Phytochemical Composition and Health Benefits of Figs (Fresh and Dried): A Review of Literature from 2000 to 2022
Abstract
:1. Introduction
2. Fig Chemistry
2.1. Phytochemical Content of Figs
2.1.1. Types of Analyses and Reported Phytochemical Features
2.1.2. Factors Influencing Phytochemical Composition of Figs
2.2. Nutrients in Figs
2.3. Bio-Accessibility and Bioavailability of Phytochemicals from Figs
2.4. Figs Health Benefits
2.4.1. Cardiovascular Risk Benefits
Study Details | Intervention | Results | |||||||
---|---|---|---|---|---|---|---|---|---|
First Author Year | Study Type Design | Population Model | Sample Size | Duration | Fig (Tx) | Control (Tx) | Blood Pressure | Lipids | Other |
Human Research | |||||||||
Sullivan, VK, 2020 [95] | RCT crossover | Overweight + 1 risk factor | 55 | 4 weeks | Fig as part of dried fruit mix 3/4 c snack | high carb snack | ↔ BP | ↔ lipids/ lipoproteins btn Tx ↑ LDL within dried fruit arm | ↑ fasting glucose ↔ insulin ↔ vascular stiffness ↔ CRP |
Bahadori, S, 2016 [94] | RCT Parallel | Arthritis ~51 y | 56 29:27 | 16 weeks | Fig + OO | DMARDs | ↔ TC ↔ TG ↔ LDL ↔ HDL | ↔ Glucose | |
Peterson, J, 2011 [93] | RCT Cross over | 30–75 y TC 100–189 mg/dL | 83 41:42/ seq | 5 weeks | Fig CA Mission 120 g/day | Usual diet w/o Fig | ↑ TC (seq effect) ↔ LDL ↔ HDL ↔ TG | ↔ BW ↑ fiber ↑ sugar | |
Animal Research | |||||||||
Orak, C, 2021 [100] | Parallel in vivo animal | Albino ischemia-reperfusion injury (IRI) rat model | 50 | 10 days | Fig seed oil 3 mL/kg/d 6 mL/kg/d | Neg control Sham control | Anti-Inflammation ↓ TNFα ↓ IL-1β Anti-Ox ↓ MDA ↓ MPO ↓ histopathology of intestinal tissue | ||
Elghareeb, MM, 2021 [97] | Parallel in vivo animal | chemo-induced Ox stress rat model | 40 | 30 Days | Fruit extract | Vehicle | blunted chemo-induced toxicity on CVD markers | ||
Sukowati, YK, 2019 [98] | Parallel in vivo animal | high fat diet (HFD)-induced obese rat model | 32 8/group | 10 weeks | Fruit Leaf extract 400 mg/kg | Control diet | ↓ lipids (panel) | ↓ TNFα ↓ MDA | |
Alamgeer, IS, 2017 [96] | Parallel in vivo animal | normo- and glucose-induced hyper- tensive rat model | 3/group | 3 weeks | Fig fruit extract 250, 500, 1000 mg/kg | Vehicle | ↓ BP (1000 mg/kg) normo- and hyper- tensive | Phenolic analysis: presence of quercetin, gallic acid, caffeic acid, vanillic acid, syringic acid, coumaric acid, chromotropic acid. | |
Joerin, L, 2014 [99] | Parallel in vivo animal | high fat diet (HFD)-induced obese rat model | 10/group | 6 weeks | Leaf extract (FLE) 50 mg/kg FLE 100 mg/kg FLE 30 mg/kg Pioglitazone | Chow and HFD | ↑ HDL ↓ TG ↓ IL-6 FLE > Pioglitazone | ↓ AI ↓ CRI ↔ adiponectin ↔ leptin ↔ insulin ↔ glucose |
2.4.2. Diabetes Benefits
Study Details | Intervention | Results | |||||||
---|---|---|---|---|---|---|---|---|---|
First Author Year | Study Type Design | Subject Detail | Sample Size | Duration | Fig (Tx) | Control (Tx) | Insulin | Glucose | Other |
Human Research | |||||||||
Atkinson, FS, 2019 [106] | RCT Parallel | Healthy | 10 | Acute | Fig fruit extract (FFE) in glucose drink standardized to ABA 100 mg 200 mg 600 mg 1200 mg | Glucose Drink | ↓ Insulin dose-dependent | ↓ Glucose at highest doses | |
Shah, M, 2019 [104] | RCT Parallel | T2DM | 50 25/group | 2 months | Fig 10 g 3.3 g thrice/d | Metformin | ↓ Glucose | ||
Zangara, A, 2018 [107] | Cross Over dose response | Healthy | 10 | Acute | Extract Glucose solution + 40 or 80 µg ABA in 250 mL water 100 mg ABAlife = 40 µg ABA | Glucose solution (50 g) | ↓ Insulin index | ↓ Glycemic index | |
Mazhin, SA, 2016 [103] | RCT | T2DM | 28 | 21 Days | Fig 13 g of leaf powder | green tea | ↓ Glucose OGTT response | ||
Serraclara, A, 1998 [102] | RCT | T1DM subjects | 10 5/group | 1 month and post prandial (PP) and fasting | Leaf extract | Non- sweet tea | ↓ Insulin exog need PP | ↓ Glucose PP ↔ Fasting | |
Animal Research | |||||||||
Leber, A, 2020 [108] | Parallel in vivo animal | DIO and db/db mouse model | 10 | 12 weeks | FIG 0.125 µg ABA/kg BW | Vehicle (water) | ↑ Insulin Sensitivity | ↓ Glucose fasting ↑ Gluc Tol | ↓ TNFα ↓ MCP ↓ IL-6 ↑ metabolic capacity of muscle cells |
Kawther, M, 2009 [111] | Parallel in vivo animal | Alloxan—induced DM + High fat diet (HFD) rabbit model | 48 | 6 weeks | Leaf extract 0.3 gm/kg extract +/− insulin | Insulin | ↓ Insulin exogenous need | ↓ Glucose | |
Kurniawan, MF, 2021 [115] | Parallel in vivo Animal | Alloxan-induced DM rat model | 8/groups | 14 days | Leaf extract 40, 60, 80 mg tablet formula | Placebo Metformin as + control | ↓ Glucose | ||
Arafa, et al., 2020 [113] | Parallel in vivo animal | diabetes via STZ + High fat diet (HFD) rat model | 6/group | 8 weeks HFD 3 week before start treat for 5 weeks | Seeds and Fruit extract 250 mg/kg/d 500 mg/kg/d | Control no extract | ↓ Glucose | ↓ BW ↓ TC ↓ TG ↓ LDL ↓ VLDL ↑ HDL Anti-Ox ↑ SOD ↓ MDA | |
Irudayaraj, SS, 2017 [110] | Parallel in vivo Animal | diabetes via STZ + High fat diet (HFD) rat model | 6/group | 28 days + OGTT + ITT on 15th and 25th days | Leaf extract 250 mg/kg 500 mg/kg | Vehicle Normal rat and DB rats | ↓ Insulin ITT response | ↓ Glucose fasting ↓ OGTT response | ↓ TC ↓ TG ↓ BW ↓ Glycogen Liver carbohydrate enzymes normalized in DM rats |
Ajmal, 2016 [36] | Parallel in vivo animal | normal/wild type rat model | 80 10/group | 56 days | Fig fruit peel, pulp and leaves | Control diet | ↑ Insulin | ↓ Glucose Leaf extract | Fig peel, pulp, leaf ↑ fiber ↑ protein ↑ minerals ↑ phenolics ↑ flavonoids ↑ Antioxidant properties |
