Modulating Effects of Zingiberaceae Phenolic Compounds on Neurotrophic Factors and Their Potential as Neuroprotectants in Brain Disorders and Age-Associated Neurodegenerative Disorders: A Review
Abstract
:1. Introduction
1.1. Zingiberaceae Family and Their Phenolic Compounds
1.2. Zingiberaceae Family Plants Modulating Neurotrophic Pathways and Neuroinflammation
1.2.1. The Ras/ERK (MAPK) Pathway
1.2.2. Phospholipase C, Gamma 1 (PLCγ1) Pathways
1.2.3. The PI3K/Akt-mTOR Pathway
1.2.4. The p75NTR-Mediated Signaling Pathway
1.3. Brain Disorders and Brain Insults
1.4. Role of Zingiberaceae Family Plants in Managing Age-Related Neurodegenerative Disease
Disease | Manifestation | Pathogenesis | Canonical Pathway | Reference |
---|---|---|---|---|
Age-related macular degeneration (AMD) | ↑ level of complement components (C3, C3d, Bb, and C5, C5a) | Dysregulated metabolites in glycerophospholipid metabolism | mTOR | [261,262] |
Transmissible spongiform encephalopathies (TSEs) | Presence of PrPSc and/or pathognomonic histopathological characteristics | The C-terminal region of the protein can cause amyloid formation by increasing the propensity of huPrP to aggregate due to the mutation T183A variant | Insulin signaling pathway | [263,264] |
Pick’s disease | Atrophy of the frontal and anterior temporal lobes caused by an intraneuronal accumulation of aberrant protein inclusion bodies | ↓ N-acetyl aspartate and glutamate | mTOR or Class III-PI3K/Beclin-1 complex | [265,266] |
AD | ↑ of β secretase expression causes, ↑ in amyloidogenesis↑ LPO under oxidative stress is significantly linked to neurotoxicity in AD Triggered by mitochondrial malfunction and oxidative stress | Mitochondria ↑ 4-HNE generated by damaged mitochondria Oxidative stress ↑ Ca2+ and ROS levels ↑ p-tau aggregates ↓ activities of antioxidants | APOE-cholesterol pathway | [253,267,268] |
PD | α-Synuclein aggregation and build-up in the nervous system | ↑ Protein aggregation of-α synuclein was accelerated by oxidative stress which causes the brain cells to die | Autophagy-lysosomal pathway (ALP) Ca2+ signaling MAPK mTOR | [269] |
Progressive supranuclear palsy | Intracerebral accumulation of microtubule | Hyperphosphorylation of Tau protein | Insulin and neurotrophic factor pathways, Fyn kinase pathways in myelinating oligodendrocytes, PP1 pathway | [270,271,272] |
ALS | Motor neuron degeneration | ↑ β–catenin protein | Ca2+ pathway HMGB1 pathway | [273,274] |
1.5. Other Brain Disorders and the Role of Zingiberaceae Family Plants
1.6. Zingiberaceae Family in Clinical and Toxicity Study
2. Conclusions
3. Limitations and Future Direction
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, S.; Lin, R.; Lu, H.; Wang, Q.; Yang, J.; Liu, J.; Yan, C. Effects of phenolic acids on free radical scavenging and heavy metal bioavailability in kandelia obovata under cadmium and zinc stress. Chemosphere 2020, 249, 126341. [Google Scholar] [CrossRef] [PubMed]
- Mathew, S.; Abraham, T.E.; Zakaria, Z.A. Reactivity of phenolic compounds towards free radicals under in vitro conditions. J. Food Sci. Technol. 2015, 52, 5790–5798. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, Q.; Yu, Q. Quercetin enrich diet during the early-middle not middle-late stage of alzheimer’s disease ameliorates cognitive dysfunction. Am. J. Transl. Res. 2018, 10, 1237–1246. [Google Scholar] [PubMed]
- Ramkumar, M.; Rajasankar, S.; Swaminathan Johnson, W.M.; Prabu, K.; Venkatesh Gobi, V. Demethoxycurcumin ameliorates rotenone-induced toxicity in rats. Front. Biosci. 2019, 11, 1–11. [Google Scholar] [CrossRef]
- Lamport, D.J.; Christodoulou, E.; Achilleos, C. Beneficial Effects of Dark Chocolate for Episodic Memory in Healthy Young Adults: A Parallel-Groups Acute Intervention with a White Chocolate Control. Nutrients 2020, 12, 483. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, Y.; Zhang, L.; Li, X.; Dong, R.; Song, C.; Cheng, L.; Shi, M.; Zhao, H. Combination of tea polyphenols and proanthocyanidins prevents menopause-related memory decline in rats via increased hippocampal synaptic plasticity by inhibiting p38 MAPK and TNF-α pathway. Nutr. Neurosci. 2022, 25, 1909–1927. [Google Scholar] [CrossRef]
- Bhatia, N.K.; Modi, P.; Sharma, S.; Deep, S. Quercetin and Baicalein Act as Potent Antiamyloidogenic and Fibril Destabilizing Agents for SOD1 Fibrils. ACS Chem. Neurosci. 2020, 11, 1129–1138. [Google Scholar] [CrossRef]
- Small, G.W.; Siddarth, P.; Li, Z.; Miller, K.J.; Ercoli, L.; Emerson, N.D.; Martinez, J.; Wong, K.-P.; Liu, J.; Merrill, D.A.; et al. Memory and Brain Amyloid and Tau Effects of a Bioavailable Form of Curcumin in Non-Demented Adults: A Double-Blind, Placebo-Controlled 18-Month Trial. Am. J. Geriatr. Psychiatry 2018, 26, 266–277. [Google Scholar] [CrossRef]
- Donadio, V.; Incensi, A.; Rizzo, G.; Fileccia, E.; Ventruto, F.; Riva, A.; Tiso, D.; Recchia, M.; Vacchiano, V.; Infante, R.; et al. The Effect of Curcumin on Idiopathic Parkinson Disease: A Clinical and Skin Biopsy Study. J. Neuropathol. Exp. Neurol. 2022, 81, 545–552. [Google Scholar] [CrossRef]
- Khadka, S.; Omura, S.; Sato, F.; Nishio, K.; Kakeya, H.; Tsunoda, I. Curcumin β-D-Glucuronide Modulates an Autoimmune Model of Multiple Sclerosis with Altered Gut Microbiota in the Ileum and Feces. Front. Cell. Infect. Microbiol. 2021, 11, 1192. [Google Scholar] [CrossRef]
- Kou, J.; Wang, M.; Shi, J.; Zhang, H.; Pu, X.; Song, S.; Yang, C.; Yan, Y.; Döring, Y.; Xie, X.; et al. Curcumin Reduces Cognitive Deficits by Inhibiting Neuroinflammation through the Endoplasmic Reticulum Stress Pathway in Apolipoprotein E4 Transgenic Mice. ACS Omega 2021, 6, 6654–6662. [Google Scholar] [CrossRef]
- Razak, A.M.; Zakaria, S.N.A.; Abdul Sani, N.F.; Ab Rani, N.; Hakimi, N.H.; Mohd Said, M.; Tan, J.K.; Gan, H.K.; Mad Nordin, M.F.; Makpol, S. A subcritical water extract of soil grown Zingiber officinale Roscoe: Comparative analysis of antioxidant and anti-inflammatory effects and evaluation of bioactive metabolites. Front. Pharmacol. 2023, 14, 1006265. [Google Scholar] [CrossRef]
- Park, G.; Kim, H.G.; Ju, M.S.; Ha, S.K.; Park, Y.; Kim, S.Y.; Oh, M.S. 6-Shogaol, an active compound of ginger, protects dopaminergic neurons in Parkinson’s disease models via anti-neuroinflammation. Acta Pharmacol. Sin. 2013, 34, 1131–1139. [Google Scholar] [CrossRef]
- Ramanathan, A.; Shaji, D. Ginger Loaded Chitosan Nanoparticles for The Management of 3–Nitropropionic Acid-Induced Huntington’s Disease-like Symptoms In Male Wistar Rats. Int. J. Pharm. Pharm. Sci. 2022, 14, 28–36. [Google Scholar] [CrossRef]
- Adekoya, A.A.; Ahmad, S.; Maziah, M. Assessment of total phenolic compounds and in vitro free radical scavenging potentials of water extracts of ten selected species of Zingiberaceae rhizomes use in folkloric medicine. Pak. J. Pharm. Sci. 2016, 29, 979–984. [Google Scholar]
- Schoch, C.L.; Ciufo, S.; Domrachev, M.; Hotton, C.L.; Kannan, S.; Khovanskaya, R.; Leipe, D.; McVeigh, R.; O’Neill, K.; Robbertse, B.; et al. NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database 2020, 2020, baaa062. [Google Scholar] [CrossRef]
- Asamenew, G.; Kim, H.-W.; Lee, M.-K.; Lee, S.-H.; Kim, Y.J.; Cha, Y.-S.; Yoo, S.M.; Kim, J.-B. Characterization of phenolic compounds from normal ginger (Zingiber officinale Rosc.) and black ginger (Kaempferia parviflora Wall.) using UPLC–DAD–QToF–MS. Eur. Food Res. Technol. 2019, 245, 653–665. [Google Scholar] [CrossRef]
- Xu, Z.; Chang, L. Zingiberaceae. In Identification and Control of Common Weeds: Volume 3; Xu, Z., Chang, L., Eds.; Springer: Singapore, 2017; pp. 909–911. [Google Scholar]
- Saha, K.; Sinha, R.; Sinha, S. Distribution, Cytology, Genetic Diversity and Molecular phylogeny of selected species of Zingiberaceae—A Review. Feddes Repert. 2019, 131, 58–68. [Google Scholar] [CrossRef]
- Twaij, B.M.; Hasan, M.N. Bioactive Secondary Metabolites from Plant Sources: Types, Synthesis, and Their Therapeutic Uses. Int. J. Plant Biol. 2022, 13, 4–14. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Sulaiman, C.T.; Balachandran, I. Total phenolics and total flavonoids in selected Indian medicinal plants. Indian J. Pharm. Sci. 2012, 74, 258–260. [Google Scholar] [CrossRef] [PubMed]
- Mutha, R.E.; Tatiya, A.U.; Surana, S.J. Flavonoids as natural phenolic compounds and their role in therapeutics: An overview. Future J. Pharm. Sci. 2021, 7, 25. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Quispe, C.; Zam, W.; Kumar, M.; Cardoso, S.M.; Pereira, O.R.; Ademiluyi, A.O.; Adeleke, O.; Moreira, A.C.; Živković, J.; et al. Phenolic Bioactives as Antiplatelet Aggregation Factors: The Pivotal Ingredients in Maintaining Cardiovascular Health. Oxidative Med. Cell. Longev. 2021, 2021, 2195902. [Google Scholar] [CrossRef] [PubMed]
- Abdelgawad, M.A.; Musa, A.; Almalki, A.H.; Alzarea, S.I.; Mostafa, E.M.; Hegazy, M.M.; Mostafa-Hedeab, G.; Ghoneim, M.M.; Parambi, D.G.T.; Bakr, R.B.; et al. Novel Phenolic Compounds as Potential Dual EGFR and COX-2 Inhibitors: Design, Semisynthesis, in vitro Biological Evaluation and in silico Insights. Drug Des. Dev. Ther. 2021, 15, 2325–2337. [Google Scholar] [CrossRef]
- Bouhlali, E.D.T.; Abdelbassat, H.; Bourkhis, B.; Khouya, T.; Ramchoun, M.; Zegzouti, Y.; Alem, C. Phenolic profile and anti-inflammatory activity of four Moroccan date (Phoenix dactylifera L.) seed varieties. Heliyon 2020, 6, e03436. [Google Scholar] [CrossRef]
- Cherubim, D.J.d.L.; Martins, C.V.B.; Fariña, L.O.d.; da Silva de Lucca, R.A. Polyphenols as natural antioxidants in cosmetics applications. J. Cosmet. Dermatol. 2020, 19, 33–37. [Google Scholar] [CrossRef]
- Menezes, B.; Pires, D.; Ferreira, E.; Cruvinel, K. Efficiency of pollutant removal in a hybrid constructed wetland with Hedychiumcoronarium J. König: A sustainable alternative for poor communities. Rev. Monogr. Ambient. 2021, 20, e6. [Google Scholar] [CrossRef]
- Bajaj, S.; Fuloria, S.; Porwal, O.; Subramaniyan, V.; Sharma, p.; Ozdemir, M.; Dhana Lekshmi, U.M.; Kishore, N.; Fuloria, N. Ethnomedicinal and Pharmacological Uses of Curcuma Caesia. NVEO-Nat. Volatiles Essent. Oils J. NVEO 2022, 8, 14902–14910. [Google Scholar]
- Koser, H.; Abbas, R.; Rizwan, B.; Sultan, H.; Islam, Z.; Jawad, M.; Jawad, M.; Waheed, M.; Basharat, S. Pharmacological Effects of Curcuma Longa and Its Bioactive Constitute Curcumin: Curcuma Longa and Its Bioactive Constitute Curcumin. Pak. BioMed. J. 2022, 5, 22–27. [Google Scholar] [CrossRef]
- Cristie Edina, B.; Fadilah, F.; Rahmawanti, R.; Wiyono, L.; Paramita, R.I. Phytochemical Analysis and In Vitro Toxicity of N-Hexane Extract of Kaempferia pandurata and Its Nanoparticle to Breast Cancer MCF-7 Cells. J. Glob. Pharma Technol. 2019, 11, 591–596. [Google Scholar]
- Arcusa, R.; Villaño, D.; Marhuenda, J.; Cano, M.; Cerdà, B.; Zafrilla, P. Potential Role of Ginger (Zingiber officinale Roscoe) in the Prevention of Neurodegenerative Diseases. Front. Nutr. 2022, 9, 809621. [Google Scholar] [CrossRef]
