Fermented Lettuce Extract Induces Immune Responses through Polarization of Macrophages into the Pro-Inflammatory M1-Subtype
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of FLE
2.2. Cells Culture and Isolation of Mouse Peritoneal Macrophages
2.3. Cell Viability
2.4. Enzyme-Linked Immunosorbent Assay (ELISA)
2.5. Phagocytosis Assay
2.6. Reverse Transcription (RT)-Polymerase Chain Reaction (PCR) and Real-Time PCR
2.7. Western Blotting
2.8. Apoptosis Assay
2.9. Statistical Analysis
3. Results
3.1. Effects of FLE on the Activation of RAW 264.7 Macrophages
3.2. Induction of Polarization into M1 Macrophages upon FLE Treatment
3.3. Effects of FLE-Reprogrammed TAMs on Pancreatic Cancer Cells
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DMEM | Dulbecco’s modified Eagle’s medium |
ELISA | Enzyme linked immunosorbent assay |
FBS | Fetal bovine serum |
FLE | Fermented lettuce extract |
HRP | Horseradish peroxidase |
IFN-γ | Interferon γ |
IL | Interleukin |
LPS | Lipopolysaccharide |
MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
NO | Nitric oxide |
PBS | Phosphate-buffered saline |
PCR | Polymerase chain reaction |
PDAC | Pancreatic ductal adenocarcinoma |
PI | Propidium iodide |
PMA | Phorbol-12-myristate-13-acetate |
PVDF | Polyvinylidene difluoride membranes |
RPMI 1640 | Roswell Park Memorial Institute 1640 medium |
RT | Reverse transcription |
SDS-PAGE | Sodium dodecyl sulphate polyacrylamide gel electrophoresis |
TAMs | Tumor-associated macrophages |
TGF | Transforming growth factor |
TME | Tumor microenvironment |
TNFR1 | Tumor necrosis factor receptor 1 |
TNF-α | Tumor necrosis factor α |
References
- Shi, M.; Gu, J.; Wu, H.; Rauf, A.; Emran, T.B.; Khan, Z.; Mitra, S.; Aljohani, A.S.M.; Alhumaydhi, F.A.; Al-Awthan, Y.S.; et al. Phytochemicals, Nutrition, Metabolism, Bioavailability, and Health Benefits in Lettuce-A Comprehensive Review. Antioxidants 2022, 11, 1158. [Google Scholar] [CrossRef]
- Yang, X.; Gil, M.I.; Yang, Q.; Tomas-Barberan, F.A. Bioactive compounds in lettuce: Highlighting the benefits to human health and impacts of preharvest and postharvest practices. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4–45. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.-J.; Jeong, J.B. Immune-Enhancing Effects of Green Lettuce (Lactuca sativa L.) Extracts through the TLR4-MAPK/NF-κB Signaling Pathways in RAW264.7 Macrophage Cells. Korean J. Plant Resour. 2020, 33, 183–193. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Kim, E.; Zhang, M.; Lee, Y.S.; Ji, B.; Lee, S.H.; Cheong, Y.E.; Yun, S.I.; Kim, Y.S.; Kim, K.H.; et al. Antidiabetic Effect of Noodles Containing Fermented Lettuce Extracts. Metabolites 2021, 11, 520. [Google Scholar] [CrossRef]
- Han, A.L.; Lee, H.K.; Chon, H.S.; Pae, H.O.; Kim, M.S.; Shin, Y.I.; Kim, S. Evaluation of the Effectiveness of Fermented Soybean-Lettuce Powder for Improving Menopausal Symptoms. Nutrients 2022, 14, 2878. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Ryu, J.H.; Kim, B.Y.; Chun, H.S.; Kim, M.S.; Shin, Y.I. Fermented Lettuce Extract Containing Nitric Oxide Metabolites Attenuates Inflammatory Parameters in Model Mice and in Human Fibroblast-Like Synoviocytes. Nutrients 2023, 15, 1106. [Google Scholar] [CrossRef]