Irudayaraj, SS, 2016 [109] | Parallel In vivo Animal | diabetes via STZ + High fat diet (HFD) rat model | 6/group | 28 days | Leaf extract of Ficusin 20 mg/kg 40 mg/kg | Vehicle Normal rat and DB rats | ↓ Insulin | ↓ Glucose fasting ↓ OGTT response | ↓ TC ↓ TG ↓ FFA ↓ BW ↓ SOD ↓ Cat ↑ GLUT 4 ↑ PPARγ adipose tissue |
Stalin, C, 2012 [116] | Parallel in vivo Animal | Alloxan—induced DM rat model | 5/groups | 21 | Fig fruit extract 100 and 200 mg/kg p.o. | Metformin 500 mg/kg p.o | ↓ Glucose fasting | ↓ TG fasting | |
El-Shobaki, FA, 2010 [114] | Parallel in vivo Animal | Alloxan-induced DM rat model | 48 6/group | 4 weeks | Fig Fruit and Leaf extract 5, 10 and 20% fruit 4, 6, 8% leaf extract | Control diet | ↓ Glucose fasting in DM | ↓ lipids Liver and Kidney Fxn improved | |
Perez, C, 2000 [112] | Parallel in vivo Animal | non-DM and DM STZ-induced DM rat model | 52 13/group | 3 weeks | Leaf extract 2.5 g/10 mL | Water | ↓ Insulin non-DM ↔ DM | ↓ Glucose fasting in DM ↔ Non-DM |
2.4.3. Obesity, Satiety, and Dietary Patterns
Study Details | Intervention | Results | |||||
---|---|---|---|---|---|---|---|
First Author Year | Study Design | Animals Used | Sample Size | Duration | Fig (Tx) | Control (Tx) | Endpoints |
Animal Research | |||||||
Surendran, S, 2020 [117] | Parallel in vivo Animal | Male Swiss albino mice 25–30 g | 3 groups | 40 days | Fruit 100, 150, 200 mg/kg | Normal diet Cafeteria Diet Atherogenic diet | ↓ BW |
Noordam, E, 2019 [118] | Parallel in vivo Animal | high fat diet (HFD)-induced obese rat model | 30 5/group | 40 days | Leaf extract 100, 200, 400 mg/kg | Control | ↓ BW @400 mg/kg |
Study Detail | Results | ||||
---|---|---|---|---|---|
First Author Year | Study Type Design | Subject Detail | Epi Type | Sample Size | Key Results |
Human Research | |||||
Sullivan, VK, 2021 [121] | Epi Cross Sec NHANES 2007–2016 | US adults ≥20 y | Cross-sec | n = 25,590 1 diet record n = 22,311 2 diet record | Dried fruit consumers, n = 1233 dried fruit intake was 0.04 ± 0.001 cup-equivalents and represented 3.7% of total fruit consumed Consumers of dried fruit (7.2% of adults) had higher quality diets than non-consumers (mean ± standard error Healthy Eating Index 2015 score = 60.6 ± 0.5 vs. 52.6 ± 0.3; p < 0.001) and lower mean BMI, waist circumference, and systolic blood pressure (p < 0.01) |
Alshaeri, HK, 2015 [119] | Human RCT crossover | 56 y | n/A | 88 | Fig supplementation (120 g/d) on dietary patterns (vs. standard diet): ↑ Ca, ↑ K, ↑ Mg Figs displaced in diet: desserts ~4%, vegetables ~5%, dairy 10%, grain 23%, beverages 168% ↔ blood mineral status |
Keast, D, 2011 [120] | Epi Cross Sec NHANES 1999–2004 | US adults ≥19 years | Cross Sec | n = 13,292 1 diet record | ~7% were dried fruit consumers Healthy Eating Index 2005 score 59.3 ± 0.5 vs. 49.4 ± 0.3 in consumers and non-consumers, respectively p < 0.05. Lower BMI, waist circumference, fewer short fall nutrients in consumers vs. non-consumers |
2.4.4. Emerging Areas of Figs Health Benefits (Cognitive Function and Digestive/Gut Health)
Study Details | Intervention | Results | |||||
---|---|---|---|---|---|---|---|
First Author Year | Study Design | Humans/Animals | Sample Size | Duration Fig Control | Various End Points | ||
Cognitive Function | |||||||
Animal Research | |||||||
Subash, S, 2016 [122] | in vivo animal parallel AD model of disease | APPsw/Tg2576 (Tg mice) mice model for AD vs wild type | 12 Tg mice 6 wild mice (control, non-Tg) | 15 months | 4% of diet | w/o Fig | Fig prevented memory decline in Tg mice Fig prevented declines in spatial, position discrimination learning ability, and motor coordination ↓ anxiety |
Gut/digestive health | |||||||
Human Research | |||||||
Pourmasoumi, M, 2019 [123] | RCT | Adults with IBS | 150 | 4 months | Fig vs. Flixweed | Control | Flixweed or FIG vs. control: ↓ IBS symptoms ↓ frequency of pain, ↓ distention ↓ frequency of defecation ↓ hard stool. ↑ QOL ↑ satisfaction w/bowel habits. ↔ abdominal pain severity ↔ C-reactive protein |
Animal Research | |||||||
Rtibi, K, 2018 [124] | Parallel in vivo animal | Colitis model DSS-induced UC rat model | Not mentioned in paper | 7 days | Fig extract 150–300 mg/kg | Control | Improved management of several colitis induced endpoints: AOX fecal water content lipid metabolism gastric emptying and GI motility |
3. Potential Mechanisms Involved in Health Benefits of Figs
4. Summary/Conclusions/Future Research
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mawa, S.; Husain, K.; Jantan, I. Ficus carica L. (Moraceae): Phytochemistry, Traditional Uses and Biological Activities. Evid.-Based Complement. Altern. Med. 2013, 2013, 974256. [Google Scholar] [CrossRef] [Green Version]
- Janick, J.; Paris, H.S.; Parrish, D.C. The Cucurbits of Mediterranean Antiquity: Identification of Taxa from Ancient Images and Descriptions. Ann. Bot. 2007, 100, 1441–1457. [Google Scholar] [CrossRef] [PubMed]
- Veberic, R.; Mikulic-Petkovsek, M. Chapter 11-Phytochemical Composition of Common Fig (Ficus carica L.) Cultivars. In Nutritional Composition of Fruit Cultivars; Simmonds, M.S.J., Preedy, V.R., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 235–255. [Google Scholar] [CrossRef]
- Sarkhosh, A.; Andersen, P.C. The Fig. UF/IFAS Extension. 1994. Available online: https://edis.ifas.ufl.edu (accessed on 23 February 2023).