- Zammel, N.; Saeed, M.; Bouali, N.; Elkahoui, S.; Alam, J.M.; Rebai, T.; Kausar, M.A.; Adnan, M.; Siddiqui, A.J.; Badraoui, R. Antioxidant and Anti-Inflammatory Effects of Zingiber officinale roscoe and Allium subhirsutum: In Silico, Biochemical and Histological Study. Foods 2021, 10, 1383. [Google Scholar] [CrossRef]
- Van, T.; Pham, T.V.; Nguyen, H.; Nguyen, A.; Duy, T. A review on chemical constituents of essential oils of Aframomum genus. J. Phytol. 2021, 13, 161–170. [Google Scholar] [CrossRef]
- Idris, N.A.; Yasin, H.M.; Usman, A. Voltammetric and spectroscopic determination of polyphenols and antioxidants in ginger (Zingiber officinale Roscoe). Heliyon 2019, 5, e01717. [Google Scholar] [CrossRef]
- Santos Sánchez, N.; Salas-Coronado, R.; Villanueva, C.; Hernández-Carlos, B. Antioxidant Compounds and Their Antioxidant Mechanism. In Antioxidants; Shalaby, E., Ed.; Intechopen: London, UK, 2019. [Google Scholar]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef]
- Kandlur, A.; Satyamoorthy, K.; Gangadharan, G. Oxidative Stress in Cognitive and Epigenetic Aging: A Retrospective Glance. Front. Mol. Neurosci. 2020, 13, 41. [Google Scholar] [CrossRef]
- Han, A.R.; Kim, H.; Piao, D.; Jung, C.H.; Seo, E.K. Phytochemicals and Bioactivities of Zingiber cassumunar Roxb. Molecules 2021, 26, 2377. [Google Scholar] [CrossRef]
- Koontongkaew, S.; Poachanukoon, O.; Sireeratawong, S.; Dechatiwongse Na Ayudhya, T.; Khonsung, P.; Jaijoy, K.; Soawakontha, R.; Chanchai, M. Safety Evaluation of Zingiber cassumunar Roxb. Rhizome Extract: Acute and Chronic Toxicity Studies in Rats. Int. Sch. Res. Not. 2014, 2014, 632608. [Google Scholar] [CrossRef]
- Verma, R.S.; Joshi, N.; Padalia, R.C.; Singh, V.R.; Goswami, P.; Verma, S.K.; Iqbal, H.; Chanda, D.; Verma, R.K.; Darokar, M.P.; et al. Chemical composition and antibacterial, antifungal, allelopathic and acetylcholinesterase inhibitory activities of cassumunar-ginger. J. Sci. Food Agric. 2018, 98, 321–327. [Google Scholar] [CrossRef]
- Ghazalee, N.S.; Jantan, I.; Arshad, L.; Haque, M.A. Immunosuppressive effects of the standardized extract of Zingiber zerumbet on innate immune responses in Wistar rats. Phytother. Res. 2019, 33, 929–938. [Google Scholar] [CrossRef]
- Aji, N.; Kumala, S.; Mumpuni, E.; Rahmat, D. Antibacterial Activity and Active Fraction of Zingiber officinale Roscoe, Zingiber montanum (J. Koenig) Link ex A., and Zingiber zerumbet (L.) Roscoe ex Sm. Against Propionibacterium acnes. Pharmacogn. J. 2022, 14, 103–111. [Google Scholar] [CrossRef]
- Tandirogang, N.; Anitasari, S.; Arung, E.T.; Paramita, S.; Shen, Y.K. Evaluations of Antibacterial Properties of Zingiber purpureum Essential Oil Against 13 Different Gram-positive and Gram-negative Bacteria. Indones. Biomed. J. 2022, 14, 303–308. [Google Scholar] [CrossRef]
- Truong, V.L.; Manochai, B.; Pham, T.T.; Jeong, W.S. Antioxidant and Anti-Inflammatory Activities of Zingiber montanum Oil in HepG2 Cells and Lipopolysaccharide-Stimulated RAW 264.7 Macrophages. J. Med. Food 2021, 24, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Li, M.-X.; Ma, Y.-P.; Zhang, H.-X.; Sun, H.-Z.; Su, H.-H.; Pei, S.-J.; Du, Z.-Z. Repellent, larvicidal and adulticidal activities of essential oil from Dai medicinal plant Zingiber cassumunar against Aedes albopictus. Plant Divers. 2021, 43, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Paramita, S.; Aminyoto, M.; Ismail, S.; Arung, E. Anti-hypercholesterolemic effect of Zingiber montanum extract. F1000Research 2018, 7, 1798. [Google Scholar] [CrossRef]
- Samia, E. Analgesic and Anti- Inflammatory Effect of Zingiber Officinale in Albino Mice. Sci. J. Univ. Benghazi 2021, 33, 5. [Google Scholar]
- Soltani, E.; Jangjoo, A.; Afzal Aghaei, M.; Dalili, A. Effects of preoperative administration of ginger (Zingiber officinale Roscoe) on postoperative nausea and vomiting after laparoscopic cholecystectomy. J. Tradit. Complement. Med. 2018, 8, 387–390. [Google Scholar] [CrossRef]
- Diki Prayugo, W.; Ria, M.; Siti Uswatun, H.; Diah Lia, A. Chemical Constituents, Antibacterial Activity and Mode of Action of Elephant Ginger (Zingiber officinale var. officinale) and Emprit Ginger Rhizome (Zingiber officinale var. Amarum) Essential Oils. Pharmacogn. J. 2020, 12, 404–409. [Google Scholar]
- Mao, Q.-Q.; Xu, X.-Y.; Cao, S.-Y.; Gan, R.-Y.; Corke, H.; Beta, T.; Li, H.-B. Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe). Foods 2019, 8, 185. [Google Scholar] [CrossRef]
- Seo, S.H.; Fang, F.; Kang, I. Ginger (Zingiber officinale) Attenuates Obesity and Adipose Tissue Remodeling in High-Fat Diet-Fed C57BL/6 Mice. Int. J. Environ. Res. Public Health 2021, 18, 631. [Google Scholar] [CrossRef]
- Walstab, J.; Krüger, D.; Stark, T.; Hofmann, T.; Demir, I.; Ceyhan, G.; Feistel, B.; Schemann, M.; Niesler, B. Ginger and its pungent constituents non-competitively inhibit activation of human recombinant and native 5-HT3 receptors of enteric neurons. Neurogastroenterol. Motil. 2013, 25, 439–e302. [Google Scholar] [CrossRef]
- Hasanvand, A.; Ebrahimi, Y.; Mohamadi, A.; Nazari, A. Zingiber officinale Roscoe reduces chest pain on patients undergoing coronary angioplasty: A clinical trial. J. Herbmed Pharmacol. 2019, 8, 47–50. [Google Scholar] [CrossRef]
- Nurinda, E.; Kusumawardani, N.; Wulandari, A.S.; Fatmawati, A.; Emelda, E.; Nisa, H.; Hasan, N.A.; Iriyanti, W.F.; Rohmah, M.; Lestari, P.; et al. Pharmacological Study: Synergistic Antidiabetic Activity of Cinnamon Bark and Zingiber Extract in Streptozotocin-Induced Diabetic Rats. Open Access Maced. J. Med. Sci. 2022, 10, 1–6. [Google Scholar] [CrossRef]
- Tsai, Y.; Xia, C.; Sun, Z. The Inhibitory Effect of 6-Gingerol on Ubiquitin-Specific Peptidase 14 Enhances Autophagy-Dependent Ferroptosis and Anti-Tumor in vivo and in vitro. Front. Pharmacol. 2020, 11, 598555. [Google Scholar] [CrossRef]
- Prastiyanto, M.E.; Rohmah, N.; Efendi, L.; Arifin, R.; Wardoyo, F.A.; Wilson, W.; Mukaromah, A.H.; Dewi, S.S.; Darmawati, S. Antifungal activities of the rhizome extract of five member Zingiberaceae against candida albicans and trichophyton rubrum. Biodiversitas 2021, 22, 1509–1513. [Google Scholar] [CrossRef]
- Safitri, A.; Putri, A.S.; Octavianty, T.D.; Sari, D.R.T. Metabolomic Profiles of Curcuma longa L. and Cosmos caudatus Extracts and Their In-Silico Anti-cancer Activity. J. Phys. Conf. Ser. 2020, 1665, 012022. [Google Scholar] [CrossRef]
- Quirós-Fallas, M.I.; Vargas-Huertas, F.; Quesada-Mora, S.; Azofeifa-Cordero, G.; Wilhelm-Romero, K.; Vásquez-Castro, F.; Alvarado-Corella, D.; Sánchez-Kopper, A.; Navarro-Hoyos, M. Polyphenolic HRMS Characterization, Contents and Antioxidant Activity of Curcuma longa Rhizomes from Costa Rica. Antioxidants 2022, 11, 620. [Google Scholar] [CrossRef]
- Shenge, J.; Obi, R.; Salawu, K. Assessment of Antiviral Activity of Curcuma longa on Two RNA Viruses. Niger. J. Pure Appl. Sci. 2021, 34, 3915–3928. [Google Scholar] [CrossRef]
- Uchio, R.; Kawasaki, K.; Okuda-Hanafusa, C.; Saji, R.; Muroyama, K.; Murosaki, S.; Yamamoto, Y.; Hirose, Y. Curcuma longa extract improves serum inflammatory markers and mental health in healthy participants who are overweight: A randomized, double-blind, placebo-controlled trial. Nutr. J. 2021, 20, 91. [Google Scholar] [CrossRef]
- Handharyani, E.; Sutardi, L.N.; Mustika, A.A.; Andriani, A.; Yuliani, S. Antibacterial Activity of Curcuma longa (turmeric), Curcuma zedoaria (zedoary), and Allium sativum (garlic) Nanoparticle Extract on Chicken with Chronic Respiratory Disease Complex: In Vivo Study. E3S Web Conf. 2020, 151, 01054. [Google Scholar] [CrossRef]
- Vaithiyalingam, M.; Sumathi, D.L.; Sabarathinam, S. Isolation and In silico Study of Curcumin from Curcuma longa and Its Anti-Diabetic Activity. Appl. Biochem. Biotechnol. 2023, 195, 947–957. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Mohammed, S.J.; Eltayeb, I.M.; Elmosaad, Y.M.; Waggiallah, H.A. Comparative Study of the Anticoagulant Activity of Zingiber Officinale and Curcuma longa Rhizomes Extracts in Blood Samples of Normal Individuals. Pak. J. Med. Health Sci. 2022, 16, 348–351. [Google Scholar] [CrossRef]
- Cruz, J.D.d.; Mpalantinos, M.A.; Ramos, A.d.S.; Ferreira, J.L.P.; de Oliveira, A.A.; Júnior, N.L.N.; Silva, J.R.d.A.; Amaral, A.C.F. Chemical standardization, antioxidant activity and phenolic contents of cultivated Alpinia zerumbet preparations. Ind. Crops Prod. 2020, 151, 112495. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, Y.-Y.; Peng, F.; Duan, W.-T.; Wu, C.-H.; Li, H.-T.; Zhang, X.-F.; Shi, Y.-S. Neolignans and Diarylheptanoids with Anti-Inflammatory Activity from the Rhizomes of Alpinia zerumbet. J. Agric. Food Chem. 2021, 69, 9229–9237. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, S.; Tu, M.; He, L.; Xu, Y.; Gan, S.; Shen, X. Inhibitory Effect of Essential Oil From Fructus of Alpinia zerumbet on Endothelial-to-Mesenchymal Transformation Induced by TGF-β1 and Downregulation of KLF4. J. Cardiovasc. Pharmacol. 2022, 80, 82–94. [Google Scholar] [CrossRef]
- You, H.; He, M.; Pan, D.; Fang, G.; Chen, Y.; Zhang, X.; Shen, X.; Zhang, N. Kavalactones isolated from Alpinia zerumbet (Pers.) Burtt. et Smith with protective effects against human umbilical vein endothelial cell damage induced by high glucose. Nat. Prod. Res. 2022, 36, 5740–5746. [Google Scholar] [CrossRef]
- Taib, M.; Anuar, N.; Hanafiah, K.M.; Al-Shammary, A.A.K.; Saaid, M.; Awang, K. Chemicals Constituents Isolated from Cultivate Alpinia conchigera Griff. and Antimicrobial Activity. Trop. Life Sci. Res. 2020, 31, 159–178. [Google Scholar] [CrossRef]
- In, L.L.; Azmi, M.N.; Ibrahim, H.; Awang, K.; Nagoor, N.H. 1′S-1′-acetoxyeugenol acetate: A novel phenylpropanoid from Alpinia conchigera enhances the apoptotic effects of paclitaxel in MCF-7 cells through NF-κB inactivation. Anticancer Drugs 2011, 22, 424–434. [Google Scholar] [CrossRef]
- Ibrahim, M.; Hossain, M.A.; Shajib, M.S.; Rashid, M.A. Preliminary Phytochemical and Pharmacological Screenings of Plumbago indica L. and Alpinia conchigera Griff. Dhaka Univ. J. Pharm. Sci. 2018, 17, 73–79. [Google Scholar] [CrossRef]
- Nag, A.; Banerjee, R.; Goswami, P.; Bandyopadhyay, M.; Mukherjee, A. Antioxidant and antigenotoxic properties of Alpinia galanga, Curcuma amada, and Curcuma caesia. Asian Pac. J. Trop. Biomed. 2021, 11, 363–374. [Google Scholar] [CrossRef]
- Ibrahim, S. Alpinia galanga Extract Inhibits MCF-7/HER2+ Cells by Inducing Apoptosis. J. Sci. Technol. Res. Pharm. 2022, 1, 31–36. [Google Scholar] [CrossRef]
- Nampoothiri, S.; Esakkidurai, T.; Pitchumani, K. Evaluation of antidiabetic, anti-inflammatory and LDL oxidation inhibitory potential of Alpinia galanga and Alpinia calcarata-An in vitro study. Trends Phytochem. Res. 2017, 1, 227–234. [Google Scholar]
- Lin, K.; Wang, Y.; Gong, J.; Tan, Y.; Deng, T.; Wei, N. Protective effects of total flavonoids from Alpinia officinarum rhizoma against ethanol-induced gastric ulcer in vivo and in vitro. Pharm. Biol. 2020, 58, 854–862. [Google Scholar] [CrossRef]
