Diet and Acanthosis Nigricans over a Two-Year Period in Children of the Pacific Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Setting
2.2. Data Collection
2.3. Data Management and Analysis
2.4. Statistical Approach and Power: Post-Hoc Analysis
3. Results
3.1. Study Population
3.2. Predictors of AN at Follow-Up
3.3. Predictors of Change in AN Status
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Min, J.; Goodale, H.; Xue, H.; Brey, R.; Wang, Y. Racial-Ethnic Disparities in Obesity and Biological, Behavioral, and Sociocultural Influences in the United States: A Systematic Review. Adv. Nutr. 2021, 12, 1137–1148. [Google Scholar] [CrossRef]
- Liu, J.; Ren, Z.H.; Qiang, H.; Wu, J.; Shen, M.; Zhang, L.; Lyu, J. Trends in the incidence of diabetes mellitus: Results from the Global Burden of Disease Study 2017 and implications for diabetes mellitus prevention. BMC Public Health 2020, 20, 1415. [Google Scholar] [CrossRef]
- Min, J.; Wen, X.; Xue, H.; Wang, Y. Ethnic disparities in childhood BMI trajectories and obesity and potential causes among 29,250 US children: Findings from the Early Childhood Longitudinal Study-Birth and Kindergarten Cohorts. Int. J. Obes. 2018, 42, 1661–1670. [Google Scholar] [CrossRef]
- Novotny, R.; Li, F.; Fialkowski, M.K.; Bersamin, A.; Tufa, A.; Deenik, J.; Coleman, P.; Guerrero, R.L.; Wilkens, L.R.; Children’s Healthy Living, P. Prevalence of obesity and acanthosis nigricans among young children in the children’s healthy living program in the United States Affiliated Pacific. Medicine 2016, 95, e4711. [Google Scholar] [CrossRef] [PubMed]
- Styne, D.M.; Arslanian, S.A.; Connor, E.L.; Farooqi, I.S.; Murad, M.H.; Silverstein, J.H.; Yanovski, J.A. Pediatric Obesity-Assessment, Treatment, and Prevention: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2017, 102, 709–757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sepulveda, M.J.; Tait, F.; Zimmerman, E.; Edington, D. Impact of childhood obesity on employers. Health Aff. 2010, 29, 513–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.C.; McPherson, K.; Marsh, T.; Gortmaker, S.L.; Brown, M. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet 2011, 378, 815–825. [Google Scholar] [CrossRef] [PubMed]
- Untalan, P.T. Declaring a Regional State of Health Emergency Due to the Epidemic of Non-Communicable Diseases in the United States-Affiliated Pacific Islands. 2010. Available online: https://www.pihoa.org/the-regional-ncd-crisis-response (accessed on 10 February 2012).
- D’Adamo, E.; Caprio, S. Type 2 diabetes in youth: Epidemiology and pathophysiology. Diabetes Care 2011, 34, S161–S165. [Google Scholar] [CrossRef] [Green Version]
- Magliano, D.J.; Sacre, J.W.; Harding, J.L.; Gregg, E.W.; Zimmet, P.Z.; Shaw, J.E. Young-onset type 2 diabetes mellitus—Implications for morbidity and mortality. Nat. Rev. Endocrinol. 2020, 16, 321–331. [Google Scholar] [CrossRef]
- Dieleman, J.L.; Baral, R.; Birger, M.; Bui, A.L.; Bulchis, A.; Chapin, A.; Hamavid, H.; Horst, C.; Johnson, E.K.; Joseph, J.; et al. US Spending on Personal Health Care and Public Health, 1996–2013. JAMA 2016, 316, 2627–2646. [Google Scholar] [CrossRef] [Green Version]
- Songer, T.J.; Haymond, M.W.; Glazner, J.E.; Klingensmith, G.J.; Laffel, L.M.; Zhang, P.; Hirst, K. Healthcare and associated costs related to type 2 diabetes in youth and adolescence: The TODAY clinical trial experience. Pediatr. Diabetes 2019, 20, 702–711. [Google Scholar] [CrossRef] [PubMed]
- Novotny, R.; Nigg, C.R.; Li, F.; Wilkens, L.R. Pacific kids DASH for health (PacDASH) randomized, controlled trial with DASH eating plan plus physical activity improves fruit and vegetable intake and diastolic blood pressure in children. Child. Obes. 2015, 11, 177–186. [Google Scholar] [CrossRef]
- Dorcely, B.; Katz, K.; Jagannathan, R.; Chiang, S.S.; Oluwadare, B.; Goldberg, I.J.; Bergman, M. Novel biomarkers for prediabetes, diabetes, and associated complications. Diabetes Metab. Syndr. Obes. 2017, 10, 345–361. [Google Scholar] [CrossRef] [Green Version]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Appuhamy, J.A.; Kebreab, E.; France, J. A mathematical model for determining age-specific diabetes incidence and prevalence using body mass index. Ann. Epidemiol. 2013, 23, 248–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abraham, C.; Rozmus, C.L. Is acanthosis nigricans a reliable indicator for risk of type 2 diabetes in obese children and adolescents? A systematic review. J. Sch. Nurs. 2012, 28, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Scott, L.K. Presence of type 2 diabetes risk factors in children. Pediatr. Nurs. 2013, 39, 180–190. [Google Scholar]