- Arvaniti, O.S.; Samaras, Y.; Gatidou, G.; Thomaidis, N.S.; Stasinakis, A.S. Review on Fresh and Dried Figs: Chemical Analysis and Occurrence of Phytochemical Compounds, Antioxidant Capacity and Health Effects. Food Res. Int. 2019, 119, 244–267. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Food and Agriculture Organization of the United Nations, FAOSTAT Statistics Database. 2021. Available online: https://www.fao.org/faostat/en/#rankings/countries_by_commodity (accessed on 27 January 2023).
- Stover, E.; Aradhya, M.; Ferguson, L.; Crisosto, C.H. The Fig: Overview of an Ancient Fruit. HortScience 2007, 42, 1083–1087. [Google Scholar] [CrossRef]
- Li, J.; An, Y.; Wang, L. Transcriptomic Analysis of Ficus carica Peels with a Focus on the Key Genes for Anthocyanin Biosynthesis. Int. J. Mol. Sci. 2020, 21, 1245. [Google Scholar] [CrossRef] [Green Version]
- Habtemariam, S. Other Common and Exotic Foods with Growing Importance as Antidiabetic Agents. In Medicinal Foods as Potential Therapies for Type-2 Diabetes and Associated Diseases; Elsevier: Amsterdam, The Netherlands, 2019; pp. 985–1047. [Google Scholar] [CrossRef]
- Rasool, I.F.U.; Aziz, A.; Khalid, W.; Koraqi, H.; Siddiqui, S.A.; AL-Farga, A.; Lai, W.-F.; Ali, A. Industrial Application and Health Prospective of Fig (Ficus carica) By-Products. Molecules 2023, 28, 960. [Google Scholar] [CrossRef] [PubMed]
- Vinson, J.A. The Functional Food Properties of Figs. Cereal Foods World 1999, 44, 82–87. [Google Scholar]
- Vallejo, F.; Marín, J.G.; Tomás-Barberán, F.A. Phenolic Compound Content of Fresh and Dried Figs (Ficus carica L.). Food Chem. 2012, 130, 485–492. [Google Scholar] [CrossRef]
- Singh, J.P.; Singh, J.P.; Singh, B.; Kaur, A. Polyphenols in Fig: A Review on Their Characterisation, Biochemistry during Ripening, Antioxidant Activity and Health Benefits. Int. J. Food Sci. Technol. 2022, 57, 3333–3342. [Google Scholar] [CrossRef]
- Walia, A.; Kumar, N.; Singh, R.; Kumar, H.; Kumar, V.; Kaushik, R.; Kumar, A.P. Bioactive Compounds in Ficus Fruits, Their Bioactivities, and Associated Health Benefits: A Review. J. Food Qual. 2022, 2022, 1–19. [Google Scholar] [CrossRef]
- Pourghayoumi, M.; Bakhshi, D.; Rahemi, M.; Noroozisharaf, A.; Jafari, M.; Salehi, M.; Chamane, R.; Hernandez, F. Phytochemical Attributes of Some Dried Fig (Ficus carica L.) Fruit Cultivars Grown in Iran. Agric. Conspec. Sci. 2016, 81, 161–166. [Google Scholar]
- Hssaini, L.; Elfazazi, K.; Razouk, R.; Ouaabou, R.; Hernandez, F.; Hanine, H.; Charafi, J.; Houmanat, K.; Aboutayeb, R. Combined Effect of Cultivar and Peel Chromaticity on Figs’ Primary and Secondary Metabolites: Preliminary Study Using Biochemical and Ftir Fingerprinting Coupled to Chemometrics. Biology 2021, 10, 573. [Google Scholar] [CrossRef] [PubMed]
- Khadhraoui, M.; Bagues, M.; Artés, F.; Ferchichi, A. Phytochemical Content, Antioxidant Potential, and Fatty Acid Composition of Dried Tunisian Fig (Ficus carica L.) Cultivars. J. Appl. Bot. Food Qual. 2019, 92, 143–150. [Google Scholar] [CrossRef]
- Maghsoudlou, E.; Esmaeilzadeh Kenari, R.; Raftani Amiri, Z. Evaluation of Antioxidant Activity of Fig (Ficus carica) Pulp and Skin Extract and Its Application in Enhancing Oxidative Stability of Canola Oil. J. Food Process. Preserv. 2017, 41, e13077. [Google Scholar] [CrossRef]
- Ersoy, N.; Gozlekci, S.; Gok, V.; Yilmaz, S. Fig (Ficus carica L.) Fruit: Some Physical and Chemical Properties. Acta Hortic. 2017, 1173, 329–334. [Google Scholar] [CrossRef]
- Konak, R.; Kösoǧlu, I.; Yemenicioǧlu, A. Effects of Different Drying Methods on Phenolic Content, Antioxidant Capacity and General Characteristics of Selected Dark Colored Turkish Fig Cultivars. Acta Hortic. 2017, 1173, 335–340. [Google Scholar] [CrossRef]
- Harzallah, A.; Bhouri, A.M.; Amri, Z.; Soltana, H.; Hammami, M. Phytochemical Content and Antioxidant Activity of Different Fruit Parts Juices of Three Figs (Ficus carica L.) Varieties Grown in Tunisia. Ind. Crop. Prod. 2016, 83, 255–267. [Google Scholar] [CrossRef]
- Luziana, H.; Renata, K.; Migena, H. Antioxidant Activity of Some Dried Autochthonous Albanian Fig (Ficus carica) Cultivars. Int. J. Crop. Sci. Technol. 2015, 1, 20–26. [Google Scholar]
- Bey, M.B.; Louaileche, H. A Comparative Study of Phytochemical Profile and in Vitro Antioxidant Activities of Dark and Light Dried Fig (Ficus carica L.). Varieties 2015, 4, 41–48. [Google Scholar] [CrossRef]
- Gündeşli, M.A.; Kafkas, N.E.; Güney, M.; Ercişli, S. Determination of Phytochemicals from Fresh Fruits of Fig (Ficus carica l.) at Different Maturity Stages. Acta Sci. Pol. Hortorum Cultus 2021, 20, 73–81. [Google Scholar] [CrossRef]
- Çalişkan, O.; Aytekin Polat, A. Phytochemical and Antioxidant Properties of Selected Fig (Ficus carica L.) Accessions from the Eastern Mediterranean Region of Turkey. Sci. Hortic. 2011, 128, 473–478. [Google Scholar] [CrossRef]
- Piga, A.; del Caro, A.; Milella, G.; Pinna, I.; Vacca, V.; Schirru, S. HPLC Analysis of Polyphenols in Peel and Pulp of Fresh Figs. Acta Hortic. 2008, 798, 301–306. [Google Scholar] [CrossRef]
- del Caro, A.; Piga, A. Polyphenol Composition of Peel and Pulp of Two Italian Fresh Fig Fruits Cultivars (Ficus carica L.). Eur. Food Res. Technol. 2008, 226, 715–719. [Google Scholar] [CrossRef]