- Srividya, A.R.; Dhanabal, S.P.; Misra, V.K.; Suja, G. Antioxidant and Antimicrobial Activity of Alpinia officinarum. Indian J. Pharm. Sci. 2010, 72, 145–148. [Google Scholar] [CrossRef]
- Gamre, S.; Tyagi, M.; Chatterjee, S.; Patro, B.S.; Chattopadhyay, S.; Goswami, D. Synthesis of Bioactive Diarylheptanoids from Alpinia officinarum and Their Mechanism of Action for Anticancer Properties in Breast Cancer Cells. J. Nat. Prod. 2021, 84, 352–363. [Google Scholar] [CrossRef]
- Ray, A.; Jena, S.; Dash, B.; Kar, B.; Halder, T.; Chatterjee, T.; Ghosh, B.; Panda, P.C.; Nayak, S.; Mahapatra, N. Chemical diversity, antioxidant and antimicrobial activities of the essential oils from Indian populations of Hedychium coronarium Koen. Ind. Crops Prod. 2018, 112, 353–362. [Google Scholar] [CrossRef]
- Ray, A.; Jena, S.; Dash, B.; Sahoo, A.; Kar, B.; Patnaik, J.; Panda, P.; Nayak, S.; Mahapatra, N. Hedychium coronarium extract arrests cell cycle progression, induces apoptosis, and impairs migration and invasion in HeLa cervical cancer cells. Cancer Manag. Res. 2019, 11, 483–500. [Google Scholar] [CrossRef]
- Yassin, M.T.; Abdel-Fattah Mostafa, A.; Al-Askar, A.A.; Alkhelaif, A.S. In vitro antimicrobial potency of Elettaria cardamomum ethanolic extract against multidrug resistant of food poisoning bacterial strains. J. King Saud Univ.-Sci. 2022, 34, 102167. [Google Scholar] [CrossRef]
- Almeer, R.S.; Alnasser, M.; Aljarba, N.; AlBasher, G.I. Effects of Green cardamom (Elettaria cardamomum Maton) and its combination with cyclophosphamide on Ehrlich solid tumors. BMC Complement. Med. Ther. 2021, 21, 133. [Google Scholar] [CrossRef]
- Al-Zereini, W.; Al-Trawneh, I.; Al-Qudah, M.; Tumallah, H.; Rawashdeh, H.; Abudayeh, Z. Essential oils from Elettaria cardamomum (L.) Maton grains and Cinnamomum verum J. Presl barks: Chemical examination and bioactivity studies. J. Pharm. Pharmacogn. Res. 2021, 10, 173–185. [Google Scholar] [CrossRef]
- Alkhalifah, E.A.R.; Alobaid, A.A.; Almajed, M.A.; Alomair, M.K.; Alabduladheem, L.S.; Al-Subaie, S.F.; Akbar, A.; Attimarad, M.V.; Younis, N.S.; Mohamed, M.E. Cardamom Extract Alleviates the Oxidative Stress, Inflammation and Apoptosis Induced during Acetaminophen-Induced Hepatic Toxicity via Modulating Nrf2/HO-1/NQO-1 Pathway. Curr. Issues Mol. Biol. 2022, 44, 5390–5404. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rasoul, A.A.; Saleh, N.A.; Hosny, E.N.; El-Gizawy, M.M.; Ibrahim, E.A. Cardamom oil ameliorates behavioral and neuropathological disorders in a rat model of depression induced by reserpine. J. Ethnopharmacol. 2023, 308, 116254. [Google Scholar] [CrossRef] [PubMed]
- Suresh, V.; Balaraman, R.; Patel, P.; Buddhadev, M. Effects of Aqueous Extract of Tulsi and Cardamom on Elderly Depressive Subjects—A Preliminary Clinical Study. J. Nat. Remedies 2021, 21, 245–249. [Google Scholar] [CrossRef]
- Chan, E.; Lim, Y.; Wong, L.F.; Lianto, F.S.; Wong, S.K.; Lim, K.K.; Joe, C.E.; Lim, T.Y. Antioxidant and Tyrosinase inhibition properties of leaves and rhizomes of ginger species. Food Chem. 2008, 109, 477–483. [Google Scholar] [CrossRef]
- Juwita, T.; Puspitasari, M.; Levita, J. Anti-inflammatory Activity of Etlingera elatior (Jack) R.M. Smith Flower on Gastric Ulceration-induced Wistar Rats. Pak. J. Biol. Sci. 2020, 23, 1193–1200. [Google Scholar] [CrossRef]
- Noordin, L.; Wan Ahmad, W.A.N.; Muhamad Nor, N.A.; Abu Bakar, N.H.; Ugusman, A. Etlingera elatior Flower Aqueous Extract Protects against Oxidative Stress-Induced Nephropathy in a Rat Model of Type 2 Diabetes. Evid.-Based Complement. Altern. Med. 2022, 2022, 2814196. [Google Scholar] [CrossRef]
- Al-Mansoub, M.; Asif, M.; Revadigar, V.; Hammad, M.; Chear, N.; Hamdan, M.R.; Abdul Majid, A.M.S.; Abdullah, M.; Murugaiyah, V. Chemical composition, antiproliferative and antioxidant attributes of ethanolic extract of resinous sediment from Etlingera elatior (Jack.) inflorescence. Braz. J. Pharm. Sci. 2021, 57, e18954. [Google Scholar] [CrossRef]
- Fristiohady, A.; Wahyuni, W.; Bafadal, M.; Ode, L.; Julian Purnama, L.O.; Sangadji, F.; Malaka, M.; Malik, F.; Hong, J.; Wibawa, A.; et al. Nephroprotective effect of extract Etlingera elatior (Jack) R.M. Smith on CCl 4 -induced nephrotoxicity in rats. Curr. Res. Biosci. Biotechnol. 2020, 1, 62–65. [Google Scholar] [CrossRef]
- Zainin, N.S.; Lau, K.Y.; Zakaria, M.; Son, R.; Abdull Razis, A.F.; Rukayadi, Y. Antibacterial activity of Boesenbergia rotunda (L.) Mansf. A. extract against Escherichia coli. Int. Food Res. J. 2013, 20, 3319–3323. [Google Scholar]
- Taechowisan, T.; Chaisaeng, S.; Phutdhawong, W.S. Antibacterial, antioxidant and anticancer activities of biphenyls from Streptomyces sp. BO-07: An endophyte in Boesenbergia rotunda (L.) Mansf A. Food Agric. Immunol. 2017, 28, 1330–1346. [Google Scholar] [CrossRef]
- Chia, Y.; Teh, S.H.; Mohamed, Z. Isolation and Characterization of Chalcone Isomerase (CHI) Gene from Boesenbergia rotunda. S. Afr. J. Bot. 2020, 130, 475–482. [Google Scholar] [CrossRef]
- Galih, S.; Dina, F. Anti-Inflammatory Effects of Kaempferia galanga L. Rhizome Extract in Carrageenan-Induced Female Rats. In Proceedings of the 1st International Conference on Community Health (ICCH 2019), San Diego, CA, USA, 10 February 2020; pp. 13–17. [Google Scholar]
- Laksmitawati, D.R.; Widowati, W.; Kusuma, H.S.W.; Pratami, D.K.; Wijayanti, C.R.; Wahyuni, C.D.; Afifah, E.; Rizal, R. Antioxidant Potency of Kaempferia galanga Linn and Zingiber officinale var. Rubra rhizomes. In Proceedings of the 2021 IEEE International Conference on Health, Instrumentation & Measurement, and Natural Sciences (InHeNce), Medan, Indonesia, 14–16 July 2021; pp. 1–6. [Google Scholar]
- Ichwan, S.; Sazeli, S.; Lestari, W. Analysis of the anti-cancer effect of ethyl-p-methoxycinnamate extracted cekur (Kaempferia galanga) on cancer cell lines with wild- type and null p53. IIUM J. Orofac. Health Sci. 2020, 1, 28–33. [Google Scholar] [CrossRef]
- Lallo, S.; Hardianti, B.; Sartini, S.; Ismail, I.; Laela, D.; Hayakawa, Y. Ethyl P-Methoxycinnamate: An Active Anti-Metastasis Agent and Chemosensitizer Targeting NFκB from Kaempferia galanga for Melanoma Cells. Life 2022, 12, 337. [Google Scholar] [CrossRef]
- Belgis, M.; Nafi, A.; Giyarto, G.; Wulandari, A. Antibacterial Activity of Kaempferia Galanga L. Hard Candy Against Streptococcus pyogenes and Staphylococcus aureus Bacteria Growth. J. Food Agric. Environ. 2021, 2, 1–8. [Google Scholar] [CrossRef]
- Ekowati, J.; Hardjono, S.; Hamid, I.S. Ethyl p-methoxycinnamate from Kaempferia galanga inhibits angiogenesis through tyrosine kinase. Universa Med. 2016, 34, 43. [Google Scholar] [CrossRef]
- Tonsomboon, A.; Mani Iyer, P.; Plaingam, W.; Tencomnao, T. Kaempferia parviflora Rhizome Extract Inhibits Glutamate-Induced Toxicity in HT-22 Mouse Hippocampal Neuronal Cells and Extends Longevity in Caenorhabditis elegans. Biology 2021, 10, 264. [Google Scholar] [CrossRef]
- Lee, S.; Kim, C.; Kwon, D.; Kim, M.-B.; Hwang, J.-K. Standardized Kaempferia parviflora Wall. ex Baker (Zingiberaceae) Extract Inhibits Fat Accumulation and Muscle Atrophy in ob/ob Mice. Evid.-Based Complement. Altern. Med. 2018, 2018, 8161042. [Google Scholar] [CrossRef]
- Ab Rahman, Z.; Abd Shukor, S.; Abbas, H.; Machap, C.; Alias, M.; Mirad, R.; Sofiyanand, S.; Othman, A. Optimization of Extraction Conditions for Total Phenolics and Total Flavonoids from Kaempferia parviflora Rhizomes. Adv. Biosci. Biotechnol. 2018, 09, 205–214. [Google Scholar] [CrossRef]
- Sitthichai, P.; Chanpirom, S.; Maneerat, T.; Charoensup, R.; Tree-Udom, T.; Pintathong, P.; Laphookhieo, S.; Sripisut, T. Kaempferia parviflora Rhizome Extract as Potential Anti-Acne Ingredient. Molecules 2022, 27, 4401. [Google Scholar] [CrossRef]
- Nemidkanam, V.; Kato, Y.; Kubota, T.; Chaichanawongsaroj, N. Ethyl acetate extract of Kaempferia parviflora inhibits Helicobacter pylori-associated mammalian cell inflammation by regulating proinflammatory cytokine expression and leukocyte chemotaxis. BMC Complement. Med. Ther. 2020, 20, 124. [Google Scholar] [CrossRef]
- Zohmachhuana, A.; Lalnunmawia, F.; Mathipi, V.; Lalrinzuali, K.; Kumar, N.S. Curcuma aeruginosa Roxb. exhibits cytotoxicity in A-549 and HeLa cells by inducing apoptosis through caspase-dependent pathways. Biomed. Pharmacother. 2022, 150, 113039. [Google Scholar] [CrossRef] [PubMed]
- Burapan, S.; Kim, M.; Paisooksantivatana, Y.; Eser, B.E.; Han, J. Thai Curcuma Species: Antioxidant and Bioactive Compounds. Foods 2020, 9, 1219. [Google Scholar] [CrossRef]
- Suwal, N.; Subba, R.K.; Paudyal, P.; Khanal, D.P.; Panthi, M.; Suwal, N.; Nassan, M.A.; Alqarni, M.; Batiha, G.E.; Koirala, N. Antimicrobial and antibiofilm potential of Curcuma longa Linn. Rhizome extract against biofilm producing Staphylococcus aureus and Pseudomonas aeruginosa isolates. Cell. Mol. Biol. 2021, 67, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, A.; Pilankatta, R.; Teramoto, T.; Sajith, A.M.; Nwulia, E.; Kulkarni, A.; Padmanabhan, R. Inhibition of dengue virus by curcuminoids. Antivir. Res. 2019, 162, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Anggriani, L.; Yasmin, A.; Wulandari, A.; Leksono, G.; Ikawati, M.; Meiyanto, E. Extract of Temu Ireng (Curcuma aeruginosa Roxb.) Rhizome Reduces Doxorubicin-Induced Immunosuppressive Effects; AIP Publishing LLC.: Melville, NY, USA, 2019; Volume 2099, p. 020001. [Google Scholar]
- Vanda, H.; Parindra, R.; Hambal, M.; Athaillah, F. Anthelmintic Activity of Curcuma Aeruginosa Roxb Extract on Fasciola gigantica in Vitro. E3S Web Conf. 2020, 151, 01046. [Google Scholar] [CrossRef]
- Triastuti, A. Investigation of Anti-Inflammatory Activities of Curcuma aeruginosa Roxb. in Experimental Animals. Int. J. Pharm. Clin. Res. 2016, 8, 471–475. [Google Scholar]
- Srivilai, J.; Kanjana, N.; Nutuan, T.; Waranuch, N.; Khorana, N.; Wisuthiprot, W.; Scholfield, C.N.; Champachaisri, K.; Ingkaninan, K. Sesquiterpene-Enriched Extract of Curcuma aeruginosa Roxb. Retards Axillary Hair Growth: A Randomised, Placebo-Controlled, Double-Blind Study. Ski. Pharmacol. Physiol. 2018, 31, 99–106. [Google Scholar] [CrossRef]
- Reanmongkol, W.; Subhadhirasakul, S.; Khaisombat, N.; Fuengnawakit, P.; Jantasila, S.; Khamjun, A. Investigation the antinociceptive, antipyretic and anti-inflammatory activities of Curcuma aeruginosa Roxb. extracts in experimental animals. Songklanakarin J. Sci. Technol. 2006, 28, 999–1008. [Google Scholar]
- Manvizhi, S.S.; Sabitha, V.; Kumar, A.; Margaret Shanthi, F.X. Effect of curcumin on the contraction of isolated goat uterus. Int. J. Basic Clin. Pharmacol. 2020, 10, 81–84. [Google Scholar] [CrossRef]
- Gu, Y.; Han, J.; Zhang, Y. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res. Rev. 2020, 59, 101036. [Google Scholar] [CrossRef]