- Saraiya, A.; Al-Shoha, A.; Brodell, R.T. Hyperinsulinemia associated with acanthosis nigricans, finger pebbles, acrochordons, and the sign of Leser-Trélat. Endocr. Pract. 2013, 19, 522–525. [Google Scholar] [CrossRef]
- Rafalson, L.; Eysaman, J.; Quattrin, T. Screening obese students for acanthosis nigricans and other diabetes risk factors in the urban school-based health center. Clin. Pediatr. 2011, 50, 747–752. [Google Scholar] [CrossRef]
- Kong, A.S.; Williams, R.L.; Rhyne, R.; Urias-Sandoval, V.; Cardinali, G.; Weller, N.F.; Skipper, B.; Volk, R.; Daniels, E.; Parnes, B.; et al. Acanthosis Nigricans: High prevalence and association with diabetes in a practice-based research network consortium—A PRImary care Multi-Ethnic network (PRIME Net) study. J. Am. Board Fam. Med. 2010, 23, 476–485. [Google Scholar] [CrossRef] [Green Version]
- Kobaissi, H.A.; Weigensberg, M.J.; Ball, G.D.; Cruz, M.L.; Shaibi, G.Q.; Goran, M.I. Relation between acanthosis nigricans and insulin sensitivity in overweight Hispanic children at risk for type 2 diabetes. Diabetes Care 2004, 27, 1412–1416. [Google Scholar] [CrossRef] [Green Version]
- Lillioja, S.; Mott, D.M.; Spraul, M.; Ferraro, R.; Foley, J.E.; Ravussin, E.; Knowler, W.C.; Bennett, P.H.; Bogardus, C. Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. Prospective studies of Pima Indians. N. Engl. J. Med. 1993, 329, 1988–1992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, R. Insulin resistance and type 2 diabetes. Diabetes 2012, 61, 778–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walia, R.; Riyat, A.; Kaur, B.; Kaur, M.; Aulakh, S.; Chopra, D. Acanthosis Nigricans: An overt clinical marker of insulin resistance and its association with serum adiponectin levels in obese pediatric population. Indian J. Paediatr. Dermatol. 2022, 23, 105. [Google Scholar]
- Burke, J.P.; Hale, D.E.; Hazuda, H.P.; Stern, M.P. A quantitative scale of acanthosis nigricans. Diabetes Care 1999, 22, 1655–1659. [Google Scholar] [CrossRef]
- Nithun, T.M.; Ranugha, P.S.S.; Betkerur, J.B.; Shastry, V. Association of Acanthosis Nigricans and Insulin Resistance in Indian Children and Youth—A HOMA2-IR Based Cross-Sectional Study. Indian Dermatol. Online J. 2019, 10, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Lindley, J.B. Acanthosis Nigricans screening tool and screening in schools. J. Sch. Nurs. 2013, 29, 93. [Google Scholar] [CrossRef]
- Veit, M.; van Asten, R.; Olie, A.; Prinz, P. The role of dietary sugars, overweight, and obesity in type 2 diabetes mellitus: A narrative review. Eur. J. Clin. Nutr. 2022, 76, 1497–1501. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Jiang, Y.T.; Liu, Y.S.; Chang, Q.; Zhao, Y.H.; Wu, Q.J. The association between glycemic index, glycemic load, and metabolic syndrome: A systematic review and dose–response meta-analysis of observational studies. Eur. J. Nutr. 2020, 59, 451–463. [Google Scholar] [CrossRef]
- Liu, S.; Willett, W.C. Dietary glycemic load and atherothrombotic risk. Curr. Atheroscler. Rep. 2002, 4, 454–461. [Google Scholar] [CrossRef]
- Shah, A.S.; Zeitler, P.S.; Wong, J.; Pena, A.S.; Wicklow, B.; Arslanian, S.; Chang, N.; Fu, J.; Dabadghao, P.; Pinhas-Hamiel, O.; et al. ISPAD Clinical Practice Consensus Guidelines 2022: Type 2 diabetes in children and adolescents. Pediatr. Diabetes 2022, 23, 872–902. [Google Scholar] [CrossRef]
- Fialkowski, M.K.; Delormier, T.; Hattori-Uchima, M.; Leslie, J.H.; Greenberg, J.; Kim, J.H.; Deenik, J.L.; Dunn, M.A.; Areta, I.A.; Novotny, R. Children’s Healthy Living Program (CHL) Indigenous Workforce Training to Prevent Childhood Obesity in the Underserved U.S. Affiliated Pacific Region. JHCPU 2015, 26, 83–95. [Google Scholar] [CrossRef]
- Mikkelsen, B.E.; Novotny, R.; Gittelsohn, J. Multi-Level, Multi-Component Approaches to Community Based Interventions for Healthy Living-A Three Case Comparison. Int. J. Environ. Res. Public. Health 2016, 13, 1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilken, L.R.; Novotny, R.; Fialkowski, M.K.; Boushey, C.J.; Nigg, C.; Paulino, Y.; Leon Guerrero, R.; Bersamin, A.; Vargo, D.; Kim, J.; et al. Children’s Healthy Living (CHL) Program for remote underserved minority populations in the Pacific region: Rationale and design of a community randomized trial to prevent early childhood obesity. BMC Public Health 2013, 13, 944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fialkowski, M.K.; Yamanaka, A.; Wilkens, L.R.; Braun, K.L.; Butel, J.; Ettienne, R.; McGlone, K.; Remengesau, S.; Power, J.M.; Johnson, E.; et al. Recruitment Strategies and Lessons Learned from the Children’s Healthy Living Program Prevalence Survey. AIMS Public Health 2016, 3, 140–157. [Google Scholar] [CrossRef]