- Veberic, R.; Jakopic, J.; Stampar, F. Internal Fruit Quality of Figs (Ficus carica L.) in the Northern Mediterranean Region. Ital. J. Food Sci. 2008, 20, 255–262. [Google Scholar]
- Veberic, R.; Colaric, M.; Stampar, F. Phenolic Acids and Flavonoids of Fig Fruit (Ficus carica L.) in the Northern Mediterranean Region. Food Chem. 2008, 106, 153–157. [Google Scholar] [CrossRef]
- Solomon, A.; Golubowicz, S.; Yablowicz, Z.; Grossman, S.; Bergman, M.; Gottlieb, H.E.; Altman, A.; Kerem, Z.; Flaishman, M.A. Antioxidant Activities and Anthocyanin Content of Fresh Fruits of Common Fig (Ficus carica L.). J. Agric. Food Chem. 2006, 54, 7717–7723. [Google Scholar] [CrossRef]
- Hoxha, L.; Kongoli, R. Evaluation of Antioxidant Potential of Albanian Fig Varieties “Kraps Zi” and “Kraps Bardhe” Cultivated in the Region of Tirana. J. Hyg. Eng. Des. 2016, 16, 70–74. [Google Scholar]
- Aljane, F.; Neily, M.H.; Msaddak, A. Phytochemical Characteristics and Antioxidant Activity of Several Fig (Ficus carica L.) Ecotypes. Ital. J. Food Sci. 2020, 32, 755–768. [Google Scholar] [CrossRef]
- Ercisli, S.; Tosun, M.; Karlidag, H.; Dzubur, A.; Hadziabulic, S.; Aliman, Y. Color and Antioxidant Characteristics of Some Fresh Fig (Ficus carica L.) Genotypes from Northeastern Turkey. Plant Foods Hum. Nutr. 2012, 67, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Hssaini, L.; Charafi, J.; Razouk, R.; Hernández, F.; Fauconnier, M.; Ennahli, S.; Hanine, H. Assessment of Morphological Traits and Fruit Metabolites in Eleven Fig Varieties (Ficus carica L.). Int. J. Fruit Sci. 2020, 20, 8–28. [Google Scholar] [CrossRef]
- Hssaini, L.; Charafi, J.; Hanine, H.; Ennahli, S.; Mekaoui, A.; Mamouni, A.; Razouk, R. Comparative Analysis and Physio-Biochemical Screening of an Ex-Situ Fig (Ficus carica L.) Collection. Hortic. Environ. Biotechnol. 2019, 60, 671–683. [Google Scholar] [CrossRef]
- Ajmal, M.; Arshad, M.U.; Saeed, F.; Ahmed, T.; Khan, A.U.; Bader-ul-Ain, H.; Suleria, H.A.R. Exploring the Nutritional Characteristics of Different Parts of Fig in Relation to Hypoglycemic Potential. Pak. J. Life Soc. Sci. 2016, 14, 115–122. [Google Scholar]
- Ara, I. Comparative Antioxidative and Antidiabetic Activities of Ficus carica Pulp, Peel and Leaf and Their Correlation with Phytochemical Contents. Open Access J. Pharm. Res. 2020, 4, 1–8. [Google Scholar] [CrossRef]
- Oliveira, A.P.; Valentão, P.; Pereira, J.A.; Silva, B.M.; Tavares, F.; Andrade, P.B. Ficus carica L.: Metabolic and Biological Screening. Food Chem. Toxicol. 2009, 47, 2841–2846. [Google Scholar] [CrossRef] [PubMed]
- Mopuri, R.; Ganjayi, M.; Meriga, B.; Koorbanally, N.A.; Islam, M.S. The Effects of Ficus carica on the Activity of Enzymes Related to Metabolic Syndrome. J. Food Drug Anal. 2018, 26, 201–210. [Google Scholar] [CrossRef] [Green Version]
- Palmeira, L.; Pereira, C.; Dias, M.I.; Abreu, R.M.V.; Corrêa, R.C.G.; Pires, T.C.S.P.; Alves, M.J.; Barros, L.; Ferreira, I.C.F.R. Nutritional, Chemical and Bioactive Profiles of Different Parts of a Portuguese Common Fig (Ficus carica L.) Variety. Food Res. Int. 2019, 126, 108572. [Google Scholar] [CrossRef] [Green Version]
- Mahmoudi, S.; Khali, M.; Benkhaled, A.; Boucetta, I.; Dahmani, Y.; Attallah, Z.; Belbraouet, S. Fresh Figs (Ficus carica L.): Pomological Characteristics, Nutritional Value, and Phytochemical Properties. Eur. J. Hortic. Sci. 2018, 83, 104–113. [Google Scholar] [CrossRef]
- Hssaini, L.; Hernandez, F.; Viuda-Martos, M.; Charafi, J.; Razouk, R.; Houmanat, K.; Ouaabou, R.; Ennahli, S.; Elothmani, D.; Hmid, I.; et al. Survey of Phenolic Acids, Flavonoids and in Vitro Antioxidant Potency between Fig Peels and Pulps: Chemical and Chemometric Approach. Molecules 2021, 26, 2574. [Google Scholar] [CrossRef]
- Ouchemoukh, S.; Hachoud, S.; Boudraham, H.; Mokrani, A.; Louaileche, H. Antioxidant Activities of Some Dried Fruits Consumed in Algeria. LWT Food Sci. Technol. 2012, 49, 329–332. [Google Scholar] [CrossRef]
- Wojdyło, A.; Nowicka, P.; Carbonell-Barrachina, Á.A.; Hernández, F. Phenolic Compounds, Antioxidant and Antidiabetic Activity of Different Cultivars of Ficus carica L. Fruits. J. Funct. Foods 2016, 25, 421–432. [Google Scholar] [CrossRef]
- Russo, F.; Caporaso, N.; Paduano, A.; Sacchi, R. Phenolic Compounds in Fresh and Dried Figs from Cilento (Italy), by Considering Breba Crop and Full Crop, in Comparison to Turkish and Greek Dried Figs. J. Food Sci. 2014, 79, C1278–C1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakilcioğlu, E.; Hışıl, Y. Research on the Phenolic Compounds in Sarilop (Ficus carica L.) Fig Variety. GIDA 2013, 38, 1–11. (In English) [Google Scholar]
- Pande, G.; Akoh, C.C. Organic Acids, Antioxidant Capacity, Phenolic Content and Lipid Characterisation of Georgia-Grown Underutilized Fruit Crops. Food Chem. 2010, 120, 1067–1075. [Google Scholar] [CrossRef]
- Karantzi, A.D.; Kafkaletou, M.; Christopoulos, M.V.; Tsantili, E. Peel Colour and Flesh Phenolic Compounds at Ripening Stages in Pollinated Commercial Varieties of Fig (Ficus carica L.) Fruit Grown in Southern Europe. J. Food Meas. Charact. 2021, 15, 2049–2063. [Google Scholar] [CrossRef]
- Ammar, S.; del Mar Contreras, M.; Belguith-Hadrich, O.; Segura-Carretero, A.; Bouaziz, M. Assessment of the Distribution of Phenolic Compounds and Contribution to the Antioxidant Activity in Tunisian Fig Leaves, Fruits, Skins and Pulps Using Mass Spectrometry-Based Analysis. Food Funct. 2015, 6, 3663–3677. [Google Scholar] [CrossRef] [PubMed]