- Duan, Z.; Luo, Y. Targeting macrophages in cancer immunotherapy. Signal Transduct. Target. Ther. 2021, 6, 127. [Google Scholar] [CrossRef] [PubMed]
- Gordon, S.; Martinez, F.O. Alternative activation of macrophages: Mechanism and functions. Immunity 2010, 32, 593–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Song, Y.; Du, W.; Gong, L.; Chang, H.; Zou, Z. Tumor-associated macrophages: An accomplice in solid tumor progression. J. Biomed Sci. 2019, 26, 78. [Google Scholar] [CrossRef] [Green Version]
- Aras, S.; Zaidi, M.R. TAMeless traitors: Macrophages in cancer progression and metastasis. Br. J. Cancer 2017, 117, 1583–1591. [Google Scholar] [CrossRef] [Green Version]
- Genard, G.; Lucas, S.; Michiels, C. Reprogramming of Tumor-Associated Macrophages with Anticancer Therapies: Radiotherapy versus Chemo- and Immunotherapies. Front Immunol. 2017, 8, 828. [Google Scholar] [CrossRef] [Green Version]
- Low, R.R.J.; Lim, W.W.; Nguyen, P.M.; Lee, B.; Christie, M.; Burgess, A.W.; Gibbs, P.; Grimmond, S.M.; Hollande, F.; Putoczki, T.L. The Diverse Applications of Pancreatic Ductal Adenocarcinoma Organoids. Cancers 2021, 13, 4979. [Google Scholar] [CrossRef]
- Yang, S.; Liu, Q.; Liao, Q. Tumor-Associated Macrophages in Pancreatic Ductal Adenocarcinoma: Origin, Polarization, Function, and Reprogramming. Front. Cell Dev. Biol. 2020, 8, 607209. [Google Scholar] [CrossRef]
- Song, M.; Ma, X. Isolation and Stimulation of Peritoneal Macrophages withApoptotic Jurkat Cells to Produce IL-10. Bio-Protocol 2019, 9, e3467. [Google Scholar] [CrossRef]
- Feito, M.J.; Diez-Orejas, R.; Cicuendez, M.; Casarrubios, L.; Rojo, J.M.; Portoles, M.T. Characterization of M1 and M2 polarization phenotypes in peritoneal macrophages after treatment with graphene oxide nanosheets. Colloids Surf. B Biointerfaces 2019, 176, 96–105. [Google Scholar] [CrossRef] [Green Version]
- Tekin, C.; Aberson, H.L.; Bijlsma, M.F.; Spek, C.A. Early macrophage infiltrates impair pancreatic cancer cell growth by TNF-alpha secretion. BMC Cancer 2020, 20, 1183. [Google Scholar] [CrossRef]
- Smith, M.P.; Young, H.; Hurlstone, A.; Wellbrock, C. Differentiation of THP1 Cells into Macrophages for Transwell Co-culture Assay with Melanoma Cells. Bio Protoc 2015, 5, e1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyiramana, M.M.; Cho, S.B.; Kim, E.J.; Kim, M.J.; Ryu, J.H.; Nam, H.J.; Kim, N.G.; Park, S.H.; Choi, Y.J.; Kang, S.S.; et al. Sea Hare Hydrolysate-Induced Reduction of Human Non-Small Cell Lung Cancer Cell Growth through Regulation of Macrophage Polarization and Non-Apoptotic Regulated Cell Death Pathways. Cancers 2020, 12, 726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryu, J.H.; Park, J.; Kim, B.Y.; Kim, Y.; Kim, N.G.; Shin, Y.I. Photobiomodulation ameliorates inflammatory parameters in fibroblast-like synoviocytes and experimental animal models of rheumatoid arthritis. Front Immunol. 