- Butel, J.; Braun, K.L.; Novotny, R.; Acosta, M.; Castro, R.; Fleming, T.; Powers, J.; Nigg, C.R. Assessing intervention fidelity in a multi-level, multi-component, multi-site program: The Children’s Healthy Living (CHL) program. Transl. Behav. Med. 2015, 5, 460–469. [Google Scholar] [CrossRef] [Green Version]
- Ettienne, R.; Nigg, C.R.; Li, F.; Su, Y.; McGlone, K.; Luick, B.; Tachibana, A.; Carran, C.; Mercado, J.; Novotny, R. Validation of the Actical Accelerometer in Multiethnic Preschoolers: The Children’s Healthy Living (CHL) Program. Hawai’i J. Med. Public Health 2016, 75, 95–100. [Google Scholar]
- Li, F.; Wilkens, L.R.; Novotny, R.; Fialkowski, M.K.; Paulino, Y.C.; Nelson, R.; Bersamin, A.; Martin, U.; Deenik, J.; Boushey, C.J. Anthropometric measurement standardization in the US-affiliated pacific: Report from the Children’s Healthy Living Program. Am. J. Hum. Biol. 2016, 28, 364–371. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.L.; Murphy, S.P.; Leon Guerrero, R.T.; Davison, N.; Jung, Y.O.; Novotny, R. The Pacific Tracker (PacTrac): Development of a dietary assessment instrument for the Pacific. J. Food Compost. Anal. 2008, 21, S103–S108. [Google Scholar] [CrossRef] [Green Version]
- Yamanaka, A.; Fialkowski, M.K.; Wilkens, L.; Li, F.; Ettienne, R.; Fleming, T.; Power, J.; Deenik, J.; Coleman, P.; Leon Guerrero, R.; et al. Quality assurance of data collection in the multi-site community randomized trial and prevalence survey of the children’s healthy living program. BMC Res. Notes 2016, 9, 432. [Google Scholar] [CrossRef] [Green Version]
- Yonemori, K.M.; Ennis, T.; Novotny, R.; Fialkowski, M.K.; Ettienne, R.; Wilkens, L.R.; Leon Guerrero, R.T.; Bersamin, A.; Coleman, P.; Li, F.; et al. Collecting wrappers, labels, and packages to enhance accuracy of food records among children 2-8 years in the Pacific region: Children’s Healthy Living Program (CHL). J. Food Compost. Anal. 2017, 64, 112–118. [Google Scholar] [CrossRef]
- Grummer-Strawn, L.M.; Reinold, C.; Krebs, N.F. Use of World Health Organization and CDC growth charts for children aged 0–59 months in the United States. MMWR Recomm. Rep. 2010, 59, 1–15. [Google Scholar] [PubMed]
- Barlow, S.E. Expert committee recommendations regarding the prevention, assessment, and treatment of child and adolescent overweight and obesity: Summary report. Pediatrics 2007, 120, S164–S192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallagher, D. A Guide to Methods for Assessing Childhood Obesity; National Collaborative on Childhood Obesity Research: Washington, DC, USA, 2020. [Google Scholar]
- A SAS Program for the 2000 CDC Growth Charts (Ages 0 to <20 Years). Available online: http://www.cdc.gov/nccdphp/dnpao/growthcharts/resources/sas.htm (accessed on 30 January 2016).
- Dekkers, A.L.; Verkaik-Kloosterman, J.; van Rossum, C.T.; Ocké, M.C. SPADE, a new statistical program to estimate habitual dietary intake from multiple food sources and dietary supplements. J. Nutr. 2014, 144, 2083–2091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novotny, R.; Fialkowski, M.K.; Areta, A.A.; Bersamin, A.; Braun, K.; DeBaryshe, B.; Deenik, J.; Dunn, M.; Hollyer, J.; Kim, J.; et al. University of Hawai’i Cancer Center Connection: The Pacific Way to Child Wellness: The Children’s Healthy Living Program for Remote Underserved Minority Populations of the Pacific Region (CHL). Hawai’i J. Med. Public Health 2013, 72, 406–408. [Google Scholar]
- Guenther, P.M.; Kirkpatrick, S.I.; Reedy, J.; Krebs-Smith, S.M.; Buckman, D.W.; Dodd, K.W.; Casavale, K.O.; Carroll, R.J. The Healthy Eating Index-2010 is a valid and reliable measure of diet quality according to the 2010 Dietary Guidelines for Americans. J. Nutr. 2014, 144, 399–407. [Google Scholar] [CrossRef] [Green Version]
- Boushey, C.; Yonemori, K.; Novotny, R.; Fialkowski, M.; Wilkens, L.; Nigg, C.; Leon Guerrero, R.; Bersamin, A.; Kim, J.; Johnson, K. Intakes of key dietary indicators among children 2–8 years participating in the Children’s Healthy Living (CHL) Program. FASEB J. 2015, 29, 381. [Google Scholar] [CrossRef]
- StataCorp. Stata Statistical Software. 16R, Editor, StataCorp, LLC: College Station, TX, USA, 2019.