- Pardillo-Díaz, R.; Pérez-García, P.; Castro, C.; Nunez-Abades, P.; Carrascal, L. Oxidative Stress as a Potential Mechanism Underlying Membrane Hyperexcitability in Neurodegenerative Diseases. Antioxidants 2022, 11, 1511. [Google Scholar] [CrossRef]
- Tretter, V.; Hochreiter, B.; Zach, M.L.; Krenn, K.; Klein, K.U. Understanding Cellular Redox Homeostasis: A Challenge for Precision Medicine. Int. J. Mol. Sci. 2021, 23, 106. [Google Scholar] [CrossRef]
- Conway, M.E.; Lee, C. The redox switch that regulates molecular chaperones. Biomol. Concepts 2015, 6, 269–284. [Google Scholar] [CrossRef]
- Cobley, J.N.; Fiorello, M.L.; Bailey, D.M. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol. 2018, 15, 490–503. [Google Scholar] [CrossRef]
- Chenyang, Z.; Xin, W.; Jiangfeng, D.; Zhanjun, G.; Yuliang, Z. Reactive Oxygen Species-Regulating Strategies Based on Nanomaterials for Disease Treatment. Adv. Sci. 2021, 8, 2002797. [Google Scholar] [CrossRef]
- Lee, K.H.; Cha, M.; Lee, B.H. Neuroprotective Effect of Antioxidants in the Brain. Int. J. Mol. Sci. 2020, 21, 7152. [Google Scholar] [CrossRef]
- Cadet, J.; Davies, K.J. Oxidative DNA damage & repair: An introduction. Free. Radic. Biol. Med. 2017, 107, 2–12. [Google Scholar]
- Hamezah, H.S.; Durani, L.W.; Ibrahim, N.F.; Yanagisawa, D.; Kato, T.; Shiino, A.; Tanaka, S.; Damanhuri, H.A.; Ngah, W.Z.W.; Tooyama, I. Volumetric changes in the aging rat brain and its impact on cognitive and locomotor functions. Exp. Gerontol. 2017, 99, 69–79. [Google Scholar] [CrossRef]
- Dikovskaya, D.; Appleton, P.L.; Bento-Pereira, C.; Dinkova-Kostova, A.T. Measuring the Interaction of Transcription Factor Nrf2 with Its Negative Regulator Keap1 in Single Live Cells by an Improved FRET/FLIM Analysis. Chem. Res. Toxicol. 2019, 32, 500–512. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, J.; Duan, H.; Li, R.; Peng, W.; Wu, C. Activation of Nrf2/HO-1 signaling: An important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. J. Adv. Res. 2021, 34, 43–63. [Google Scholar] [CrossRef]
- Minj, E.; Upadhayay, S.; Mehan, S. Nrf2/HO-1 Signaling Activator Acetyl-11-keto-beta Boswellic Acid (AKBA)-Mediated Neuroprotection in Methyl Mercury-Induced Experimental Model of ALS. Neurochem. Res. 2021, 46, 2867–2884. [Google Scholar] [CrossRef] [PubMed]
- Upadhayay, S.; Mehan, S.; Prajapati, A.; Sethi, P.; Suri, M.; Zawawi, A.; Almashjary, M.N.; Tabrez, S. Nrf2/HO-1 Signaling Stimulation through Acetyl-11-Keto-Beta-Boswellic Acid (AKBA) Provides Neuroprotection in Ethidium Bromide-Induced Experimental Model of Multiple Sclerosis. Genes 2022, 13, 1324. [Google Scholar] [CrossRef] [PubMed]
- Wareham, L.K.; Liddelow, S.A.; Temple, S.; Benowitz, L.I.; Di Polo, A.; Wellington, C.; Goldberg, J.L.; He, Z.; Duan, X.; Bu, G.; et al. Solving neurodegeneration: Common mechanisms and strategies for new treatments. Mol. Neurodegener. 2022, 17, 23. [Google Scholar] [CrossRef] [PubMed]
- Michalska, P.; León, R. When It Comes to an End: Oxidative Stress Crosstalk with Protein Aggregation and Neuroinflammation Induce Neurodegeneration. Antioxidants 2020, 9, 740. [Google Scholar] [CrossRef]
- Mulica, P.; Grünewald, A.; Pereira, S.L. Astrocyte-Neuron Metabolic Crosstalk in Neurodegeneration: A Mitochondrial Perspective. Front. Endocrinol. 2021, 12, 668517. [Google Scholar] [CrossRef]
- Xie, Y.; Chen, X.; Li, Y.; Chen, S.; Liu, S.; Yu, Z.; Wang, W. Transforming growth factor-β1 protects against LPC-induced cognitive deficit by attenuating pyroptosis of microglia via NF-κB/ERK1/2 pathways. J. Neuroinflamm. 2022, 19, 194. [Google Scholar] [CrossRef]
- McKenzie, B.A.; Dixit, V.M.; Power, C. Fiery Cell Death: Pyroptosis in the Central Nervous System. Trends Neurosci. 2020, 43, 55–73. [Google Scholar] [CrossRef]
- Gerganova, G.; Riddell, A.; Miller, A.A. CNS border-associated macrophages in the homeostatic and ischaemic brain. Pharmacol. Ther. 2022, 240, 108220. [Google Scholar] [CrossRef]
- Otani, K.; Shichita, T. Cerebral sterile inflammation in neurodegenerative diseases. Inflamm. Regen. 2020, 40, 28. [Google Scholar] [CrossRef]
- Kwon, H.S.; Koh, S.H. Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Transl. Neurodegener. 2020, 9, 42. [Google Scholar] [CrossRef]
- Russo, M.V.; McGavern, D.B. Inflammatory neuroprotection following traumatic brain injury. Science 2016, 353, 783–785. [Google Scholar] [CrossRef]
- Stephenson, J.; Nutma, E.; van der Valk, P.; Amor, S. Inflammation in CNS neurodegenerative diseases. Immunology 2018, 154, 204–219. [Google Scholar] [CrossRef]
- Subhramanyam, C.S.; Wang, C.; Hu, Q.; Dheen, S.T. Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin. Cell Dev. Biol. 2019, 94, 112–120. [Google Scholar] [CrossRef]
- Hwang, Y.; Kim, H.-C.; Shin, E.-J. Effect of rottlerin on astrocyte phenotype polarization after trimethyltin insult in the dentate gyrus of mice. J. Neuroinflamm. 2022, 19, 142. [Google Scholar] [CrossRef]
- Fan, Y.-Y.; Huo, J. A1/A2 astrocytes in central nervous system injuries and diseases: Angels or devils? Neurochem. Int. 2021, 148, 105080. [Google Scholar] [CrossRef]
- Tan, P.H.; Ji, J.; Yeh, C.C.; Ji, R.R. Interferons in Pain and Infections: Emerging Roles in Neuro-Immune and Neuro-Glial Interactions. Front. Immunol. 2021, 12, 783725. [Google Scholar] [CrossRef]
- Singh, D. Astrocytic and microglial cells as the modulators of neuroinflammation in Alzheimer’s disease. J. Neuroinflamm. 2022, 19, 206. [Google Scholar] [CrossRef]
- Miyamoto, N.; Magami, S.; Inaba, T.; Ueno, Y.; Hira, K.; Kijima, C.; Nakajima, S.; Yamashiro, K.; Urabe, T.; Hattori, N. The effects of A1/A2 astrocytes on oligodendrocyte linage cells against white matter injury under prolonged cerebral hypoperfusion. Glia 2020, 68, 1910–1924. [Google Scholar] [CrossRef]
- Wang, J.; Hou, Y.; Zhang, L.; Liu, M.; Zhao, J.; Zhang, Z.; Ma, Y.; Hou, W. Estrogen attenuates traumatic brain injury by inhibiting the activation of microglia and astrocyte-mediated neuroinflammatory responses. Mol. Neurobiol. 2021, 58, 1052–1061. [Google Scholar] [CrossRef]
- Acioglu, C.; Li, L.; Elkabes, S. Contribution of astrocytes to neuropathology of neurodegenerative diseases. Brain Res. 2021, 1758, 147291. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, S.; Chang, S.-C.; Lee, J. Significant roles of neuroinflammation in Parkinson’s disease: Therapeutic targets for PD prevention. Arch. Pharmacal Res. 2019, 42, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Shippy, D.C.; Watters, J.J.; Ulland, T.K. Transcriptional response of murine microglia in Alzheimer’s disease and inflammation. BMC Genom. 2022, 23, 183. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.Y.; Tan, M.S.; Yu, J.T.; Tan, L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann. Transl. Med. 2015, 3, 136. [Google Scholar] [CrossRef] [PubMed]
- Yujia, W.; Tingjun, C.; Bosco, D.S.; Manling, X.; Jiaying, Z.; Aastha, D.; Yanlu, Y.; Qian, W.; Lennon, V.A.; Long-Jun, W. The complement C3-C3aR pathway mediates microglia–astrocyte interaction following status epilepticus. Glia 2021, 69, 1155–1169. [Google Scholar]
- Lima Giacobbo, B.; Doorduin, J.; Klein, H.C.; Dierckx, R.A.J.O.; Bromberg, E.; De Vries, E.F.J. Brain-Derived Neurotrophic Factor in Brain Disorders: Focus on Neuroinflammation. Mol. Neurobiol. 2019, 56, 3295–3312. [Google Scholar] [CrossRef]
- Skaper, S.D. Neurotrophic Factors: An Overview. Methods Mol. Biol. 2018, 1727, 1–17. [Google Scholar] [CrossRef]
- Lin, P.-H.; Kuo, L.-T.; Luh, H.-T. The Roles of Neurotrophins in Traumatic Brain Injury. Life 2021, 12, 26. [Google Scholar] [CrossRef]
- Anna, S.; Bogusław, M. Trophic Factors in the Therapeutic Challenge Against ALS: Current Research Directions. In Update on Amyotrophic Lateral Sclerosis; Humberto Foyaca, S., Lourdes de Fatima Ibañez, V., Eds.; IntechOpen: Rijeka, Croatia, 2016; Chapter 11. [Google Scholar]
- Masmudi-Martín, M.; Navarro-Lobato, I.; Khan, Z.U. Implication of 14-3-3ζ-BDNF pathway in long-lasting memory enhancement and the rescue from memory deficits. Neural Regen. Res. 2022, 17, 2685–2686. [Google Scholar] [CrossRef]
- Casagrande, B.P.; Ribeiro, A.M.; Pisani, L.P.; Estadella, D. Hippocampal BDNF mediated anxiety-like behaviours induced by obesogenic diet withdrawal. Behav. Brain Res. 2023, 436, 114077. [Google Scholar] [CrossRef]
- Liu, X.; Li, P.; Ma, X.; Zhang, J.; Sun, X.; Luo, X.; Zhang, Y. Association between plasma levels of BDNF and GDNF and the diagnosis, treatment response in first-episode MDD. J. Affect. Disord. 2022, 315, 190–197. [Google Scholar] [CrossRef]
- Domitrovic Spudic, S.; Nikolac Perkovic, M.; Uzun, S.; Nedic Erjavec, G.; Kozumplik, O.; Svob Strac, D.; Mimica, N.; Pivac, N. Reduced plasma BDNF concentration and cognitive decline in veterans with PTSD. Psychiatry Res. 2022, 316, 114772. [Google Scholar] [CrossRef]
- Lucaci, A.G.; Notaras, M.J.; Kosakovsky Pond, S.L.; Colak, D. The evolution of BDNF is defined by strict purifying selection and prodomain spatial coevolution, but what does it mean for human brain disease? Transl. Psychiatry 2022, 12, 258. [Google Scholar] [CrossRef]
- Camuso, S.; Canterini, S. Brain-derived neurotrophic factor in main neurodegenerative diseases. Neural Regen. Res. 2023, 18, 554–555. [Google Scholar] [CrossRef]
- Zyuz’kov, G.N.; Miroshnichenko, L.A.; Kotlovskaya, L.Y.; Chayikovskyi, A.V. Prospect of Using ERK1/2 and p38 in Regeneration-Competent Cells of Nervous Tissue as a Drug Targets for Treating Alzheimer’s Disease. Biointerface Res. Appl. Chem. 2023, 13, 6508338421. [Google Scholar] [CrossRef]
- Shi, A. Effects of BDNF and ANK3 in bipolar disorder. In Proceedings of the AIP Conference, Adelaide, Australia, 11–16 December 2022. [Google Scholar]
- Tosolini, A.P.; Sleigh, J.N.; Surana, S.; Rhymes, E.R.; Cahalan, S.D.; Schiavo, G. BDNF-dependent modulation of axonal transport is selectively impaired in ALS. Acta Neuropathol. Commun. 2022, 10, 121. [Google Scholar] [CrossRef]
- Zhou, T.; He, S.; Ye, X.; Wei, Z.; Wan, J.; Zhang, H.; Ding, S. Exposure to dibutyl phthalate adsorbed to multi-walled carbon nanotubes causes neurotoxicity in mice by inducing the release of BDNF. Sci. Total Environ. 2022, 852, 158319. [Google Scholar] [CrossRef]
- Cao, M.C.; Cawston, E.E.; Chen, G.; Brooks, C.; Douwes, J.; McLean, D.; Graham, E.S.; Dragunow, M.; Scotter, E.L. Serum biomarkers of neuroinflammation and blood-brain barrier leakage in amyotrophic lateral sclerosis. BMC Neurol. 2022, 22, 216. [Google Scholar] [CrossRef]
- Nordvall, G.; Forsell, P.; Sandin, J. Neurotrophin-targeted therapeutics: A gateway to cognition and more? Drug Discov. Today 2022, 27, 103318. [Google Scholar] [CrossRef]
- Filimonova, T.; Karakulova, Y. Tropomyosin receptor kinase B-mediated signaling in integration of neuropathic pain and obesity in diabetic polyneuropathy. Einstein 2021, 19, eAO6256. [Google Scholar] [CrossRef]