- Faleh, E.; Oliveira, A.P.; Valentão, P.; Ferchichi, A.; Silva, B.M.; Andrade, P.B. Influence of Tunisian Ficus carica Fruit Variability in Phenolic Profiles and in Vitro Radical Scavenging Potential. Rev. Bras. Farm. 2012, 22, 1282–1289. [Google Scholar] [CrossRef] [Green Version]
- Mujić, I.; Dudas, S.; Skutin, H.M.; Perusic, D.; Zeković, Z.; Lepojević, Ž.; Radojković, M.; Vidović, S.; Milošević, S.; Mesic, E.O. Determination of Antioxidant Properties of Fig Fruit Extracts (Ficus carica L.). Acta Hortic. 2012, 940, 369–375. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Capanoglu, E. Polyphenol Content in Figs (Ficus carica L.): Effect of Sun-Drying. Int. J. Food Prop. 2015, 18, 521–535. [Google Scholar] [CrossRef]
- Dueñas, M.; Pérez-Alonso, J.J.; Santos-Buelga, C.; Escribano-Bailón, T. Anthocyanin Composition in Fig (Ficus carica L.). J. Food Compos. Anal. 2008, 21, 107–115. [Google Scholar] [CrossRef]
- Yemiş, O.; Bakkalbaşi, E.; Artik, N. Changes in Pigment Profile and Surface Colour of Fig (Ficus carica L.) during Drying. Int. J. Food Sci. Technol. 2012, 47, 1710–1719. [Google Scholar] [CrossRef]
- Trad, M.; Le Bourvellec, C.; Gaaliche, B.; Renard, C.M.G.C.; Mars, M. Nutritional Compounds in Figs from the Southern Mediterranean Region. Int. J. Food Prop. 2014, 17, 491–499. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Liu, L.; Wang, W.; Liu, Y.; Deng, Q.; Zhang, H.; Wang, X.; Xia, H. Evaluation of the Comparative Morphological and Quality in Fig (Sichuan, China) with Different Colors under Different Ripening Stages. Sci. Hortic. 2020, 265, 109256. [Google Scholar] [CrossRef]
- Su, Q.; Rowley, K.G.; Itsiopoulos, C.; O’Dea, K. Identification and Quantification of Major Carotenoids in Selected Components of the Mediterranean Diet: Green Leafy Vegetables, Figs and Olive Oil. Eur. J. Clin. Nutr. 2002, 56, 1149–1154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Y.C.; Li, W.L.; He, F.M.; Kong, T.T.; Huang, X.W.; Gao, Z.H.; Lu, N.H.; Li, H.L. Aqueous Two-Phase System as an Effective Tool for Purification of Phenolic Compounds from Fig Fruits (Ficus carica L.). Sep. Sci. Technol. 2015, 50, 1785–1793. [Google Scholar] [CrossRef]
- Bucić-Kojić, A.; Planinić, M.; Tomas, S.; Jokić, S.; Mujić, I.; Bilić, M.; Velić, D. Effect of Extraction Conditions on the Extractability of Phenolic Compounds from Lyophilised Fig Fruits (Ficus carica L.). Pol. J. Food Nutr. Sci. 2011, 61, 195–199. [Google Scholar] [CrossRef] [Green Version]
- Tewari, D.; Zengin, G.; Ak, G.; Sinan, K.I.; Cziáky, Z.; Mishra, S.T.; Jekő, J. Phenolic Profiling, Antioxidants, Multivariate, and Enzyme Inhibitory Properties of Wild Himalayan Fig (Ficus Palmata Forssk.): A Potential Candidate for Designing Innovative Nutraceuticals and Related Products. Anal. Lett. 2021, 54, 1439–1456. [Google Scholar] [CrossRef]
- Backes, E.; Pereira, C.; Barros, L.; Prieto, M.A.; Genena, A.K.; Barreiro, M.F.; Ferreira, I.C.F.R. Recovery of Bioactive Anthocyanin Pigments from Ficus carica L. Peel by Heat, Microwave, and Ultrasound Based Extraction Techniques. Food Res. Int. 2018, 113, 197–209. [Google Scholar] [CrossRef] [Green Version]
- Meziant, L.; Boutiche, M.; Bachir Bey, M.; Saci, F.; Louaileche, H. Standardization of Monomeric Anthocyanins Extraction from Fig Fruit Peels (Ficus carica L.) Using Single Factor Methodology. J. Food Meas. Charact. 2018, 12, 2865–2873. [Google Scholar] [CrossRef]
- Qin, H.; Zhou, G.; Peng, G.; Li, J.; Chen, J. Application of Ionic Liquid-Based Ultrasound-Assisted Extraction of Five Phenolic Compounds from Fig (Ficus carica L.) for HPLC-UV. Food Anal. Methods 2015, 8, 1673–1681. [Google Scholar] [CrossRef]
- Bey, M.B.; Louaileche, H.; Zemouri, S. Optimization of Phenolic Compound Recovery and Antioxidant Activity of Light and Dark Dried Fig (Ficus carica L.) Varieties. Food Sci. Biotechnol. 2013, 22, 1613–1619. [Google Scholar] [CrossRef]
- Debib, A.; Tir-Touil, A.; Mothana, R.A.; Meddah, B.; Sonnet, P. Phenolic Content, Antioxidant and Antimicrobial Activities of Two Fruit Varieties of Algerian Ficus carica L. J. Food Biochem. 2014, 38, 207–215. [Google Scholar] [CrossRef]
- Jokić, S.; Mujić, I.; Bucić-Kojić, A.; Velić, D.; Bilić, M.; Planinić, M.; Lukinac, J. Influence of Extraction Type on the Total Phenolics, Total Flavonoids and Total Colour Change of Different Varieties of Fig Extracts. Food Health Dis. 2014, 3, 90–95. [Google Scholar]
- Bey, M.B.; Meziant, L.; Benchikh, Y.; Louaileche, H. Deployment of Response Surface Methodology to Optimize Recovery of Dried Dark Figs AOX and PCs. Int. Food Res. J. 2014, 21, 1477–1482. [Google Scholar]
- Hoxha, L.; Kongoli, R.; Dervishi, J. Influence of Maturity Stage on Polyphenolic Content and Antioxidant Activity of Fig (Ficus carica L.) Fruit in Native Albanian Varieties. Chem. Proc. 2022, 10, 49. [Google Scholar] [CrossRef]
- Marrelli, M.; Menichini, F.; Statti, G.A.; Bonesi, M.; Duez, P.; Menichini, F.; Conforti, F. Changes in the Phenolic and Lipophilic Composition, in the Enzyme Inhibition and Antiproliferative Activity of Ficus carica L. Cultivar Dottato Fruits during Maturation. Food Chem. Toxicol. 2012, 50, 726–733. [Google Scholar] [CrossRef]
