supplementation increases whole-body no production in Tanzanian children with sickle cell disease. Nitric Oxide 2018, 74, 532–541. [Google Scholar] [CrossRef]
- Lansing, M.; Slim, G.; Wizzard, P.; Rafii, M.; Pencharz, P.B.; Nation, P.N.; Beggs, M.R.; Alexander, R.T.; Wales, P.W.; Turner, J.M.; et al. Intestinal resection affects whole-body arginine synthesis in neonatal piglets. Pediatr. Res. 2021, 89, 1420–1426. [Google Scholar] [CrossRef]
- Jiang, X.; Zhu, W.; Li, N.; Tan, L.; Li, J. Effects of continuous enteral L-arginine in a rat model of the short bowel syndrome. Asia Pac. J. Clin. Nutr. 2007, 16, 554–560. [Google Scholar]
- Papadia, C.; Osowska, S.; Cynober, L.; Forbes, A. Citrulline in health and disease. Review on human studies. Clin. Nutr. 2018, 37, 1823–1828. [Google Scholar] [CrossRef] [Green Version]
- Crenn, P.; Vahedi, K.; Lavergne-Slove, A.; Cynober, L.; Matuchansky, C.; Messing, B. Plasma citrulline: A marker of enterocyte mass in villous atrophy-associated small bowel disease. Gastroenterology 2003, 124, 1210–1219. [Google Scholar] [CrossRef]
- Maric, S.; Restin, T.; Muff, J.L.; Camargo, S.M.; Guglielmetti, L.C.; Holland-Cunz, S.G.; Crenn, P.; Vuille-Dit-Bille, R.N. Citrulline, biomarker of enterocyte functional mass and dietary supplement. Metabolism, transport, and current evidence for clinical use. Nutrients 2021, 13, 2794. [Google Scholar] [CrossRef]
- Vantini, I.; Benini, L.; Bonfante, F.; Talamini, G.; Sembenini, C.; Chiarioni, G.; Maragnolli, O.; Benini, F.; Capra, F. Survival rate and prognostic factors in patients with intestinal failure. Dig. Liver Dis. 2004, 36, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Seidner, D.L.; Joly, F.; Youssef, N.N. Effect of Teduglutide, a Glucagon-like Peptide 2 Analog, on Citrulline Levels in Patients With Short Bowel Syndrome in Two Phase III Randomized Trials. Clin. Transl. Gastroenterology 2015, 6, e93. [Google Scholar] [CrossRef]
- Moinard, C.; Nicolis, I.; Neveux, N.; Darquy, S.; Bénazeth, S.; Cynober, L. Dose-ranging effects of citrulline administration on plasma amino acids and hormonal patterns in healthy subjects: The Citrudose pharmacokinetic study. Br. J. Nutr. 2007, 99, 855–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, S.E.; Ellins, E.A.; Marealle, A.I.; Newton, C.R.; Soka, D.; Sasi, P.; di Tanna, G.L.; Johnson, W.; Makani, J.; Prentice, A.M.; et al. Ready-to-Use Food Supplement, with or without Arginine and Citrulline, with Daily Chloroquine in Tanzanian Children with Sickle-Cell Disease: A Double-Blind, Random Order Crossover Trial. Lancet Haematol. 2018, 5, e147–e160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Häberle, J.; Boddaert, N.; Burlina, A.; Chakrapani, A.; Dixon, M.; Huemer, M.; Karall, D.; Martinelli, D.; Crespo, P.S.; Santer, R. Suggested guidelines for the diagnosis and management of urea cycle disorders. Orphanet J. Rare Dis. 2012, 7, 32. [Google Scholar] [CrossRef] [Green Version]
- Filippi, J.; Rubio, A.; Lasserre, V.; Maccario, J.; Walrand, S.; Neveux, N.; Plénier, S.L.; Hébuterne, X.; Cynober, L.; Moinard, C. Dose-dependent beneficial effects of citrulline supplementation in short bowel syndrome in rats. Nutrition 2021, 85, 111118. [Google Scholar] [CrossRef]
- Jirka, A.; Layec, S.; Picot, D.; Bernon-Ferreira, S.; Grasset, N.; Flet, L.; Thibault, R.; Darmaun, C. Effect of oral citrulline supplementation on whole body protein metabolism in adult patients with short bowel syndrome: A randomized, double- blind, cross-over study. Clin. Nutr. 2019, 38, 2599–2606. [Google Scholar] [CrossRef]
- Fewtrell, M.; Bronsky, J.; Campoy, C.; Domellöf, M.; Embleton, N.; Fidler Mis, N.; Hojsak, I.; Hulst, J.M.; Indrio, F.; Lapillonne, A.; et al. Complementary feeding: A position paper by the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN) Committee on Nutrition. JPGN 2017, 64, 119–132. [Google Scholar] [CrossRef] [PubMed]