- Mozafarihashjin, M.; Togha, M.; Ghorbani, Z.; Farbod, A.; Rafiee, P.; Martami, F. Assessment of peripheral biomarkers potentially involved in episodic and chronic migraine: A case-control study with a focus on NGF, BDNF, VEGF, and PGE2. J. Headache Pain 2022, 23, 3. [Google Scholar] [CrossRef]
- Kustova, A.O.; Gavrish, M.S.; Sergeeva, M.A.; Avlasenko, D.A.; Kiseleva, A.O.; Epifanova, E.A.; Babaev, A.A.; Mishchenko, T.A.; Vedunova, M.V. The Influence of Neurotrophic Factors BDNF and GDNF Overexpression on the Functional State of Mice and Their Adaptation to Audiogenic Seizures. Brain Sci. 2022, 12, 1039. [Google Scholar] [CrossRef] [PubMed]
- Sivasangari, K.; Emmanuvel Rajan, K. Prenatal exposure to valproic acid alters Reelin, NGF expressing neuron architecture and impairs social interaction in their autistic-like phenotype male offspring. Exp. Brain Res. 2022, 240, 2005–2016. [Google Scholar] [CrossRef] [PubMed]
- Liu, S. Neurotrophic factors in enteric physiology and pathophysiology. Neurogastroenterol. Motil. 2018, 30, e13446. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, M.P.; Roberts, C.; Waseem, M.; Tyagi, P. Drug Targets in Neurotrophin Signaling in the Central and Peripheral Nervous System. Mol. Neurobiol. 2018, 55, 6939–6955. [Google Scholar] [CrossRef]
- Azman, K.F.; Zakaria, R. Recent Advances on the Role of Brain-Derived Neurotrophic Factor (BDNF) in Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 6827. [Google Scholar] [CrossRef]
- Venkatesan, R.; Ji, E.; Kim, S.Y. Phytochemicals that regulate neurodegenerative disease by targeting neurotrophins: A comprehensive review. BioMed Res. Int. 2015, 2015, 814068. [Google Scholar] [CrossRef]
- Mohamed, R.; El-Remessy, A.B. Imbalance of the Nerve Growth Factor and Its Precursor: Implication in Diabetic Retinopathy. J. Clin. Exp. Ophthalmol. 2015, 6, 483. [Google Scholar] [CrossRef]
- Chang, H.-M.; Wu, H.-C.; Sun, Z.-G.; Lian, F.; Leung, P. Neurotrophins and glial cell line-derived neurotrophic factor in the ovary: Physiological and pathophysiological implications. Hum. Reprod. Update 2019, 25, 224–242. [Google Scholar] [CrossRef]
- Proenca, C.C.; Song, M.; Lee, F.S. Differential effects of BDNF and neurotrophin 4 (NT4) on endocytic sorting of TrkB receptors. J. Neurochem. 2016, 138, 397–406. [Google Scholar] [CrossRef]
- Tian, X.; Yan, H.; Li, J.; Wu, S.; Wang, J.; Fan, L. Neurotrophin Promotes Neurite Outgrowth by Inhibiting Rif GTPase Activation Downstream of MAPKs and PI3K Signaling. Int. J. Mol. Sci. 2017, 18, 148. [Google Scholar] [CrossRef]
- Zou, J.; Lei, T.; Guo, P.; Yu, J.; Xu, Q.; Luo, Y.; Ke, R.; Huang, D. Mechanisms shaping the role of ERK1/2 in cellular senescence (Review). Mol. Med. Rep. 2019, 19, 759–770. [Google Scholar] [CrossRef]
- Wang, S.; Wang, B.; Shang, D.; Zhang, K.; Yan, X.; Zhang, X. Ion Channel Dysfunction in Astrocytes in Neurodegenerative Diseases. Front. Physiol. 2022, 13, 11. [Google Scholar] [CrossRef]
- Bennison, S.A.; Blazejewski, S.M.; Smith, T.H.; Toyo-Oka, K. Protein kinases: Master regulators of neuritogenesis and therapeutic targets for axon regeneration. Cell. Mol. Life Sci. 2020, 77, 1511–1530. [Google Scholar] [CrossRef]
- Wang, J.Q.; Mao, L. The ERK Pathway: Molecular Mechanisms and Treatment of Depression. Mol. Neurobiol. 2019, 56, 6197–6205. [Google Scholar] [CrossRef]
- Fang, J.; Wang, S.; Zhou, J.; Shao, X.; Sun, H.; Liang, Y.; He, X.; Jiang, Y.; Liu, B.; Jin, X.; et al. Electroacupuncture Regulates Pain Transition Through Inhibiting PKCε and TRPV1 Expression in Dorsal Root Ganglion. Front. Neurosci. 2021, 15, 685715. [Google Scholar] [CrossRef] [PubMed]
- Stakos, D.A.; Stamatelopoulos, K.; Bampatsias, D.; Sachse, M.; Zormpas, E.; Vlachogiannis, N.I.; Tual-Chalot, S.; Stellos, K. The Alzheimer’s Disease Amyloid-Beta Hypothesis in Cardiovascular Aging and Disease: JACC Focus Seminar. J. Am. Coll. Cardiol. 2020, 75, 952–967. [Google Scholar] [CrossRef]
- Zeng, L.; Palaia, I.; Šarić, A.; Su, X. PLCγ1 promotes phase separation of T cell signaling components. J. Cell Biol. 2021, 220, e202009154. [Google Scholar] [CrossRef]
- Bill, C.A.; Vines, C.M. Phospholipase C. Adv. Exp. Med. Biol. 2020, 1131, 215–242. [Google Scholar] [CrossRef]
- Lock, J.T.; Parker, I. IP3 mediated global Ca2+ signals arise through two temporally and spatially distinct modes of Ca2+ release. eLife 2020, 9, e55008. [Google Scholar] [CrossRef]
- Kolczynska, K.; Loza-Valdes, A.; Hawro, I.; Sumara, G. Diacylglycerol-evoked activation of PKC and PKD isoforms in regulation of glucose and lipid metabolism: A review. Lipids Health Dis. 2020, 19, 113. [Google Scholar] [CrossRef]
- Cuesta, C.; Arévalo-Alameda, C.; Castellano, E. The Importance of Being PI3K in the RAS Signaling Network. Genes 2021, 12, 1094. [Google Scholar] [CrossRef]
- Zheng, M.; Wang, P. Role of insulin receptor substance-1 modulating PI3K/Akt insulin signaling pathway in Alzheimer’s disease. 3 Biotech 2021, 11, 179. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Tao, T.; Li, H.; Zhu, X. mTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges. Cell Biosci. 2020, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Chen, Q. mTOR pathway: A potential therapeutic target for spinal cord injury. Biomed. Pharmacother. 2022, 145, 112430. [Google Scholar] [CrossRef] [PubMed]
- Baffi, T.R.; Newton, A.C. mTOR Regulation of AGC Kinases: New Twist to an Old Tail. Mol. Pharmacol. 2022, 101, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; Cana, A.; Baumgärtner, W.; Spitzbarth, I. p75 Neurotrophin Receptor: A Double-Edged Sword in Pathology and Regeneration of the Central Nervous System. Veter Pathol. 2018, 55, 786–801. [Google Scholar] [CrossRef]
- Qin, T.; Yuan, Z.; Yu, J.; Fu, X.; Deng, X.; Fu, Q.; Ma, Z.; Ma, S. Saikosaponin-d impedes hippocampal neurogenesis and causes cognitive deficits by inhibiting the survival of neural stem/progenitor cells via neurotrophin receptor signaling in mice. Clin. Transl. Med. 2020, 10, e243. [Google Scholar] [CrossRef]
- Kuhn, K.D.; Edamura, K.; Bhatia, N.; Cheng, I.; Clark, S.A.; Haynes, C.V.; Heffner, D.L.; Kabir, F.; Velasquez, J.; Spano, A.J.; et al. Molecular dissection of TNFR-TNFα bidirectional signaling reveals both cooperative and antagonistic interactions with p75 neurotrophic factor receptor in axon patterning. Mol. Cell Neurosci. 2020, 103, 103467. [Google Scholar] [CrossRef]
- Yamashita, T.; Tucker, K.L.; Barde, Y.-A. Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. Neuron 1999, 24, 585–593. [Google Scholar] [CrossRef]
- Sajanti, A.; Lyne, S.B.; Girard, R.; Frantzén, J.; Rantamäki, T.; Heino, I.; Cao, Y.; Diniz, C.; Umemori, J.; Li, Y.; et al. A comprehensive p75 neurotrophin receptor gene network and pathway analyses identifying new target genes. Sci. Rep. 2020, 10, 14984. [Google Scholar] [CrossRef]
- Iobbi, C.; Korte, M.; Zagrebelsky, M. Nogo-66 Restricts Synaptic Strengthening via Lingo1 and the ROCK2–Cofilin Pathway to Control Actin Dynamics. Cereb. Cortex 2017, 27, 2779–2792. [Google Scholar] [CrossRef]
- Dobrowsky, R.T.; Carter, B.D. Coupling of the p75 Neurotrophin Receptor to Sphingolipid Signalinga. Ann. N. Y. Acad. Sci. 1998, 845, 32–45. [Google Scholar] [CrossRef]
- Kagan, T.; Stoyanova, G.; Lockshin, R.A.; Zakeri, Z. Ceramide from sphingomyelin hydrolysis induces neuronal differentiation, whereas de novo ceramide synthesis and sphingomyelin hydrolysis initiate apoptosis after NGF withdrawal in PC12 Cells. Cell Commun. Signal. 2022, 20, 15. [Google Scholar] [CrossRef]
- Kim, S.; Kwon, J. [6]-Shogaol Attenuates Neuronal Apoptosis in Hydrogen Peroxide-Treated Astrocytes Through the Up-Regulation of Neurotrophic Factors. Phytother. Res. 2013, 27, 1795–1799. [Google Scholar] [CrossRef]
- Micheli, L.; Toti, A.; Lucarini, E.; Ferrara, V.; Ciampi, C.; Olivero, G.; Pittaluga, A.; Mattoli, L.; Pelucchini, C.; Burico, M.; et al. Efficacy of a vegetal mixture composed of Zingiber officinale, Echinacea purpurea, and Centella asiatica in a mouse model of neuroinflammation: In vivo and ex vivo analysis. Front. Nutr. 2022, 9, 887378. [Google Scholar] [CrossRef]
- Ciccone, L.; Vandooren, J.; Nencetti, S.; Orlandini, E. Natural Marine and Terrestrial Compounds as Modulators of Matrix Metalloproteinases-2 (MMP-2) and MMP-9 in Alzheimer’s Disease. Pharmaceuticals 2021, 14, 86. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, S.; Zhang, Z.; Gu, Y.; Xia, S.; Bao, X.; Cao, X.; Xu, Y. 6-Gingerol attenuates microglia-mediated neuroinflammation and ischemic brain injuries through Akt-mTOR-STAT3 signaling pathway. Eur. J. Pharmacol. 2020, 883, 173294. [Google Scholar] [CrossRef]
- Gu, M.; Lee, P.; Ha, S.K.; Hur, J. Zerumbone attenuates lipopolysaccharide-induced activation of BV-2 microglial cells via NF-κB signaling. Appl. Biol. Chem. 2020, 63, 46. [Google Scholar] [CrossRef]
- Hirano, K.; Kubo, M.; Fukuyama, Y.; Namihira, M. Indonesian Ginger (Bangle) Extract Promotes Neurogenesis of Human Neural Stem Cells through WNT Pathway Activation. Int. J. Mol. Sci. 2020, 21, 4772. [Google Scholar] [CrossRef]
- Cárdenas Garza, G.R.; Elizondo Luévano, J.H.; Bazaldúa Rodríguez, A.F.; Chávez Montes, A.; Pérez Hernández, R.A.; Martínez Delgado, A.J.; López Villarreal, S.M.; Rodríguez Rodríguez, J.; Sánchez Casas, R.M.; Castillo Velázquez, U.; et al. Benefits of Cardamom (Elettaria cardamomum (L.) Maton) and Turmeric (Curcuma longa L.) Extracts for Their Applications as Natural Anti-Inflammatory Adjuvants. Plants 2021, 10, 1908. [Google Scholar] [CrossRef]
- Araújo, F.; Chaves-Filho, A.; Nunes, A.; Oliveira, G.; Vasconcelos, G.; Carletti, J.; Moraes, M.; Moraes, E.; Vasconcelos, S.; Sousa, F.; et al. Involvement of Anti-Inflammatory, Antioxidant, and BDNF Up-Regulating Properties in the Antipsychotic-like Effect of the Essential Oil of Alpinia Zerumbet in Mice: A Comparative Study With Olanzapine. Metab. Brain Dis. 2021, 36, 2283–2297. [Google Scholar] [CrossRef] [PubMed]
- Hao, S.; Cho, B.O.; Wang, F.; Shin, J.Y.; Shin, D.; Jang, S.I. Zingiber officinale attenuates neuroinflammation in LPS-stimulated mouse microglia by AKT/STAT3, MAPK, and NF-κB signaling. Food Sci. Technol. 2022, 42, e104221. [Google Scholar] [CrossRef]
- Kim, C.Y.; Seo, Y.; Lee, C.; Park, G.H.; Jang, J.H. Neuroprotective Effect and Molecular Mechanism of [6]-Gingerol against Scopolamine-Induced Amnesia in C57BL/6 Mice. Evid.-Based Complement. Altern. Med. 2018, 2018, 8941564. [Google Scholar] [CrossRef] [PubMed]
- Tsai, I.C.; Hsu, C.W.; Chang, C.H.; Tseng, P.T.; Chang, K.V. The Effect of Curcumin Differs on Individual Cognitive Domains across Different Patient Populations: A Systematic Review and Meta-Analysis. Pharmaceuticals 2021, 14, 1235. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Nie, Q.; Li, Z.; Du, G. Curcumin improves neurofunctions of 6-OHDA-induced parkinsonian rats. Pathol.-Res. Pract. 2016, 212, 247–251. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Chen, S.; Tsoi, B.; Qi, S.; Gu, B.; Wang, Z.; Peng, C.; Shen, J. Alpinia oxyphylla Miq. and Its Active Compound P-Coumaric Acid Promote Brain-Derived Neurotrophic Factor Signaling for Inducing Hippocampal Neurogenesis and Improving Post-cerebral Ischemic Spatial Cognitive Functions. Front. Cell Dev. Biol. 2021, 8, 577790. [Google Scholar] [CrossRef]