- Sedaghat, S.; Rahemi, M. Effects of Physio-Chemical Changes during Fruit Development on Nutritional Quality of Fig (Ficus carica L. Var. ‘Sabz’) under Rain-Fed Condition. Sci. Hortic. 2018, 237, 44–50. [Google Scholar] [CrossRef]
- Wang, Z.; Cui, Y.; Vainstein, A.; Chen, S.; Ma, H. Regulation of Fig (Ficus carica L.) Fruit Color: Metabolomic and Transcriptomic Analyses of the Flavonoid Biosynthetic Pathway. Front. Plant Sci. 2017, 8, 1990. [Google Scholar] [CrossRef] [Green Version]
- Slatnar, A.; Klancar, U.; Stampar, F.; Veberic, R. Effect of Drying of Figs (Ficus carica L.) on the Contents of Sugars, Organic Acids, and Phenolic Compounds. J. Agric. Food Chem. 2011, 59, 11696–11702. [Google Scholar] [CrossRef]
- Bachir Bey, M.; Richard, G.; Meziant, L.; Fauconnier, M.L.; Louaileche, H. Effects of Sun-Drying on Physicochemical Characteristics, Phenolic Composition and in Vitro Antioxidant Activity of Dark Fig Varieties. J. Food Process. Preserv. 2017, 41, e13164. [Google Scholar] [CrossRef]
- Paramanandam, V.; Jagadeesan, G.; Muniyandi, K.; Manoharan, A.L.; Nataraj, G.; Sathyanarayanan, S.; Thangaraj, P. Comparative and Variability Analysis of Different Drying Methods on Phytochemical, Antioxidant and Phenolic Contents of Ficus Auriculata Lour. Fruit. Phytomedicine Plus 2021, 1, 100075. [Google Scholar] [CrossRef]
- Lachtar, D.; Zaouay, F.; Pereira, C.; Martin, A.; Abda, J.B.; Mars, M. Combined Effects of Drying Method and Variety on the Quality of Dried Figs. J. Mater. Environ. Sci. 2020, 12, 217–223. [Google Scholar]
- Petkova, N.; Ivanov, I.; Denev, P. Changes in Phytochemical Compounds and Antioxidant Potential of Fresh, Frozen, and Processed Figs (Ficus carica L.). Int. Food Res. J. 2019, 26, 1881–1888. [Google Scholar]
- Tanwar, B.; Andallu, B.; Modgil, R. Influence of Processing on Physicochemical, Nutritional and Phytochemical Composition of Ficus carica l. (Fig) Products. Asian J. Dairy Food Res. 2014, 33, 37. [Google Scholar] [CrossRef]
- Badgujar, S.B.; Patel, V.V.; Bandivdekar, A.H.; Mahajan, R.T. Traditional Uses, Phytochemistry and Pharmacology of Ficus carica: A Review. Pharm. Biol. 2014, 52, 1487–1503. [Google Scholar] [CrossRef] [Green Version]
- Sadia, H.; Ahmad, M.; Sultana, S.; Abdullah, A.Z.; Teong, L.K.; Zafar, M.; Bano, A. Nutrient and Mineral Assessment of Edible Wild Fig and Mulberry Fruits. Fruits 2014, 69, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Wendeln, M.C.; Runkle, J.R.; Kalko, E.K.V. Nutritional Values of 14 Fig Species and Bat Feeding Preferences in Panama1. Biotropica 2000, 32, 489–501. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Barber, X.; Pérez-Álvarez, J.A.; Fernández-López, J. Assessment of Chemical, Physico-Chemical, Techno-Functional and Antioxidant Properties of Fig (Ficus carica L.) Powder Co-Products. Ind. Crops Prod. 2015, 69, 472–479. [Google Scholar] [CrossRef]
- Pereira, C.; López Corrales, M.; Martín, A.; del Carmen Villalobos, M.; de Guía Córdoba, M.; Serradilla, M.J. Physicochemical and Nutritional Characterization of Brebas for Fresh Consumption from Nine Fig Varieties (Ficus carica L.) Grown in Extremadura (Spain). J. Food Qual. 2017, 2017, 6302109. [Google Scholar] [CrossRef] [Green Version]
- Sedaghat, S.; Rahemi, M. Enzyme Activity Regarding Sugar and Organic Acid Changes during Developmental Stages in Rainfed Fig (Ficus carica L.Cv Sabz). Int. J. Fruit Sci. 2018, 18, 14–28. [Google Scholar] [CrossRef]
- Shi, Y.; Pu, D.; Zhou, X.; Zhang, Y. Recent Progress in the Study of Taste Characteristics and the Nutrition and Health Properties of Organic Acids in Foods. Foods 2022, 11, 3408. [Google Scholar] [CrossRef]
- Vemmos, S.N.; Petri, E.; Stournaras, V. Seasonal Changes in Photosynthetic Activity and Carbohydrate Content in Leaves and Fruit of Three Fig Cultivars (Ficus carica L.). Sci. Hortic. 2013, 160, 198–207. [Google Scholar] [CrossRef]
- Soni, N.; Mehta, S.; Satpathy, G.; Gupta, R.K. Estimation of Nutritional, Phytochemical, Antioxidant and Antibacterial Activity of Dried Fig (Ficus carica). J. Pharmacogn. Phytochem. 2014, 3, 158–165. [Google Scholar]
- Rodrigues, D.B.; Marques, M.C.; Hacke, A.; Loubet Filho, P.S.; Cazarin, C.B.B.; Mariutti, L.R.B. Trust Your Gut: Bioavailability and Bioaccessibility of Dietary Compounds; Elsevier: Amsterdam, The Netherlands, 2022; pp. 228–233. [Google Scholar] [CrossRef]
- Kehal, F.; Chemache, L.; Chaalal, M.; Benbraham, M.; Capanoglu, E.; Barkat, M. A Comparative Analysis of Different Varietal of Fresh and Dried Figs by In Vitro Bioaccessibility of Phenolic Compounds and Antioxidant Activities. Acta Univ. Cibiniensis. Ser. E Food Technol. 2021, 25, 15–30. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Capanoglu, E. Investigating the in Vitro Bioaccessibility of Polyphenols in Fresh and Sun-Dried Figs (Ficus carica L.). Int. J. Food Sci. Technol. 2013, 48, 2621–2629. [Google Scholar] [CrossRef]
- Victoria-Campos, C.I.; de Ornelas-Paz, J.; Rocha-Guzmán, N.E.; Gallegos-Infante, J.A.; Failla, M.L.; Pérez-Martínez, J.D.; Rios-Velasco, C.; Ibarra-Junquera, V. Gastrointestinal Metabolism and Bioaccessibility of Selected Anthocyanins Isolated from Commonly Consumed Fruits. Food Chem. 2022, 383, 132451. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Peng, H. Bioaccessibility and Bioavailability of Phenolic Compounds. J. Food Bioact. 2018, 4, 11–68. [Google Scholar] [CrossRef] [Green Version]