- DiBaise, J.K.; Young, R.J.; Vanderhoof, J.A. Intestinal rehabilitation and the short bowel syndrome: Part 2. Am. J. Gastroenterol. 2004, 99, 1823–1832. [Google Scholar] [CrossRef] [PubMed]
- Puoti, M.G.; Köglmeier, J. Nutritional management of intestinal failure due to short bowel syndrome in children. Nutrients 2023, 15, 62. [Google Scholar] [CrossRef] [PubMed]
- Mok, E.; Hankard, R. Glutamine supplementation in sick children: Is it beneficial? J. Nutr. Metab. 2011, 2011, 617597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Breast Milk | AAFs | EHFs | |
---|---|---|---|
Per | 100 mL | 100 mL | 100 mL |
Energy Kcal | 65–70 | 67 | 68 |
Protein (g) | 0.8–1 | 1.8 | 1.88 |
Protein source | Whey, casein | 100% amino acid | Casein |
Fat (g) | 3.5–4 | 3.4 | 3.4 |
Fat source | Triglyceride, linoleic, alpha-linolenic acid | Coconut oil, high oleic sunflower oil, Sunflower oil, canola oil | Coconut oil, linoleic, alpha-linolenic acid |
Linoleic acid mg | Fat content is related to maternal diet and weight gain during pregnancy | n/a | 530 |
DHA (mg) | Fat content is related to maternal diet and weight gain during pregnancy | 11.3 | 15.5 |
Carbohydrates g | 8 | 7.2 | 7.4 |
Carbohydrates source | Lactose, glucose, HMO | Dried glucose syrup | Dried glucose syrup |
Sugars g | 0.65 | 0.77 |
Authors | Study Design | Cohort | Formula | Length | Outcomes |
---|---|---|---|---|---|
Arai et al., 2022 [10] | Case report | SBS child, 51 cm residual gut | Elemental and low residue diet | 19 days | Eosinophilic colitis |
Goulet et al., 2013 [11] | Systematic review | Systematic reviews, RCTs, meta-analysis of RCTs, Case control/cohort studies, non randomized interventions | BM vs. HF vs. AAF | 4–6 months | BM—first choice HF—second choice AAF—third choice |
Bines et al., 1998 [12] | Small clinical trial | 4 children with SBS (13, 40, 45 and 45 cm of remnant gut) | AAF (Neocate) | 48 months (range 39–51 months) | 3 patients achieved EA |
Ksiazyk et al., 2002 [13] | Prospective, randomized, double-blind study | Ten children with SBS (9 to 75 cm of remnant gut) | HF (Pepti Junior) vs. non-HF mirror formula | 60 days | No difference between HF and non-HF on intestinal permeability, weight gain, energy, and nitrogen balance |
Shores et al., 2015 [14] | Retrospective study (two groups with or without implementation of EN guidelines) | 95 infants with SBS 30 vs. 53 cm of remnant gut | BM as first choice Donor milk if <32 weeks gestation AAF if NEC, large resection, or intolerance | 5 years | Implementation of EN guidelines resulted in shorter times to reach feeding goals |
De Greef et al., 2010 [15] | Small clinical trial | 4 children with SBS (9, 20, 40 and 50 cm of remnant gut) | AAF (Neocate) | 3–13 months | All patients achieved EA |
Andorsky et al., 2001 [16] | Retrospective medical record review | 30 patients with SBS | BM vs. AAF | 12 years | Both BM and AAF were positive in reducing PN and cholestatic liver disease |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sukhotnik, I.; Levi, R.; Moran-Lev, H. Impact of Dietary Protein on the Management of Pediatric Short Bowel Syndrome. Nutrients 2023, 15, 2826. https://doi.org/10.3390/nu15132826
Sukhotnik I, Levi R, Moran-Lev H. Impact of Dietary Protein on the Management of Pediatric Short Bowel Syndrome. Nutrients. 2023; 15(13):2826. https://doi.org/10.3390/nu15132826
Chicago/Turabian StyleSukhotnik, Igor, Reut Levi, and Hadar Moran-Lev. 2023. "Impact of Dietary Protein on the Management of Pediatric Short Bowel Syndrome" Nutrients 15, no. 13: 2826. https://doi.org/10.3390/nu15132826
APA StyleSukhotnik, I., Levi, R., & Moran-Lev, H. (2023). Impact of Dietary Protein on the Management of Pediatric Short Bowel Syndrome. Nutrients, 15(13), 2826. https://doi.org/10.3390/nu15132826