- Law, J.; Northrup, K.; Wittberg, R.; Lilly, C.; Cottrell, L. Observing anthropometric and acanthosis nigrican changes among children over time. J. Sch. Nurs. 2013, 29, 435–441. [Google Scholar] [CrossRef]
- Kopping, D.; Nevarez, H.; Goto, K.; Morgan, I.; Frigaard, M.; Wolff, C. A longitudinal study of overweight, elevated blood pressure, and acanthosis nigricans among low-income middle school students. J. Sch. Nurs. 2012, 28, 214–219. [Google Scholar] [CrossRef]
- Rolland-Cachera, M.F.; Deheeger, M.; Maillot, M.; Bellisle, F. Early adiposity rebound: Causes and consequences for obesity in children and adults. Int. J. Obes. 2006, 30, S11–S17. [Google Scholar] [CrossRef] [Green Version]
- Koyama, S.; Ichikawa, G.; Kojima, M.; Shimura, N.; Sairenchi, T.; Arisaka, O. Adiposity rebound and the development of metabolic syndrome. Pediatrics 2014, 133, e114–e119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, J.L.; Ardouin, S.; Burrows, T. The validity of dietary assessment methods to accurately measure energy intake in children and adolescents who are overweight or obese: A systematic review. Eur. J. Clin. Nutr. 2018, 72, 185–197. [Google Scholar] [CrossRef] [PubMed]
- De la Hunty, A.; Buttriss, J.; Draper, J.; Roche, H.; Levey, G.; Florescu, A.; Penfold, N.; Frost, G. UK Nutrition Research Partnership (NRP) workshop: Forum on advancing dietary intake assessment. Nutr. Bull. 2021, 46, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Schneider, N.; Geiser, E.; Gosoniu, L.M.; Wibowo, Y.; Gentile-Rapinett, G.; Tedjasaputra, M.S.; Sastroasmoro, S. A Combined Dietary and Cognitive Intervention in 3(-)5-Year-Old Children in Indonesia: A Randomized Controlled Trial. Nutrients 2018, 10, 1394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster, E.; Bradley, J. Methodological considerations and future insights for 24-hour dietary recall assessment in children. Nutr. Res. 2018, 51, 1–11. [Google Scholar] [CrossRef]
- Broyles, M.E.; Harris, R.; Taren, D.L. Diabetics under report energy intake in NHANES III greater than non-diabetics. Open Nutr. J. 2008, 2, 54–62. [Google Scholar] [CrossRef] [Green Version]
- Burguete-Garcia, A.I.; Ramirez Valverde, A.G.; Espinoza-Leon, M.; Vazquez, I.S.; Estrada Ramirez, E.Y.; Maldonado-Lopez, I.; Martinez, A.L.; Diaz Benitez, C.E.; Araujo, R.K.; Fernandez-Madinaveitia, D.; et al. Severe Quantitative Scale of Acanthosis Nigricans in Neck is Associated with Abdominal Obesity, HOMA-IR, and Hyperlipidemia in Obese Children from Mexico City: A Cross-Sectional Study. Dermatol. Res. Pract. 2022, 2022, 2906189. [Google Scholar] [CrossRef]
- Nsiah-Kumi, P.A.; Beals, J.; Lasley, S.; Whiting, M.; Brushbreaker, C.; Erickson, J.; Qiu, F.; Yu, F.; Canaris, G.; Larsen, J.L. Body mass index percentile more sensitive than acanthosis nigricans for screening Native American children for diabetes risk. J. Natl. Med. Assoc. 2010, 102, 944–949. [Google Scholar] [CrossRef]
- Ice, C.L.; Murphy, E.; Minor, V.E.; Neal, W.A. Metabolic syndrome in fifth grade children with acanthosis nigricans: Results from the CARDIAC project. World J. Pediatr. 2009, 5, 23–30. [Google Scholar] [CrossRef]
- Liu, L.L.; Yi, J.P.; Beyer, J.; Mayer-Davis, E.J.; Dolan, L.M.; Dabelea, D.M.; Lawrence, J.M.; Rodriguez, B.L.; Marcovina, S.M.; Waitzfelder, B.E.; et al. Type 1 and Type 2 diabetes in Asian and Pacific Islander U.S. youth: The SEARCH for Diabetes in Youth Study. Diabetes Care 2009, 32, S133–S140. [Google Scholar] [CrossRef] [Green Version]
- Hawley, N.L.; McGarvey, S.T. Obesity and diabetes in Pacific Islanders: The current burden and the need for urgent action. Curr. Diabetes Rep. 2015, 15, 29. [Google Scholar] [CrossRef] [PubMed]