- Vinson, J.A.; Zubik, L.; Bose, P.; Samman, N.; Proch, J. Dried Fruits: Excellent in Vitro and in Vivo Antioxidants. J. Am. Coll. Nutr. 2005, 24, 44–50. [Google Scholar] [CrossRef]
- Peterson, J.M.; Montgomery, S.; Haddad, E.; Kearney, L.; Tonstad, S. Effect of Consumption of Dried California Mission Figs on Lipid Concentrations. Ann. Nutr. Metab. 2011, 58, 232–238. [Google Scholar] [CrossRef] [Green Version]
- Bahadoria, S.; Ahmadzadeh, A.; Ardekani, M.R.S.; Kamalinejad, M.; Keshavarze, M.; Salamzadehf, J. Does Regular Use of a Complementary Medicine of Olea Europe and Ficus carica Have Adverse Effects on Lipid Profile and Fasting Blood Glucose of Rheumatoid Arthritis (RA) Patients under Treatment with DMARD Regimens Containing Methotrexate? Iran. J. Pharm. Res. 2016, 15, 933–940. [Google Scholar] [CrossRef]
- Sullivan, V.K.; Petersen, K.S.; Kris-Etherton, P.M. Dried Fruit Consumption and Cardiometabolic Health: A Randomised Crossover Trial. Br. J. Nutr. 2020, 124, 912–921. [Google Scholar] [CrossRef]
- Alamgeer; Iman, S.; Asif, H.; Saleem, M. Evaluation of Antihypertensive Potential of Ficus carica Fruit. Pharm. Biol. 2017, 55, 1047–1053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elghareeb, M.M.; Elshopakey, G.E.; Hendam, B.M.; Rezk, S.; Lashen, S. Synergistic Effects of Ficus carica Extract and Extra Virgin Olive Oil against Oxidative Injury, Cytokine Liberation, and Inflammation Mediated by 5-Fluorouracil in Cardiac and Renal Tissues of Male Albino Rats. Environ. Sci. Pollut. Res. 2021, 28, 4558–4572. [Google Scholar] [CrossRef] [PubMed]
- Sukowati, Y.K.; Johan, A.; Murwani, R. Ethanol Extracts of Ficus carica Fruit and Leaf Normalize High Serum Lipid Profile, TNF-α, and Mda Due to High Fat Diet in Sprague Dawley Rat. Curr. Res. Nutr. Food Sci. 2019, 7, 772–782. [Google Scholar] [CrossRef]
- Joerin, L.; Kauschka, M.; Bonnländer, B.; Pischel, I.; Benedek, B.; Butterweck, V. Ficus carica Leaf Extract Modulates the Lipid Profile of Rats Fed with a High-Fat Diet through an Increase of HDL-C. Phytother. Res. 2014, 28, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Orak, C.; Şirinyıldız, F.; Gökmen Yılmaz, E.; Cesur, G.; Ek, R.O. Protective Effects of Ficus carica Seed Oil on Ischemia and Reperfusion Injury in a Rat Model of Acute Mesenteric Ischemia. Ulus. Travma Ve Acil Cerrahi Derg. 2021, 27, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Barkaoui, M.; Katiri, A.; Boubaker, H.; Msanda, F. Ethnobotanical Survey of Medicinal Plants Used in the Traditional Treatment of Diabetes in Chtouka Ait Baha and Tiznit (Western Anti-Atlas), Morocco. J. Ethnopharmacol. 2017, 198, 338–350. [Google Scholar] [CrossRef] [PubMed]
- Serraclara, A.; Hawkins, F.; Pérez, C.; Domínguez, E.; Campillo, J.E.; Torres, M.D. Hypoglycemic Action of an Oral Fig-Leaf Decoction in Type-I Diabetic Patients. Diabetes Res. Clin. Pract. 1998, 39, 19–22. [Google Scholar] [CrossRef]
- Mazhin, S.A.; Zaker, M.A.; Shahbazian, H.B.; Azemi, M.E.; Madanchi, N. Ficus carica Leaves Decoction on Glycemic Factors of Patients with Type 2 Diabetes Mellitus: A Double-Blind Clinical Trial. Jundishapur J. Nat. Pharm. Prod. 2016, 11, e25814. [Google Scholar] [CrossRef]
- Shah, M.; Dureshehwar, M.; Shahina; Abdul, A.A.; Adnan, S.; Hina, A. Diabetes Mellitus Can Be Treated and Prevented by Figs. Int. J. Res. Pharm. Biosci. 2019, 6, 33–36. [Google Scholar]
- Zocchi, E.; Hontecillas, R.; Leber, A.; Einerhand, A.; Carbo, A.; Bruzzone, S.; Tubau-Juni, N.; Philipson, N.; Zoccoli-Rodriguez, V.; Sturla, L.; et al. Abscisic Acid: A Novel Nutraceutical for Glycemic Control. Front. Nutr. 2017, 4, 24. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, F.S.; Villar, A.; Mulà, A.; Zangara, A.; Risco, E.; Smidt, C.R.; Hontecillas, R.; Leber, A.; Bassaganya-Riera, J. Abscisic Acid Standardized Fig (Ficus carica) Extracts Ameliorate Postprandial Glycemic and Insulinemic Responses in Healthy Adults. Nutrients 2019, 11, 1757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zangara, A. Effect of a Novel Ficus carica (Fig) Fruit Extract Standardized in Abscisic Acid on the Glycemic and Insulinemic Responses in Healthy Human Subjects. Diabetes 2018, 67 (Suppl. S1), 791p. [Google Scholar] [CrossRef]
- Leber, A.; Hontecillas, R.; Tubau-Juni, N.; Zoccoli-Rodriguez, V.; Goodpaster, B.; Bassaganya-Riera, J. Abscisic Acid Enriched Fig Extract Promotes Insulin Sensitivity by Decreasing Systemic Inflammation and Activating LANCL2 in Skeletal Muscle. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Irudayaraj, S.S.; Stalin, A.; Sunil, C.; Duraipandiyan, V.; Al-Dhabi, N.A.; Ignacimuthu, S. Antioxidant, Antilipidemic and Antidiabetic Effects of Ficusin with Their Effects on GLUT4 Translocation and PPARγ Expression in Type 2 Diabetic Rats. Chem. Biol. Interact. 2016, 256, 85–93. [Google Scholar] [CrossRef]
- Irudayaraj, S.S.; Christudasa, S.; Antony, S.; Duraipandiyan, V.; Abdullah, A.D.N.; Ignacimuthu, S. Protective Effects of Ficus carica Leaves on Glucose and Lipids Levels, Carbohydrate Metabolism Enzymes and β-Cells in Type 2 Diabetic Rats. Pharm. Biol. 2017, 55, 1074–1081. [Google Scholar] [CrossRef] [Green Version]
- Kawther, M.I.; Nada, N.A.-S.; Rasha, A.A.-J. A Study on the Hypoglycemic Effect of Ficus carica L. Leaves Aqueous Extract against Alloxan-Induced Diabetes in Rabbits. Med. J. Babylon 2009, 6, 1–8. [Google Scholar]