2023, 14, 1122581. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Larionova, I.; Kazakova, E.; Patysheva, M.; Kzhyshkowska, J. Transcriptional, Epigenetic and Metabolic Programming of Tumor-Associated Macrophages. Cancers 2020, 12, 1411. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, A.M.; Laba, J.G.; Moore, J.A.; Lee, T.D. Echinacea-induced macrophage activation. Immunopharmacol. Immunotoxicol. 2008, 30, 553–574. [Google Scholar] [CrossRef]
- Seddek, A.; Mahmoud, M.E.; Shiina, T.; Hirayama, H.; Iwami, M.; Miyazawa, S.; Nikami, H.; Takewaki, T.; Shimizu, Y. Extract from Calotropis procera latex activates murine macrophages. J. Nat. Med. 2009, 63, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Kim, D.H.; Park, W. Moutan Cortex Extract Modulates Macrophage Activation via Lipopolysaccharide-Induced Calcium Signaling and ER Stress-CHOP Pathway. Int. J. Mol. Sci. 2023, 24, 2062. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Allavena, P.; Marchesi, F.; Garlanda, C. Macrophages as tools and targets in cancer therapy. Nat. Rev. Drug Discov. 2022, 21, 799–820. [Google Scholar] [CrossRef]
- Greenberg, S.; Grinstein, S. Phagocytosis and innate immunity. Curr. Opin. Immunol. 2002, 14, 136–145. [Google Scholar] [CrossRef]
- Sharma, L.; Wu, W.; Dholakiya, S.L.; Gorasiya, S.; Wu, J.; Sitapara, R.; Patel, V.; Wang, M.; Zur, M.; Reddy, S.; et al. Assessment of phagocytic activity of cultured macrophages using fluorescence microscopy and flow cytometry. Methods Mol. Biol. 2014, 1172, 137–145. [Google Scholar] [CrossRef]
- Kashfi, K.; Kannikal, J.; Nath, N. Macrophage Reprogramming and Cancer Therapeutics: Role of iNOS-Derived NO. Cells 2021, 10, 3194. [Google Scholar] [CrossRef]
- Wang, C.; Yu, X.; Cao, Q.; Wang, Y.; Zheng, G.; Tan, T.K.; Zhao, H.; Zhao, Y.; Wang, Y.; Harris, D. Characterization of murine macrophages from bone marrow, spleen and peritoneum. BMC Immunol. 2013, 14, 6. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Xu, J.; Lan, H. Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications. J. Hematol. Oncol. 2019, 12, 76. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-kappaB signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mintz, J.; Vedenko, A.; Rosete, O.; Shah, K.; Goldstein, G.; Hare, J.M.; Ramasamy, R.; Arora, H. Current Advances of Nitric Oxide in Cancer and Anticancer Therapeutics. Vaccines 2021, 9, 94. [Google Scholar] [CrossRef] [PubMed]
- Weigert, A.; Brune, B. Nitric oxide, apoptosis and macrophage polarization during tumor progression. Nitric Oxide 2008, 19, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Stewart, G.D.; Ross, J.A.; McLaren, D.B.; Parker, C.C.; Habib, F.K.; Riddick, A.C. The relevance of a hypoxic tumour microenvironment in prostate cancer. BJU Int. 2010, 105, 8–13. [Google Scholar] [CrossRef]
- Aminin, D.; Wang, Y.M. Macrophages as a “weapon” in anticancer cellular immunotherapy. Kaohsiung J. Med. Sci. 2021, 37, 749–758. [Google Scholar] [CrossRef]