- Wei, W.; Qiuying, D.; Wenbo, J.; Yue, W.; Yingying, C.; Tianshu, H.; Changhao, S. Dichloroacetic acid-induced dysfunction in rat hippocampus and the protective effect of curcumin. Metab. Brain Dis. 2021, 36, 545–556. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, F.; Guo, Y.; Zhang, Y.; Li, L.; Dang, R.; Jiang, P. Curcumin Relieves Chronic Unpredictable Mild Stress-Induced Depression-Like Behavior through the PGC-1α/FNDC5/BDNF Pathway. Behav. Neurol. 2021, 2021, 2630445. [Google Scholar] [CrossRef]
- Benjamart, S.; Siriwoot, S.; Jukreera, P.; Pitchaya, M.; Nitwara, W.; Smith, D.R.; Saranyapin, P.; Wutigri, N. Kaempferia parviflora Extract Inhibits STAT3 Activation and Interleukin-6 Production in HeLa Cervical Cancer Cells. Int. J. Mol. Sci. 2019, 20, E4226. [Google Scholar] [CrossRef]
- Nakai, M.; Iizuka, M.; Matsui, N.; Hosogi, K.; Imai, A.; Abe, N.; Shiraishi, H.; Hirata, A.; Yagi, Y.; Jobu, K.; et al. Bangle (Zingiber purpureum) Improves Spatial Learning, Reduces Deficits in Memory, and Promotes Neurogenesis in the Dentate Gyrus of Senescence-Accelerated Mouse P8. J. Med. Food 2016, 19, 435–441. [Google Scholar] [CrossRef]
- Kubo, M.; Gima, M.; Baba, K.; Nakai, M.; Harada, K.; Suenaga, M.; Matsunaga, Y.; Kato, E.; Hosoda, S.; Fukuyama, Y. Novel neurotrophic phenylbutenoids from Indonesian ginger Bangle, Zingiber purpureum. Bioorg. Med. Chem. Lett. 2015, 25, 1586–1591. [Google Scholar] [CrossRef]
- Kim, H.G.; Lim, S.; Hong, J.; Kim, A.J.; Oh, M.S. Effects of Myoga on Memory and Synaptic Plasticity by Regulating Nerve Growth Factor-Mediated Signaling. Phytother. Res. 2016, 30, 208–213. [Google Scholar] [CrossRef]
- Tang, H.; Shao, C.; Wang, X.; Cao, Y.; Li, Z.; Luo, X.; Yang, X.; Zhang, Y. 6-Gingerol attenuates subarachnoid hemorrhage-induced early brain injury via GBP2/PI3K/AKT pathway in the rat model. Front. Pharmacol. 2022, 13, 3. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, J.-G.; Yang, W.; Xu, P.; Xiao, Y.-L.; Zhang, H.-T. 6-Gingerol attenuates LPS-induced neuroinflammation and cognitive impairment partially via suppressing astrocyte overactivation. Biomed. Pharmacother. 2018, 107, 1523–1529. [Google Scholar] [CrossRef]
- Majdi Yazdi, G.; Vaezi, G.; Hojati, V.; Mohammad-Zadeh, M. The Effect of 6-gingerol on Growth Factors and Apoptosis Indices in Rats Exposed to Gold Nanoparticles. Basic Clin. Neurosci. 2021, 12, 301–307. [Google Scholar] [CrossRef]
- Moon, M.; Kim, H.G.; Choi, J.G.; Oh, H.; Lee, P.K.J.; Ha, S.K.; Kim, S.Y.; Park, Y.; Huh, Y.; Oh, M.S. 6-Shogaol, an active constituent of ginger, attenuates neuroinflammation and cognitive deficits in animal models of dementia. Biochem. Biophys. Res. Commun. 2014, 449, 8–13. [Google Scholar] [CrossRef]
- Shim, S.; Kwon, J. Effects of [6]-shogaol on cholinergic signaling in HT22 cells following neuronal damage induced by hydrogen peroxide. Food Chem. Toxicol. 2012, 50, 1454–1459. [Google Scholar] [CrossRef]
- Ha, S.K.; Moon, E.; Ju, M.S.; Kim, D.H.; Ryu, J.H.; Oh, M.S.; Kim, S.Y. 6-Shogaol, a ginger product, modulates neuroinflammation: A new approach to neuroprotection. Neuropharmacology 2012, 63, 211–223. [Google Scholar] [CrossRef]
- Han, Q.; Yuan, Q.; Meng, X.; Huo, J.; Bao, Y.; Xie, G. 6-Shogaol attenuates LPS-induced inflammation in BV2 microglia cells by activating PPAR-γ. Oncotarget 2017, 8, 42001–42006. [Google Scholar] [CrossRef]
- Sapkota, A.; Park, S.J.; Choi, J.W. Neuroprotective Effects of 6-Shogaol and Its Metabolite, 6-Paradol, in a Mouse Model of Multiple Sclerosis. Biomol. Ther. 2019, 27, 152–159. [Google Scholar] [CrossRef]
- Yang, X.; Li, B.; Tian, H.; Cheng, X.; Zhou, T.; Zhao, J. Curcumenol Mitigates the Inflammation and Ameliorates the Catabolism Status of the Intervertebral Discs In Vivo and In Vitro via Inhibiting the TNFα/NFκB Pathway. Front. Pharmacol. 2022, 13, 905966. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Zhao, P.; Fan, L.; Bao, Z.; Tu, Y.; Li, C.; Chao, H.; Xu, X.; Ji, J. Curcumin alleviates neuroinflammation, enhances hippocampal neurogenesis, and improves spatial memory after traumatic brain injury. Brain Res. Bull. 2020, 162, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Setiawati, N.; Ikawati, Z.; Kertia, I. Antiinflamatory and antidepressive activities of Extract Curcuma xanthorrhiza Roxb in Systemic Lupus Erythematosus. Indones. J. Pharm. 2017, 28, 185. [Google Scholar] [CrossRef]
- Busca Guerzoni, L.P.; Valérie, N.; Angelova, A. In Vitro Modulation of TrkB Receptor Signaling upon Sequential Delivery of Curcumin-DHA Loaded Carriers Towards Promoting Neuronal Survival. Pharm. Res. 2017, 34, 492–505. [Google Scholar] [CrossRef] [PubMed]
- Lara-Espinosa, J.; Arce-Aceves, M.; López Torres, M.; Lozano-Ordaz, V.; Mata-Espinosa, D.; Payán, J.A.; Silva-Islas, C.; Maldonado, P.; Marquina, B.; Hernández-Pando, R. Effect of Curcumin in Experimental Pulmonary Tuberculosis: Antimycobacterial Activity in the Lungs and Anti-Inflammatory Effect in the Brain. Int. J. Mol. Sci. 2022, 23, 1964. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Mitsunaga, T.; Yamauchi, K. 6-Paradol and its glucoside improve memory disorder in mice. Food Funct. 2020, 11, 9892–9902. [Google Scholar] [CrossRef]
- Yan, T.; Wu, B.; Liao, Z.Z.; Liu, B.; Zhao, X.; Bi, K.S.; Jia, Y. Brain-derived Neurotrophic Factor Signaling Mediates the Antidepressant-like Effect of the Total Flavonoids of Alpiniae Oxyphyllae Fructus in Chronic Unpredictable Mild Stress Mice. Phytother. Res. 2016, 30, 1493–1502. [Google Scholar] [CrossRef]
- Li, H.; Park, J.H.; Yan, B.; Yoo, K.-Y.; Lee, C.; Choi, J.; Hwang, I.; Won, M.-H. Neuroprotection of Alpinia katsumadai Seed Extract against Neuronal Damage in the Ischemic Gerbil Hippocampus is Linked to Altered Brain-Derived Neurotrophic Factor. Lab. Anim. Res. 2011, 27, 67–71. [Google Scholar] [CrossRef]
- Natsume, N.; Yamano, A.; Watanabe, A.; Yonezawa, T.; Woo, J.T.; Yamakuni, T.; Teruya, T. Effect of methoxyflavones contained in Kaempferia parviflora on CRE-mediated transcription in PC12D cells. Bioorg. Med. Chem. Lett. 2020, 30, 127606. [Google Scholar] [CrossRef]
- Veldsman, M.; Cheng, H.-J.; Ji, F.; Werden, E.; Khlif, M.S.; Ng, K.K.; Lim, J.K.W.; Qian, X.; Yu, H.; Zhou, J.H.; et al. Degeneration of structural brain networks is associated with cognitive decline after ischaemic stroke. Brain Commun. 2020, 2, fcaa155. [Google Scholar] [CrossRef]
- Park, D.C. Cognitive ability in old age is predetermined by age 20 y. Proc. Natl. Acad. Sci. USA 2019, 116, 1832–1833. [Google Scholar] [CrossRef]
- McCabe, D.P.; Roediger, H.L.; McDaniel, M.A.; Balota, D.A.; Hambrick, D.Z. The relationship between working memory capacity and executive functioning: Evidence for a common executive attention construct. Neuropsychology 2010, 24, 222–243. [Google Scholar] [CrossRef]
- Tamnes, C.K.; Walhovd, K.B.; Dale, A.M.; Østby, Y.; Grydeland, H.; Richardson, G.; Westlye, L.T.; Roddey, J.C.; Hagler, D.J., Jr.; Due-Tønnessen, P.; et al. Brain development and aging: Overlapping and unique patterns of change. Neuroimage 2013, 68, 63–74. [Google Scholar] [CrossRef]
- McDonald, W.M. Overview of Neurocognitive Disorders. Focus (Am. Psychiatr. Publ.) 2017, 15, 4–12. [Google Scholar] [CrossRef]
- Montaron, M.-F.; Garcia, P.; Abrous, D.N. Responsiveness of Dentate Neurons Generated Throughout Adult Life Determines Spatial Memory Ability of Aged Rats. bioRxiv 2018. [Google Scholar] [CrossRef]
- Yin, C.; Imms, P.; Cheng, M.; Amgalan, A.; Chowdhury, N.F.; Massett, R.J.; Chaudhari, N.N.; Chen, X.; Thompson, P.M.; Bogdan, P.; et al. Anatomically interpretable deep learning of brain age captures domain-specific cognitive impairment. Proc. Natl. Acad. Sci. USA 2023, 120, e2214634120. [Google Scholar] [CrossRef]
- Kongsui, R.; Sriraksa, N.; Thongrong, S. The Neuroprotective Effect of Zingiber cassumunar Roxb. Extract on LPS-Induced Neuronal Cell Loss and Astroglial Activation within the Hippocampus. BioMed Res. Int. 2020, 2020, 4259316. [Google Scholar] [CrossRef]
- Ou, G.Y.; Lin, W.W.; Zhao, W.J. Neuregulins in Neurodegenerative Diseases. Front. Aging Neurosci. 2021, 13, 662474. [Google Scholar] [CrossRef]
- Kijonka, M.; Borys, D.; Psiuk-Maksymowicz, K.; Gorczewski, K.; Wojcieszek, P.; Kossowski, B.; Marchewka, A.; Swierniak, A.; Sokol, M.; Bobek-Billewicz, B. Whole Brain and Cranial Size Adjustments in Volumetric Brain Analyses of Sex- and Age-Related Trends. Front. Neurosci. 2020, 14, 278. [Google Scholar] [CrossRef]
- Gokce, U.; Mahmut, O. Classifying Early and Late Mild Cognitive Impairment Stages of Alzheimer’s Disease by Analyzing Different Brain Areas. In Proceedings of the 2020 Medical Technologies Congress (TIPTEKNO), Antalya, Turkey, 19–20 November 2020; pp. 1–4. [Google Scholar]
- Rucco, R.; Lardone, A.; Liparoti, M.; Lopez, E.T.; De Micco, R.; Tessitore, A.; Granata, C.; Mandolesi, L.; Sorrentino, G.; Sorrentino, P. Brain Networks and Cognitive Impairment in Parkinson’s Disease. Brain Connect. 2021, 12, 465–475. [Google Scholar] [CrossRef]
- Ogura, A.; Kawabata, K.; Watanabe, H.; Choy, S.W.; Bagarinao, E.; Kato, T.; Imai, K.; Masuda, M.; Ohdake, R.; Hara, K.; et al. Fiber-specific white matter analysis reflects upper motor neuron impairment in amyotrophic lateral sclerosis. Eur. J. Neurol. 2022, 29, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Varela, L.; Garcia-Rendueles, M.E.R. Oncogenic Pathways in Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 3223. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.G.; Lee, H.; Lee, S.B. Mechanisms of protein toxicity in neurodegenerative diseases. Cell. Mol. Life Sci. 2018, 75, 3159–3180. [Google Scholar] [CrossRef] [PubMed]
- Boyd, R.J.; Avramopoulos, D.; Jantzie, L.L.; McCallion, A.S. Neuroinflammation represents a common theme amongst genetic and environmental risk factors for Alzheimer and Parkinson diseases. J. Neuroinflamm. 2022, 19, 223. [Google Scholar] [CrossRef]
- Ashok, A.; Andrabi, S.S.; Mansoor, S.; Kuang, Y.; Kwon, B.K.; Labhasetwar, V. Antioxidant Therapy in Oxidative Stress-Induced Neurodegenerative Diseases: Role of Nanoparticle-Based Drug Delivery Systems in Clinical Translation. Antioxidants 2022, 11, 408. [Google Scholar] [CrossRef]
- Thompson, T.B.; Chaggar, P.; Kuhl, E.; Goriely, A.; Alzheimer’s Disease Neuroimaging Initiative. Protein-protein interactions in neurodegenerative diseases: A conspiracy theory. PLoS Comput. Biol. 2020, 16, e1008267. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, Y.; Sterling, K.; Song, W. Brain-derived neurotrophic factor in Alzheimer’s disease and its pharmaceutical potential. Transl. Neurodegener. 2022, 11, 4. [Google Scholar] [CrossRef]