- Pérez, C.; Domínguez, E.; Canal, J.R.; Campillo, J.E.; Torres, M.D. Hypoglycaemic Activity of an Aqueous Extract from Ficus carica (Fig Tree) Leaves in Streptozotocin Diabetic Rats. Pharm. Biol. 2000, 38, 181–186. [Google Scholar] [CrossRef]
- Arafa, E.S.A.; Hassan, W.; Murtaza, G.; Buabeid, M.A. Ficus carica and Sizigium Cumini Regulate Glucose and Lipid Parameters in High-Fat Diet and Streptozocin-Induced Rats. J. Diabetes Res. 2020, 2020, 1–9. [Google Scholar] [CrossRef] [PubMed]
- El-Shobaki, F.A.; El-Bahay, A.; Esmail, R.S.; El-Megeid, A.; Esmail, N.S. Effect of Figs Fruit (Ficus carica L.) and Its Leaves on Hyperglycemia in Alloxan Diabetic Rats. World J. Dairy Food Sci. 2010, 5, 47–57. [Google Scholar]
- Kurniawan, M.F.; Yusuf, F.A. The Possible Antidiabetic Effect of Ficus carica L. Tablet on Lloxan-Induced Diabetes Model in Rats. Open Access Maced. J. Med. Sci. 2021, 9, 727–734. [Google Scholar] [CrossRef]
- Stalin, C.; Dineshkumar, P.; Nithiyananthan, K. Evaluation of Antidiabetic Activity of Methanolic Leaf Extract of Ficus carica in Alloxan-Induced Diabetic Rats. Asian J. Pharm. Clin. Res. 2012, 5, 85–87. [Google Scholar]
- Surendran, S.; Asdaq, B.M.B.; Putta, P.; Nerella, M.; Boggula, N. Anti-Obesity Screening of Figs (Ficus carica) in Animals Fed on Atherogenic and Cafeteria Diet. J. Innov. Dev. Pharm. Tech. Sci. 2020, 3, 1–10. [Google Scholar]
- Noordam, E.R.; Tamat, S.R.; Syamsudin, S. Anti-Obesity Activity Tin Leaf Extract (Ficus carica Linn) on the Rats given High Fat Diets. J. Ilmu Kefarmasian Indones. 2019, 17, 81–86. [Google Scholar] [CrossRef]
- Alshaeri, H.K.; Natto, Z.S.; Tonstad, S.; Haddad, E.; Jaceldo-Siegl, K. Effect of Dried California Mission Figs on Mineral Status and Food Replacement. Public Health Nutr. 2015, 18, 1135–1140. [Google Scholar] [CrossRef] [Green Version]
- Keast, D.R.; O’Neil, C.E.; Jones, J.M. Dried Fruit Consumption Is Associated with Improved Diet Quality and Reduced Obesity in US Adults: National Health and Nutrition Examination Survey, 1999–2004. Nutr. Res. 2011, 31, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, V.K.; Na, M.; Proctor, D.N.; Kris-Etherton, P.M.; Petersen, K.S. Consumption of Dried Fruits Is Associated with Greater Intakes of Underconsumed Nutrients, Higher Total Energy Intakes, and Better Diet Quality in US Adults: A Cross-Sectional Analysis of the National Health and Nutrition Examination Survey, 2007–2016. J. Acad. Nutr. Diet. 2021, 121, 1258–1272. [Google Scholar] [CrossRef] [PubMed]
- Subash, S.; Essa, M.M.; Braidy, N.; Al-Jabri, A.; Vaishnav, R.; Al-Adawi, S.; Al-Asmi, A.; Guillemin, G.J. Consumption of Fig Fruits Grown in Oman Can Improve Memory, Anxiety, and Learning Skills in a Transgenic Mice Model of Alzheimer’s Disease. Nutr. Neurosci. 2016, 19, 475–483. [Google Scholar] [CrossRef]
- Pourmasoumi, M.; Ghiasvand, R.; Darvishi, L.; Hadi, A.; Bahreini, N.; Keshavarzpour, Z. Comparison and Assessment of Flixweed and Fig Effects on Irritable Bowel Syndrome with Predominant Constipation: A Single-Blind Randomized Clinical Trial. Explore 2019, 15, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Rtibi, K.; Grami, D.; Wannes, D.; Selmi, S.; Amri, M.; Sebai, H.; Marzouki, L. Ficus carica Aqueous Extract Alleviates Delayed Gastric Emptying and Recovers Ulcerative Colitis-Enhanced Acute Functional Gastrointestinal Disorders in Rats. J. Ethnopharmacol. 2018, 224, 242–249. [Google Scholar] [CrossRef]
- Kurutas, E.B. The Importance of Antioxidants Which Play the Role in Cellular Response against Oxidative/Nitrosative Stress: Current State. Nutr. J. 2016, 15, 71. [Google Scholar] [CrossRef] [Green Version]
- Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front. Physiol. 2020, 11, 694. [Google Scholar] [CrossRef] [PubMed]
Figs 1 | Dried Figs 1 | Fresh Figs 1 |
---|---|---|
Appetite | Alzheimer’s disease | Absorption |
Blood pressure | Body weight | Bioavailability |
Cardiovascular disease | Chemistry | Cholesterol |
Cognition | Diabetes | Food intake |
Glucose | Gut health | Heart disease |
Insulin | Insulin resistance | Lipids |
LDL cholesterol | Microbiome | Metabolism |
Nutrients | Obesity | Phytochemicals |
Polyphenols | Type 2 diabetes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandhu, A.K.; Islam, M.; Edirisinghe, I.; Burton-Freeman, B. Phytochemical Composition and Health Benefits of Figs (Fresh and Dried): A Review of Literature from 2000 to 2022. Nutrients 2023, 15, 2623. https://doi.org/10.3390/nu15112623
Sandhu AK, Islam M, Edirisinghe I, Burton-Freeman B. Phytochemical Composition and Health Benefits of Figs (Fresh and Dried): A Review of Literature from 2000 to 2022. Nutrients. 2023; 15(11):2623. https://doi.org/10.3390/nu15112623
Chicago/Turabian StyleSandhu, Amandeep K., Maria Islam, Indika Edirisinghe, and Britt Burton-Freeman. 2023. "Phytochemical Composition and Health Benefits of Figs (Fresh and Dried): A Review of Literature from 2000 to 2022" Nutrients 15, no. 11: 2623. https://doi.org/10.3390/nu15112623
APA StyleSandhu, A. K., Islam, M., Edirisinghe, I., & Burton-Freeman, B. (2023). Phytochemical Composition and Health Benefits of Figs (Fresh and Dried): A Review of Literature from 2000 to 2022. Nutrients, 15(11), 2623. https://doi.org/10.3390/nu15112623