- Qin, J.; Shang, L.; Ping, A.S.; Li, J.; Li, X.J.; Yu, H.; Magdalou, J.; Chen, L.B.; Wang, H. TNF/TNFR signal transduction pathway-mediated anti-apoptosis and anti-inflammatory effects of sodium ferulate on IL-1beta-induced rat osteoarthritis chondrocytes in vitro. Arthritis Res. Ther. 2012, 14, R242. [Google Scholar] [CrossRef] [Green Version]
- Neophytou, C.M.; Trougakos, I.P.; Erin, N.; Papageorgis, P. Apoptosis Deregulation and the Development of Cancer Multi-Drug Resistance. Cancers 2021, 13, 4363. [Google Scholar] [CrossRef]
- Zalcenstein, A.; Stambolsky, P.; Weisz, L.; Muller, M.; Wallach, D.; Goncharov, T.M.; Krammer, P.H.; Rotter, V.; Oren, M. Mutant p53 gain of function: Repression of CD95(Fas/APO-1) gene expression by tumor-associated p53 mutants. Oncogene 2003, 22, 5667–5676. [Google Scholar] [CrossRef] [Green Version]
Gene | Sequence | |
---|---|---|
mouse Gapdh | Forward | 5′-CAGAAGACTGTGGATGGCCC-3′ |
Reverse | 5′-ATCCACGACGGACACATTGG-3′ | |
mouse Nos2 | Forward | 5′-CGGCAAACATGACTTCAGGC-3′ |
Reverse | 5′-GCACATCAAAGCGGCCATAG-3′ | |
mouse Il-1β | Forward | 5′-GCTACCTGTGTCTTTCCCGT-3′ |
Reverse | 5′-CATCTCGGAGCCTGTAGTGC-3′ | |
mouse Tnf-α | Forward | 5′-CCTCACACTCACAAACCACCA-3′ |
Reverse | 5′-GTGAGGAGCACGTAGTCGG-3′ | |
mouse Arg-1 | Forward | 5′-TTTTAGGGTTACGGCCGGTG-3′ |
Reverse | 5′-TTTGAGAAAGGCGCTCCGAT-3′ | |
mouse Cd206 | Forward | 5′-GGCAAGTATCCACAGCAT-3′ |
Reverse | 5′-GGTTCCATCACTCCACTC-3′ | |
mouse Il-10 | Forward | 5′-GCTCTTGCACTACCAAAGCC-3′ |
Reverse | 5′-CTGCTGATCCTCATGCCAGT-3′ | |
Human GAPDH | Forward | 5′-AAAATCAAGTGGGGCGATGC-3′ |
Reverse | 5′-GATGACCCTTTTGGCTCCCC-3′ | |
Human TNF-α | Forward | 5′-CATCCAACCTTCCCAAACGC-3′ |
Reverse | 5′-CGAAGTGGTGGTCTTGTTGC-3′ | |
Human IL-1β | Forward | 5′-CGAAGTGGTGGTCTTGTTGC-3′ |
Reverse | 5′-GGGAACTGGGCAGACTCAAA-3′ | |
Human ARG-1 | Forward | 5′-GTCTGTGGGAAAAGCAAGCG-3′ |
Reverse | 5′-CACCAGGCTGATTCTTCCGT-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B.-Y.; Ryu, J.H.; Park, J.; Ji, B.; Chun, H.S.; Kim, M.S.; Shin, Y.-I. Fermented Lettuce Extract Induces Immune Responses through Polarization of Macrophages into the Pro-Inflammatory M1-Subtype. Nutrients 2023, 15, 2750. https://doi.org/10.3390/nu15122750
Kim B-Y, Ryu JH, Park J, Ji B, Chun HS, Kim MS, Shin Y-I. Fermented Lettuce Extract Induces Immune Responses through Polarization of Macrophages into the Pro-Inflammatory M1-Subtype. Nutrients. 2023; 15(12):2750. https://doi.org/10.3390/nu15122750
Chicago/Turabian StyleKim, Bo-Young, Ji Hyeon Ryu, Jisu Park, Byeongjun Ji, Hyun Soo Chun, Min Sun Kim, and Yong-Il Shin. 2023. "Fermented Lettuce Extract Induces Immune Responses through Polarization of Macrophages into the Pro-Inflammatory M1-Subtype" Nutrients 15, no. 12: 2750. https://doi.org/10.3390/nu15122750
APA StyleKim, B. -Y., Ryu, J. H., Park, J., Ji, B., Chun, H. S., Kim, M. S., & Shin, Y. -I. (2023). Fermented Lettuce Extract Induces Immune Responses through Polarization of Macrophages into the Pro-Inflammatory M1-Subtype. Nutrients, 15(12), 2750. https://doi.org/10.3390/nu15122750