- Hines, A.; Alavi, A.; Davis, M.D.P. Cutaneous Manifestations of Diabetes. Med. Clin. N. Am. 2021, 105, 681–697. [Google Scholar] [CrossRef] [PubMed]
- Bustan, R.S.; Wasim, D.; Yderstræde, K.B.; Bygum, A. Specific skin signs as a cutaneous marker of diabetes mellitus and the prediabetic state—A systematic review. Dan. Med. J. 2017, 64, A5316. [Google Scholar] [PubMed]
- Stone, O.J. Acanthosis nigricans—Decreased extracellular matrix viscosity: Cancer, obesity, diabetes, corticosteroids, somatotrophin. Med. Hypotheses 1993, 40, 154–157. [Google Scholar] [CrossRef]
- Tagi, V.M.; Chiarelli, F. Obesity and insulin resistance in children. Curr. Opin. Pediatr. 2020, 32, 582–588. [Google Scholar] [CrossRef]
- Das, A.; Datta, D.; Kassir, M.; Wollina, U.; Galadari, H.; Lotti, T.; Jafferany, M.; Grabbe, S.; Goldust, M. Acanthosis nigricans: A review. J. Cosmet. Dermatol. 2020, 19, 1857–1865. [Google Scholar] [CrossRef]
- Mohamad, N.E.; El-Tahlawy, S.M.; El Sherbiny, N.A.; Ebrahim, E.S. Prevalence and risk factors associated with acanthosis nigricans in primary school children. EJDV 2022, 42, 97. [Google Scholar] [CrossRef]
- Sudevan, R.; Vijay Kumar, S.; Sunny, C.; Sunand, N.; Vasudevan, A. Prevalence of acanthosis nigricans and its association with physical activity in adolescents—School-based analytical cross-sectional study from Kochi, Kerala. J. Fam. Med. Prim. Care 2021, 10, 4218–4222. [Google Scholar] [CrossRef]
- Wen, M.; Su, D. Correlates of Leisure-Time Physical Activity Participation Among Latino Children and Adolescents with Acanthosis Nigricans. J. Immigr. Minor. Health 2015, 17, 1330–1336. [Google Scholar] [CrossRef] [Green Version]
- Mukhtar, Q.; Cleverley, G.; Voorhees, R.E.; McGrath, J.W. Prevalence of acanthosis nigricans and its association with hyperinsulinemia in New Mexico adolescents. J. Adolesc. Health 2001, 28, 372–376. [Google Scholar] [CrossRef]
- Jones, L.H.; Ficca, M. Is Acanthosis Nigricans a reliable indicator for risk of type 2 diabetes? J. Sch. Nurs. 2007, 23, 247–251. [Google Scholar] [CrossRef]
- Yee, K.E.; Pfeiffer, K.A.; Turek, K.; Bakhoya, M.; Carlson, J.J.; Sharman, M.; Lamb, E.; Eisenmann, J.C. Association of the Family Nutrition and Physical Activity Screening Tool with Weight Status, Percent Body Fat, and Acanthosis Nigricans in Children from a Low Socioeconomic, Urban Community. Ethn. Dis. 2015, 25, 399–404. [Google Scholar] [CrossRef]
- Brage, S.; Wedderkopp, N.; Ekelund, U.; Franks, P.W.; Wareham, N.J.; Andersen, L.B.; Froberg, K. Objectively measured physical activity correlates with indices of insulin resistance in Danish children. The European Youth Heart Study (EYHS). Int. J. Obes. Relat. Metab. Disord. 2004, 28, 1503–1508. [Google Scholar] [CrossRef] [Green Version]
- Krekoukia, M.; Nassis, G.P.; Psarra, G.; Skenderi, K.; Chrousos, G.P.; Sidossis, L.S. Elevated total and central adiposity and low physical activity are associated with insulin resistance in children. Metabolism 2007, 56, 206–213. [Google Scholar] [CrossRef]
- Schmitz, K.H.; Jacobs, D.R., Jr.; Hong, C.P.; Steinberger, J.; Moran, A.; Sinaiko, A.R. Association of physical activity with insulin sensitivity in children. Int. J. Obes. Relat. Metab. Disord. 2002, 26, 1310–1316. [Google Scholar] [CrossRef] [Green Version]
- Border Health Office, The University of Texas Rio Grande Valley. Texas Risk Assessment for Type 2 Diabetes in Children Risk Assessments Fact Sheet. Available online: https://rfes.utrgv.edu/factsheet.asp?GetChart=2020Mandate1 (accessed on 10 September 2022).