- Ajanaku, C.O.; Ademosun, O.T.; Atohengbe, P.O.; Ajayi, S.O.; Obafemi, Y.D.; Owolabi, O.A.; Akinduti, P.A.; Ajanaku, K.O. Functional bioactive compounds in ginger, turmeric, and garlic. Front. Nutr. 2022, 9, 1012023. [Google Scholar] [CrossRef]
- Zeng, P.; Liu, Y.-C.; Wang, X.-M.; Ye, C.-Y.; Sun, Y.-W.; Su, H.-F.; Qiu, S.-W.; Li, Y.-N.; Wang, Y.; Wang, Y.-C.; et al. Targets and mechanisms of Alpinia oxyphylla Miquel fruits in treating neurodegenerative dementia. Front. Aging Neurosci. 2022, 14, 1013891. [Google Scholar] [CrossRef]
- Xu, J.; Wang, F.; Guo, J.; Xu, C.; Cao, Y.; Fang, Z.; Wang, Q. Pharmacological Mechanisms Underlying the Neuroprotective Effects of Alpinia oxyphylla Miq. on Alzheimer’s Disease. Int. J. Mol. Sci. 2020, 21, 2071. [Google Scholar] [CrossRef]
- Shi, S.-H.; Zhao, X.; Liu, B.; Li, H.; Liu, A.-J.; Wu, B.; Bi, K.-S.; Jia, Y. The Effects of Sesquiterpenes-Rich Extract of Alpinia oxyphylla Miq. on Amyloid-β-Induced Cognitive Impairment and Neuronal Abnormalities in the Cortex and Hippocampus of Mice. Oxidative Med. Cell. Longev. 2014, 2014, 451802. [Google Scholar] [CrossRef]
- Li, L.; Wu, X.-H.; Zhao, X.-J.; Xu, L.; Pan, C.-L.; Zhang, Z.-Y. Zerumbone ameliorates behavioral impairments and neuropathology in transgenic APP/PS1 mice by suppressing MAPK signaling. J. Neuroinflamm. 2020, 17, 61. [Google Scholar] [CrossRef]
- Park, Y.G.; Park, Y.S.; Kim, I.-B. Complement system and potential therapeutics in age-related macular degeneration. Int. J. Mol. Sci. 2021, 22, 6851. [Google Scholar] [CrossRef]
- Zhang, M.; Jiang, N.; Chu, Y.; Postnikova, O.; Varghese, R.; Horvath, A.; Cheema, A.K.; Golestaneh, N. Dysregulated metabolic pathways in age-related macular degeneration. Sci. Rep. 2020, 10, 2464. [Google Scholar] [CrossRef]
- Sanz-Hernández, M.; Barritt, J.D.; Sobek, J.; Hornemann, S.; Aguzzi, A.; De Simone, A. Mechanism of misfolding of the human prion protein revealed by a pathological mutation. Proc. Natl. Acad. Sci. USA 2021, 118, e2019631118. [Google Scholar] [CrossRef]
- Piccardo, P.; Asher, D.M. Complex proteinopathies and neurodegeneration: Insights from the study of transmissible spongiform encephalopathies. Arq. Neuropsiquiatr. 2018, 76, 705–712. [Google Scholar] [CrossRef]
- Murley, A.G.; Tsvetanov, K.A.; Rouse, M.A.; Jones, P.S.; Sværke, K.; Li, W.; Carpenter, A.; Rowe, J.B. Proton magnetic resonance spectroscopy in frontotemporal lobar degeneration-related syndromes. Neurobiol. Aging 2022, 111, 64–70. [Google Scholar] [CrossRef]
- Pacheco, C.D.; Lieberman, A.P. The pathogenesis of Niemann-Pick type C disease: A role for autophagy? Expert Rev. Mol. Med. 2008, 10, e26. [Google Scholar] [CrossRef]
- Adav, S.S.; Park, J.E.; Sze, S.K. Quantitative profiling brain proteomes revealed mitochondrial dysfunction in Alzheimer’s disease. Mol. Brain 2019, 12, 8. [Google Scholar] [CrossRef]
- Gauba, E.; Chen, H.; Guo, L.; Du, H. Cyclophilin D deficiency attenuates mitochondrial F1Fo ATP synthase dysfunction via OSCP in Alzheimer’s disease. Neurobiol. Dis. 2019, 121, 138–147. [Google Scholar] [CrossRef]
- Lang, M.; Pramstaller, P.P.; Pichler, I. Crosstalk of organelles in Parkinson’s disease—MiT family transcription factors as central players in signaling pathways connecting mitochondria and lysosomes. Mol. Neurodegener. 2022, 17, 50. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Gilbert, R. Progressive Supranuclear Palsy. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2022. [Google Scholar]
- Rampello, L.; Buttà, V.; Raffaele, R.; Vecchio, I.; Battaglia, G.; Cormaci, G.; Alvano, A. Progressive supranuclear palsy: A systematic review. Neurobiol. Dis. 2005, 20, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Mueller, R.L.; Combs, B.; Alhadidy, M.M.; Brady, S.T.; Morfini, G.A.; Kanaan, N.M. Tau: A Signaling Hub Protein. Front. Mol. Neurosci. 2021, 14, 647054. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Guan, Y.; Zhao, Z.; Meng, F.; Wang, X.; Gao, X.; Liu, J.; Chen, Y.; Zhou, F.; Zhou, S.; et al. Potential Roles of the WNT Signaling Pathway in Amyotrophic Lateral Sclerosis. Cells 2021, 10, 839. [Google Scholar] [CrossRef]
- Paudel, Y.N.; Angelopoulou, E.; Piperi, C.; Othman, I.; Shaikh, M.F. Implication of HMGB1 signaling pathways in Amyotrophic lateral sclerosis (ALS): From molecular mechanisms to pre-clinical results. Pharmacol. Res. 2020, 156, 104792. [Google Scholar] [CrossRef]
- Bramlett, H.M.; Dietrich, W.D. Pathophysiology of Cerebral Ischemia and Brain Trauma: Similarities and Differences. J. Cereb. Blood Flow Metab. 2004, 24, 133–150. [Google Scholar] [CrossRef]
- Pluta, R.; Ulamek-Koziol, M.; Januszewski, S.; Czuczwar, S. From Brain Ischemia to Alzheimer-Like Neurodegeneration. Neuropsychiatry 2018, 8, 1708–1714. [Google Scholar] [CrossRef]
- Pluta, R.; Januszewski, S.; Czuczwar, S.J. Post-Ischemic Neurodegeneration of the Hippocampus Resembling Alzheimer’s Disease Proteinopathy. Int. J. Mol. Sci. 2022, 23, 306. [Google Scholar]
- Stradecki-Cohan, H.M.; Cohan, C.H.; Raval, A.P.; Dave, K.R.; Reginensi, D.; Gittens, R.A.; Youbi, M.; Perez-Pinzon, M.A. Cognitive Deficits after Cerebral Ischemia and Underlying Dysfunctional Plasticity: Potential Targets for Recovery of Cognition. J. Alzheimers Dis. 2017, 60, S87–S105. [Google Scholar] [CrossRef]
- Teegala, R. Chapter 5—Role of nutraceuticals in the management of severe traumatic brain injury. In Nutraceuticals in Brain Health and Beyond; Ghosh, D., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 47–56. [Google Scholar]
- Ng, S.Y.; Lee, A.Y.W. Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets. Front. Cell. Neurosci. 2019, 13, 528. [Google Scholar] [CrossRef]
- Sperl, M.A.; Esterov, D.; Ransom, J.E.; Mielke, M.M.; Witkowski, J.E.; Brown, A.W. Long-Term Risk of Stroke after Traumatic Brain Injury: A Population-Based Medical Record Review Study. Neuroepidemiology 2022, 56, 283–290. [Google Scholar] [CrossRef]
- Albrecht, J.S.; Liu, X.; Smith, G.S.; Baumgarten, M.; Rattinger, G.B.; Gambert, S.R.; Langenberg, P.; Zuckerman, I.H. Stroke incidence following traumatic brain injury in older adults. J. Head Trauma Rehabil. 2015, 30, E62–E67. [Google Scholar] [CrossRef]
- Borgonetti, V.; Governa, P.; Biagi, M.; Pellati, F.; Galeotti, N. Zingiber officinale Roscoe rhizome extract alleviates neuropathic pain by inhibiting neuroinflammation in mice. Phytomedicine 2020, 78, 153307. [Google Scholar] [CrossRef]
- Kopchak, O.O.; Odintsova, T.A. Cognitive impairment and depression in patients with relapsing–remitting multiple sclerosis depending on age and neuroimaging findings. Egypt. J. Neurol. Psychiatry Neurosurg. 2021, 57, 119. [Google Scholar] [CrossRef]
- Afzal, A.; Batool, Z.; Sadir, S.; Liaquat, L.; Shahzad, S.; Tabassum, S.; Ahmad, S.; Kamil, N.; Perveen, T.; Haider, S. Therapeutic Potential of Curcumin in Reversing the Depression and Associated Pseudodementia via Modulating Stress Hormone, Hippocampal Neurotransmitters, and BDNF Levels in Rats. Neurochem. Res. 2021, 46, 3273–3285. [Google Scholar] [CrossRef]
- Matsui, N.; Kido, Y.; Okada, H.; Kubo, M.; Nakai, M.; Fukuishi, N.; Fukuyama, Y.; Akagi, M. Phenylbutenoid dimers isolated from Zingiber purpureum exert neurotrophic effects on cultured neurons and enhance hippocampal neurogenesis in olfactory bulbectomized mice. Neurosci. Lett. 2012, 513, 72–77. [Google Scholar] [CrossRef]
- Mizushige, T.; Nogimura, D.; Nagai, A.; Mitsuhashi, H.; Taga, Y.; Kusubata, M.; Hattori, S.; Kabuyama, Y. Ginger-degraded collagen hydrolysate exhibits antidepressant activity in mice. J. Nutr. Sci. Vitaminol. 2019, 65, 251–257. [Google Scholar] [CrossRef]
- Armstrong, N.M.; An, Y.; Shin, J.J.; Williams, O.A.; Doshi, J.; Erus, G.; Davatzikos, C.; Ferrucci, L.; Beason-Held, L.L.; Resnick, S.M. Associations between cognitive and brain volume changes in cognitively normal older adults. NeuroImage 2020, 223, 117289. [Google Scholar] [CrossRef]
- Cheng, S.T. Cognitive Reserve and the Prevention of Dementia: The Role of Physical and Cognitive Activities. Curr. Psychiatry Rep. 2016, 18, 85. [Google Scholar] [CrossRef]
- Yu, L.; Guo, L.; Fang, X.; Yang, F.; Chen, Y.; Wang, Y.; Wang, D.; Wu, Z.; Liu, R.; Tian, X.; et al. Altered brain activity in the bilateral frontal cortices and neural correlation with cognitive impairment in schizophrenia. Brain Imaging Behav. 2022, 16, 415–423. [Google Scholar] [CrossRef]
- Palau-Baduell, M.; Salvado-Salvado, B.; Idiazabal-Alecha, M.A.; Fernandez-Teruel, A.; Ortiz, T. Perisylvian magnetoencephalografic impairments in patients with autism spectrum disorders. Rev. Neurol. 2018, 66, S45–S49. [Google Scholar] [PubMed]
- da Rosa, N.; de Medeiros, F.D.; de Oliveira, J.; Laurentino, A.O.M.; Peretti, E.M.; Machado, R.S.; Lourenço, M.P.; da Silva, T.I.; Fernandes, T.C.; Reis, P.A.; et al. 6-Shogaol Exerts a Neuroprotective Factor in Offspring after Maternal Immune Activation in Rats. Dev. Neurosci. 2022, 44, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Liu, B.-G.; Mo, X.-N.; Zou, M.; Mei, X.-P.; Chen, W.; Huang, G.-D.; Wu, L. Gingerol ameliorates neuronal damage induced by hypoxia-reoxygenation via the miR-210/brain-derived neurotrophic factor axis. Kaohsiung J. Med. Sci. 2022, 38, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Rapposelli, S.; Sestito, S.; Herrera-Bravo, J.; Arancibia-Diaz, A.; Salazar, L.A.; Yeskaliyeva, B.; Beyatli, A.; Leyva-Gómez, G.; González-Contreras, C.; et al. Multi-Target Mechanisms of Phytochemicals in Alzheimer’s Disease: Effects on Oxidative Stress, Neuroinflammation and Protein Aggregation. J. Pers. Med. 2022, 12, 1515. [Google Scholar] [PubMed]
- Gohil, K.; Kazmi, M.Z.H.; Williams, F.J. Structure-activity relationship and bioactivity studies of neurotrophic trans-banglene††Electronic supplementary information (ESI) available: Synthetic protocols, characterization data for all compounds (including purity and enantio-enrichment data), HPLC traces, PC 12 cell assay protocols, dose response study of (–) t-BG and all relevant spectra. See. Org. Biomol. Chem. 2022, 20, 2187–2193. [Google Scholar] [CrossRef]
- Badawy, G.M.; Atallah, M.N.; Sakr, S.A. Effect of gabapentin on fetal rat brain and its amelioration by ginger. Heliyon 2019, 5, e02387. [Google Scholar] [CrossRef]
- Shen, C.L.; Wang, R.; Yakhnitsa, V.; Santos, J.M.; Watson, C.; Kiritoshi, T.; Ji, G.; Hamood, A.N.; Neugebauer, V. Gingerol-Enriched Ginger Supplementation Mitigates Neuropathic Pain via Mitigating Intestinal Permeability and Neuroinflammation: Gut-Brain Connection. Front. Pharmacol. 2022, 13, 912609. [Google Scholar] [CrossRef]
- Andrade, S.; Ramalho, M.J.; Loureiro, J.A.; Pereira, M.d.C. Natural Compounds for Alzheimer’s Disease Therapy: A Systematic Review of Preclinical and Clinical Studies. Int. J. Mol. Sci. 2019, 20, 2313. [Google Scholar] [CrossRef]
- Talebi, M.; İlgün, S.; Ebrahimi, V.; Talebi, M.; Farkhondeh, T.; Ebrahimi, H.; Samarghandian, S. Zingiber officinale ameliorates Alzheimer’s disease and Cognitive Impairments: Lessons from preclinical studies. Biomed. Pharmacother. 2021, 133, 111088. [Google Scholar] [CrossRef]