- Maguolo, A.; Maffeis, C. Acanthosis nigricans in childhood: A cutaneous marker that should not be underestimated, especially in obese children. Acta Paediatr. 2020, 109, 481–487. [Google Scholar] [CrossRef]
- Calcaterra, V.; De Silvestri, A.; Schneider, L.; Acunzo, M.; Vittoni, V.; Meraviglia, G.; Bergamaschi, F.; Zuccotti, G.; Mameli, C. Acanthosis Nigricans in Children and Adolescents with Type 1 Diabetes or Obesity: The Potential Interplay Role between Insulin Resistance and Excess Weight. Children 2021, 8, 710. [Google Scholar] [CrossRef] [PubMed]
- Unnikrishnan, A.G.; Bhatia, E.; Bhatia, V.; Bhadada, S.K.; Sahay, R.K.; Kannan, A.; Kumaravel, V.; Sarma, D.; Ganapathy, B.; Thomas, N.; et al. Type 1 diabetes versus type 2 diabetes with onset in persons younger than 20 years of age. Ann. N. Y. Acad. Sci. 2008, 1150, 239–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popkin, B.M.; Adair, L.S.; Ng, S.W. Global nutrition transition and the pandemic of obesity in developing countries. Nutr. Rev. 2012, 70, 3–21. [Google Scholar] [CrossRef] [Green Version]
- Peng, W.; Mu, Y.; Hu, Y.; Li, B.; Raman, J.; Sui, Z. Double Burden of Malnutrition in the Asia-Pacific Region-A Systematic Review and Meta-analysis. J. Epidemiol. Glob. Health 2020, 10, 16–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blankenship, J.L.; Rudert, C.; Aguayo, V.M. Triple trouble: Understanding the burden of child undernutrition, micronutrient deficiencies, and overweight in East Asia and the Pacific. Matern. Child. Nutr. 2020, 16, e12950. [Google Scholar] [CrossRef] [PubMed]
- Baker, P.; Machado, P.; Santos, T.; Sievert, K.; Backholer, K.; Hadjikakou, M.; Russell, C.; Huse, O.; Bell, C.; Scrinis, G.; et al. Ultra-processed foods and the nutrition transition: Global, regional and national trends, food systems transformations and political economy drivers. Obes. Rev. 2020, 21, e13126. [Google Scholar] [CrossRef]
- Brewer, T.; Andrew, N.; Abbott, D.; Detenamo, R.; Faaola, E.; Gounder, P.; Lal, N.; Lui, K.; Ravuvu, A.; Sapalojang, D. The role of trade in pacific food security and nutrition. Glob. Food Secur. 2023, 36, 100670. [Google Scholar] [CrossRef]
- Dela Cruz, R.; Wolfe, E.; Yonemori, K.M.; Fialkowski, M.K.; Wilkens, L.R.; Coleman, P.; Lameko-Mua, S.; Johnson, E.; Gilmatam, D.; Sigrah, C.; et al. Consumption of Traditional Fruits and Vegetables among Children in the US-Affiliated Pacific Region. Curr. Dev. Nutr. 2022, 6, nzac101. [Google Scholar] [CrossRef] [PubMed]
- Hanson, M.; Englberger, L.; Duncan, B.; Taren, D.; Mateak, H.; Johnson, E. An evaluation of a nutrition intervention in Kapinga Village on Pohnpei, Federated States of Micronesia. Pac. Health Dialog. 2011, 17, 173–184. [Google Scholar]
- Chiavaroli, L.; Cheung, A.; Ayoub-Charette, S.; Ahmed, A.; Lee, D.; Au-Yeung, F.; Qi, X.; Back, S.; McGlynn, N.; Ha, V.; et al. Important food sources of fructose-containing sugars and adiposity: A systematic review and meta-analysis of controlled feeding trials. Am. J. Clin. Nutr. 2023, 117, 741–765. [Google Scholar] [CrossRef]
Characteristics | AN Absent at Follow-Up (n = 524) 1 | AN Present at Follow-Up (n = 34) |
---|---|---|
Age (months) *** | 63.9 ± 0.9 | 75.8 ± 3.2 |
Girls (%) * | 47.5 | 35.3 |
Boys (%) | 52.5 | 64.7 |
BMI z-score *** | 0.45 ± 0.05 | 2.37 ± 0.11 |
% Normal weight status *** | 69.5 | 2.9 |
% Overweight | 16.4 | 14.7 |
% Obese *** | 14.1 | 82.4 |
% Intervention group | 47.9 | 52.9 |
Dietary Measures | AN Absent at Follow-Up (n = 524) 1 | AN Present at Follow-Up (n = 34) |
---|---|---|
Energy (kcal) | 1884.1 ± 23.2 | 1967.3± 95.6 |
Carbohydrate (g) | 252.5 ± 3.2 | 250.0 ± 13.2 |
Protein (g) ** | 69.7 ± 0.9 | 78.4 ± 3.7 |
Fat (g) | 66.6 ± 0.9 | 71.8 ± 3.7 |
Added sugar (tsp) | 11.6 ± 0.2 | 9.8 ± 0.8 |
Added fat (g) | 32.6 ± 0.4 | 35.0 ± 1.9 |
Milk (servings) | 1.2 ± 0.03 | 1.1 ± 0.11 |
Total dairy (servings) | 1.4 ± 0.03 | 1.3 ± 0.10 |
Citrus (servings) | 0.3 ± 0.01 | 0.3 ± 0.04 |
Other fruit (servings) | 0.8 ± 0.02 | 0.8 ± 0.08 |
Total fruit (servings) | 1.1 ± 0.03 | 1.1 ± 0.11 |
Non-whole grain (servings) | 6.4 ± 0.09 | 6.9 ± 0.40 |
Whole grain (servings) | 0.4 ± 0.02 | 0.4 ± 0.07 |
Total grains (servings) | 7.0 ± 0.10 | 7.5 ± 0.40 |
Egg (oz. equivalent) | 0.5 ± 0.02 | 0.5 ± 0.07 |
Red meat (oz.) | 0.8 ± 0.03 | 1.0 ± 0.13 |
All meats (oz.) *** | 4.7 ± 0.08 | 5.7 ± 0.33 |
Animal-sourced food ** | 7.0 ± 0.2 | 8.4 ± 0.6 |
Potato (servings) * | 0.09 ± 0.00 | 0.13 ± 0.02 |
Starchy veggies (servings) | 0.07 ± 0.00 | 0.10 ± 0.02 |
Total vegetables (servings) ** | 0.71 ± 0.02 | 0.87 ± 0.06 |
Starch-rich foods (servings) | 18.2 ± 0.3 | 17.0 ± 1.1 |
Sugar-sweetened beverages (g) | 184.8 ± 7.2 | 163.4 ± 26.1 |
Water (g) * | 355.8 ± 10.6 | 427.6 ± 52.9 |
Change in Dietary Intake Measures | AN Absent at Follow-Up (n = 524) 1 | AN Present at Follow-Up (n = 34) |
---|---|---|
Energy (kcal) | 136.1 ± 25.2 | 234.0 ± 133.3 |
Carbohydrate (g) | 16.8 ± 3.7 | 35.6 ± 19.5 |
Protein (g) | 6.1 ± 0.9 | 6.5 ± 4.5 |
Fat (g) | 4.9 ± 1.0 | 7.8 ± 5.0 |
Added sugar (tsp) * | 0.55 ± 0.29 | 3.41 ± 1.35 |
Added fat (g) | 2.9 ± 0.5 | 3.7 ± 2.8 |
Milk (servings) | 0.05 ± 0.03 | 0.18 ± 0.14 |
Dairy (servings) | 0.06 ± 0.04 | 0.19 ± 0.15 |
Citrus (servings) | 0.04 ± 0.02 | −0.08 ± 0.06 |
Other fruit (servings) | −0.01 ± 0.03 | −0.16 ± 0.13 |
Total fruit (servings) | −0.00 ± 0.03 | −0.23 ± 0.14 |
Non-whole grain (servings) | 0.54 ± 0.11 | 0.88 ± 0.53 |
Whole grain (servings) | 0.11 ± 0.03 | 0.08 ± 0.10 |
Total grains (servings) | 0.68 ± 0.11 | 0.93 ± 0.52 |
Egg (oz. equivalent) | −0.15 ± 0.05 | −0.32 ± 0.25 |
Red meat (oz.) | 0.21 ± 0.04 | 0.33 ± 0.16 |
All meat (oz.) | 0.43 ± 0.09 | 0.39 ± 0.34 |
Animal-sourced food | −0.06 ± 0.17 | −0.32 ± 0.8 |
Potato (servings) * | 0.01 ± 0.01 | −0.04 ± 0.02 |
Starchy vegetables (servings) | 0.02 ± 0.01 | −0.02 ± 0.02 |
Total vegetables (servings) | 0.10 ± 0.02 | −0.04 ± 0.09 |
Starch-rich foods (servings) * | 1.1 ± 0.3 | 4.2 ± 1.6 |
Sugar-sweetened beverages (g) | 0.64 ± 8.73 | 17.6 ± 40.6 |
Water (g) | 56.26 ± 13.57 | 111.31 ± 73.02 |
Changes in Dietary Measures | Odds Ratio 1 | Confidence Interval |
---|---|---|
Energy (kcal) | 1.00 | 1.00–1.00 |
Carbohydrates (g) | 1.00 | 1.00–1.00 |
Protein (g) | 1.00 | 0.98–1.03 |
Fat (g) | 1.00 | 0.97–1.02 |
Added sugar (tsp) * | 1.09 | 1.00–1.19 |
Added fat (g) | 0.99 | 0.94–1.03 |
Milk (servings) | 1.14 | 0.54–2.41 |
Total dairy (servings) | 0.82 | 0.40–1.70 |
Citrus (servings) * | 0.07 | 0.01–0.75 |
Other fruit (servings) | 0.39 | 0.12–1.28 |
Total fruit (servings) * | 0.33 | 0.12–0.89 |
Non-whole grain (servings) | 1.07 | 0.87–1.34 |
Whole grain (servings) | 0.45 | 0.15–1.31 |
Total grains (servings) | 1.04 | 0.83–1.31 |
Egg (oz. equivalent) | 1.00 | 0.66–1.53 |
Red meat (oz.) | 1.29 | 0.68–2.48 |
Meat (oz.) | 1.02 | 0.76–1.37 |
Animal-sourced food | 1.00 | 0.86–1.16 |
Potato (servings) | 0.32 | 0.00–35.08 |
Other starchy vegetables (servings) | 0.20 | 0.00–23.69 |
Total vegetables (servings) | 0.66 | 0.16–2.69 |
Starch-rich foods (servings) * | 1.08 | 1.00–1.16 |
Sugar-sweetened beverages (g) | 1.00 | 1.00–1.00 |
Water (g) | 1.00 | 1.0–1.00 |
Measurements | Never AN (n = 508) 1 (n) | Chronic AN (n = 12) (n) | Develop AN (n = 22) (n) | AN Remission (n = 16) (n) |
---|---|---|---|---|
Age (months) ** | 64.0 ± 0.94 | 80.4 ± 5.68 | 73.4 ± 3.92 | 59.8 ± 6.27 |
Boys % | 52.2 | 83.3 | 54.6 | 62.5 |
Baseline BMI z-score *** | 0.42 ± 0.05 | 2.58 ± 0.16 | 2.11 ± 0.13 | 1.34 ± 0.35 |
2-year change BMI z-scores | 0.06 ± 0.03 | −0.01 ± 0.12 | 0.25 ± 0.12 | −0.30 ± 0.33 |
Chronic MOR (SE) 2 (n = 12) | Developed MOR (SE) (n = 22) | Remission MOR (SE) (n = 16) | |
---|---|---|---|
Energy (kcals) | 1.00 (0.00) | 1.00 (0.00) | 1.00 (0.00) |
Carbohydrates (g) | 0.99 (0.00) | 1.00 (0.00) | 1.00 (0.00) |
Protein (g) | 0.98 (0.02) | 1.00 (0.02) | 1.00 (0.02) |
Fat (g) | 0.98 (0.02) | 0.98 (0.02) | 0.98 (0.03) |
Added fat (g) | 0.95 (0.03) | 1.00 (0.02) | 1.01 (0.02) |
Added sugar (tsp) | 0.80 (0.10) * | 1.13 (0.05) ** | 1.01 (0.05) |
Milk (servings) | 0.91 (0.55) | 1.37 (0.56) | 1.35 (0.60) |
Dairy (servings) | 0.37 (0.24) | 0.74 (0.41) | 1.09 (044) |
Citrus (servings) | 0.05 (0.08) | 0.09 (0.11) | 0.40 (0.43) |
Other fruit (servings) | 0.53 (0.50) | 0.52 (0.34) | 1.10 (0.64) |
Total fruit (servings) | 0.29 (0.23) | 0.41 (0.23) | 0.69 (0.32) |
Non-whole grain (servings) | 0.75 (0.15) | 1.13 (0.14) | 1.02 (0.14) |
Total grains (servings) | 0.72 (0.12) | 1.11 (0.14) | 1.06 (0.15) |
Whole grain (servings) | 0.56 (0.50) | 0.35 (0.29) | 1.49 (0.77) |
Egg (oz. equivalent) | 0.69 (0.25) | 1.05 (0.26) | 0.81 (0.20) |
Red meat (oz.) | 1.64 (0.94) | 0.94 (0.37) | 0.52 (0.20) |
Meat (oz.) | 0.96 (0.22) | 1.05 (0.18) | 0.98 (0.17) |
Animal-sourced food | 0.94 (0.10) | 1.02 (0.08) | 0.98 (0.09) |
Potato (servings) | 11.68 (43.89) | 0.64 (1.64) | 0.20 (0.54) |
Starchy vegetables (servings) | 0.00 (0.02) | 0.38 (1.07) | 0.03 (1.00) |
Total veggies (servings) | 0.63 (0.70) | 0.61 (0.48) | 0.39 (032) |
Starch-rich foods (servings) | 0.84 (0.05) * | 1.12 (0.05) ** | 1.01 (0.04) |
Sugar-sweetened beverages (g) | 1.00 (0.00) | 1.00 (0.00) | 1.00 (0.00) |
Water (g) | 1.00 (0.00) | 1.00 (0.00) | 1.00 (0.00) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taren, D.; Alaofè, H.; Yamanaka, A.B.; Coleman, P.; Fleming, T.; Aflague, T.; Shallcross, L.; Wilkens, L.; Novotny, R. Diet and Acanthosis Nigricans over a Two-Year Period in Children of the Pacific Region. Nutrients 2023, 15, 2718. https://doi.org/10.3390/nu15122718
Taren D, Alaofè H, Yamanaka AB, Coleman P, Fleming T, Aflague T, Shallcross L, Wilkens L, Novotny R. Diet and Acanthosis Nigricans over a Two-Year Period in Children of the Pacific Region. Nutrients. 2023; 15(12):2718. https://doi.org/10.3390/nu15122718
Chicago/Turabian StyleTaren, Douglas, Halimatou Alaofè, Ashley B. Yamanaka, Patricia Coleman, Travis Fleming, Tanisha Aflague, Leslie Shallcross, Lynne Wilkens, and Rachel Novotny. 2023. "Diet and Acanthosis Nigricans over a Two-Year Period in Children of the Pacific Region" Nutrients 15, no. 12: 2718. https://doi.org/10.3390/nu15122718
APA StyleTaren, D., Alaofè, H., Yamanaka, A. B., Coleman, P., Fleming, T., Aflague, T., Shallcross, L., Wilkens, L., & Novotny, R. (2023). Diet and Acanthosis Nigricans over a Two-Year Period in Children of the Pacific Region. Nutrients, 15(12), 2718. https://doi.org/10.3390/nu15122718