- Saenghong, N.; Wattanathorn, J.; Muchimapura, S.; Tongun, T.; Piyavhatkul, N.; Banchonglikitkul, C.; Kajsongkram, T. Zingiber officinale Improves Cognitive Function of the Middle-Aged Healthy Women. Evid.-Based Complement. Altern. Med. 2012, 2012, 383062. [Google Scholar] [CrossRef]
- Martins, L.B.; Rodrigues, A.; Monteze, N.M.; Tibaes, J.R.B.; Amaral, M.H.A.; Gomez, R.S.; Teixeira, A.L.; Ferreira, A.V.M. Double-blind placebo-controlled randomized clinical trial of ginger (Zingiber officinale Rosc.) in the prophylactic treatment of migraine. Cephalalgia 2020, 40, 88–95. [Google Scholar] [CrossRef]
- Ahmed, A. Preclinical Studies of Ginger (Zingiber officinale) Rhizome and Its Clinical Trial as an Add-on Antiepileptic Therapy in Children with Generalized Epilepsies. Ph.D. Thesis, University of Gezira, Wad Madani, Sudan, 2018. [Google Scholar]
- Alolga, R.N.; Wang, F.; Zhang, X.; Li, J.; Tran, L.-S.P.; Yin, X. Bioactive Compounds from the Zingiberaceae Family with Known Antioxidant Activities for Possible Therapeutic Uses. Antioxidants 2022, 11, 1281. [Google Scholar] [CrossRef]
- Dost, F.S.; Kaya, D.; Ontan, M.S.; Erken, N.; Bulut, E.A.; Aydin, A.E.; Isik, A.T. Theracurmin Supplementation May be a Therapeutic Option for Older Patients with Alzheimer’s Disease: A 6-Month Retrospective Follow-Up Study. Curr. Alzheimer Res. 2021, 18, 1087–1092. [Google Scholar] [CrossRef]
- Cox, K.H.; Pipingas, A.; Scholey, A.B. Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population. J. Psychopharmacol. 2015, 29, 642–651. [Google Scholar] [CrossRef]
- Cianfruglia, L.; Minnelli, C.; Laudadio, E.; Scirè, A.; Armeni, T. Side Effects of Curcumin: Epigenetic and Antiproliferative Implications for Normal Dermal Fibroblast and Breast Cancer Cells. Antioxidants 2019, 8, 382. [Google Scholar] [CrossRef]
- Kawanishi, S.; Oikawa, S.; Murata, M. Evaluation for Safety of Antioxidant Chemopreventive Agents. Antioxid. Redox Signal. 2005, 7, 1728–1739. [Google Scholar] [CrossRef]
- Jiao, Y.; Wilkinson, J., IV; Di, X.; Wang, W.; Hatcher, H.; Kock, N.D.; D’Agostino, R., Jr.; Knovich, M.A.; Torti, F.M.; Torti, S.V. Curcumin, a cancer chemopreventive and chemotherapeutic agent, is a biologically active iron chelator. Blood 2009, 113, 462–469. [Google Scholar] [CrossRef]
- Servello, A.; Leccese, V.; Ettorre, E. Natural Products for Neurocognitive Disorders; Exon Publications: Brisbane City, Australia, 2020; pp. 205–220. [Google Scholar]
- Damarla, S.R.; Komma, R.; Bhatnagar, U.; Rajesh, N.; Mulla, S.M.A. An Evaluation of the Genotoxicity and Subchronic Oral Toxicity of Synthetic Curcumin. J. Toxicol. 2018, 2018, 6872753. [Google Scholar] [CrossRef]
- Jantawong, C.; Priprem, A.; Intuyod, K.; Pairojkul, C.; Pinlaor, P.; Waraasawapati, S.; Mongkon, I.; Chamgramol, Y.; Pinlaor, S. Curcumin-loaded nanocomplexes: Acute and chronic toxicity studies in mice and hamsters. Toxicol. Rep. 2021, 8, 1346–1357. [Google Scholar] [CrossRef]
- Zhang, X.; Deng, J.; Tang, Y.; Guan, X.; Chen, X.; Fan, J. Zingiberaceae plants/curcumin consumption and multiple health outcomes: An umbrella review of systematic reviews and meta-analyses of randomized controlled trials in humans. Phytother. Res. 2022, 36, 3080–3101. [Google Scholar] [CrossRef]
- Gregory, J.; Vengalasetti, Y.V.; Bredesen, D.E.; Rao, R.V. Neuroprotective Herbs for the Management of Alzheimer’s Disease. Biomolecules 2021, 11, 543. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Mennemeier, M.; Pimple, S. Effect of Alpinia galanga on Mental Alertness and Sustained Attention With or Without Caffeine: A Randomized Placebo-Controlled Study. J. Am. Coll. Nutr. 2017, 36, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Simon, A.; Darcsi, A.; Kéry, Á.; Riethmüller, E. Blood-Brain Barrier Permeability Study of Ginger Constituents. J. Pharm. Biomed. Anal. 2019, 177, 112820. [Google Scholar] [CrossRef] [PubMed]
Genera | Species | Vernacular/ Native Name | Bioactive Compounds | Pharmacology Action | Methods | Reference |
---|---|---|---|---|---|---|
Zingiber | Zingiber cassumunar Roxb. or Zingiber purpureum Roscoe | Phlai Bangle | Phenylbutenoids, cyclohexene derivatives, curcuminoids, sesquiterpenoids, benzaldehydes, naphthoquinones, monoterpenoids | Anticancer Antimicrobial | In vitro In vivo | [39,40,41] |
Zingiber zerumbet | Bitter ginger Lempoyang | Gingerol, shogaol, zerumbone, limonene, and humulene | Immunosuppression | In vivo | [42] | |
Zingiber montanum | Bongelai Kunyit Bonglai | Curcuminoid | Antimicrobial Antioxidant Insecticidal (larvicidal and adulticidal) Anti-hypercholesterolemic | In vitro In vitro In vivo In vivo | [43,44] [45] [46] [47] | |
Zingiber officinale var. Rubrum | Red ginger Halia bara | Vanilloids | Antioxidant Analgesic Antiemetic | In vivo In vivo Clinical trial | [48] [49] | |
Zingiber officinale var Roscoe | Ginger Halia Halia Putih Haliak Layo Jahe putih besar Jahe badak Jahe gajah | 6-Gingerol, paradols, 6-dehydrogingerdione | Antioxidant Antiinflammation Anti-obesity Antiemetic Cardiorespiratory protection Antidiabetic Anticancer Antimicrobial | In vivo In vivo In vivo In vitro Clinical trial In vivo In vivo In vitro | [12] [50,51] [52] [53] [54] [55] [56] [56] | |
Zingiber officinale var Amarum | Emprit | Gingerol, shogaol, Zingiberene, beta-sesquiphellandrene, alpha-curcumene and trans-beta farnesene 1,8-Cineole, 1,8-p-methandiene arcurcumene, Bornyl acetate, camphene, citral, geranyl acetate, methylheptenone, z-citral, α-pinen and β-bisabolene | Antifungal Antimicrobial | In vitro | [50,50,57] | |
Curcuma | Curcuma longa | Turmeric Kunyit | Curcuminoids Curcumin-diferuloylmethane Demethoxycurcumin Bisdemethoxycurcumin | Anticancer Antioxidant Antiviral Anti-inflammatory Antibacterial Antifungal Antidiabetic Anticoagulant | In silico In vitro In vitro Clinical trial In vivo In vitro In silico Clinical trial | [58] [59] [60] [61] [62] [62] [63] [64] |
Alpinia | Alpinia zerumbet Alpinia zerumbet (Pers.) Burtt. et Smith | Shell ginger | Aglycones, glycoside, benzoic and cinnamic acid derivatives | Antioxidant Anti-inflammatory Cardiovascular protective Antidiabetic | In vitro In vivo In vitro In vitro | [65] [66] [67] [68] |
Alpinia conchigera Griff | Wild ginger | Phenylpropanoids | Antimicrobial Antitumor Anti-inflammatory | In vitro In vitro In vitro | [69] [70] [71] | |
Alpinia galanga (L.) Willd. | Galangal Lengkuas Siamese ginger | Diarylheptanoids, phenylpropanoids, and glycosides | Antioxidant, Antineoplastic Anti-inflammatory & Antidiabetic | In vivo In vitro In vitro | [72] [73] [74] | |
Alpinia officinarum | Lesser galangal | Galangin- 3-hydroxyflavone flavonoids, diarylheptanoids, essential oils, phenylpropanoids, glycosides | Anti-inflammatory Antioxidant Anticancer | In vivo In vitro In vitro | [75] [76] [77] | |
Hedychium | Hedychium coronarium Hedychium spicatum | Hardy ginger | Coronarin D, isocoronarin D, linalool, villosin | Antioxidant & antibacterial Antitumor | In vitro In vitro | [78] [79] |
Elettaria | Elettaria cardamomum | Cardamom | α-Terpinyl acetate, α-terpineol limonene | Antimicrobial Anti-proliferative Antioxidant & antimicrobial Anti-inflammation Antidepressant | In vitro In vivo In vitro In vitro In vivo Clinical trial | [80] [81] [82] [82,83] [84] [85] |
Elettariopsis | Elettariopsis latiflora | - | Flavonoids | Antioxidant | In vitro | [86] |
Etlingera | Etlingera elatior | Torch ginger Kecombrang | Nonyl cyclopropane, 1-tetradecane, cyclotetradecane, cyclododecane, and 1-decene | Antioxidant Anti-inflammation & antidiabetic Nephroprotective | In vivo In vivo In vivo | [87] [88,89] [90] |
Boesenbergia | Boesenbergia rotunda (L.) Mansf. Kulturpfl. (syn. Boesenbergia pandurata (Robx.) Schltr.) | Fingerroot ginger Temu kunci | Quercetin, p-coumaric acid, chlorogenic acid | Anti-bacterial Antioxidant & anticancer Antioxidant properties | In vitro In vitro In vitro | [91] [92] [93] |
Kaempferia | Kaempferia galanga | Kencur | Terpenoids, phenolics, diarylheptanoids | Anti-inflammatory Antioxidant Anticancer Antibacterial Anti-angiogenesis | In vivo In vitro In vitro In vitro In vitro | [94] [95] [96,97] [98] [99] |
Kaempferia parviflora Wall. ex Baker | Black ginger | 5,7-dimethoxyflavone, 3,5,7-trimethoxyflavone | Antiaging Antiadipogenesis Antioxidant and anti-inflammatory Antimicrobial Gastroprotective | In vivo In vivo In vitro In vitro In vitro | [100] [101] [102] [103] [104] | |
Curcuma aeruginosa Roxb. | Temu Ireng | Flavonoids, terpenoids, steroids, phenanthrenes | Anticancer Antioxidant Antimicrobial Anti-dengue Immunostimulant Anthelmintic Anti-inflammatory Antiandrogenic Anti-nociceptive and antipyretic uterine relaxant | In vitro In vitro In vitro In vitro In vitro In vivo In vivo Clinical trial In vivo In vivo | [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] |
Source of Zingiberaceae | Active Compounds | Bioactivities | Model | Outcomes | Reference |
---|---|---|---|---|---|
Zingiber purpureum (dried rhizomes, ethanol extraction) | Phenylbutenoid dimers | Cognitive enhancer | PC12 cells | ↑ neurite sprouting in PC12 cells | [217] |
Zingiber purpureum | Neocassumunarins 1 Neocassumunarins 2, phenylbutenoid dimer 3 | Neuroprotection | PC12 cells | NGF-mediated PC12 cells were stimulated by compounds 1 and 2 to generate neurites. | [218] |
Zingiber mioga Roscoe (fresh flower buds, water extract) | Whole extract | Memory- enhancing effects Synaptic plasticity | Male Institute of Cancer Research (ICR) mice Cultures of rat hippocampal astrocyte cells | ↑ NGF levels ↑ pCREB/CREB | [219] |
6-gingerol (Shanghai, China) | 6-gingerol | Neuroprotection | Male Sprague–Dawley rats | Activation of PI3K/AKT pathway | [220] |
6-Gingerol (powder, Chengdu, China) | 6-gingerol | Neuroprotection | Male Sprague–Dawley rats | ↓ cytokine and nitric oxide synthase 2 (NOS2) protein expression ↑ GFAP (hippocampus and cerebral cortex) | [221] |
6-gingerol (powder, Germany) | 6-gingerol | Neuroprotection | Wistar rats | ↑ BDNF and NGF ↓ 8-hydroxy-deoxyguanosine (8-OHdG) ↓ Bax ↑ Bcl2 | [222] |
6-Shogaol (Osaka, Japan) | 6-shogaol | Anti-inflammation | Male ICR mice | ↑ production of NGF, postsynaptic density protein 95 (PSD95) | [223] |
6-Shogaol | 6-shogaol | Neuroprotection | HT22 cells | ↑ choline acetyltransferase (ChAT) and choline transporter (ChTp) | [224] |
6-Gingerol & 6- Shogaol (Osaka, Japan) | G-gingerol 6-shogaol | Neuroprotective Neuroinflammation | BV-2 cells Sprague–Dawley (SD) rats | ↓ cytokines ↓ microglial activation | [225] |
6-Shogaol (Beijing, China) | 6-shogaol | Neuroprotection | Murine BV2 microglia cells | ↓PGE2 ↓ nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) phosphorylation and degradation | [226] |
6-Shogaol and 6-paradol (Dr. Dong Yoon Shin, Gachon University) | 6-shogaol 6-paradol | Neuroprotection | Female C57BL/6 mice | ↓ tumor necrosis factor-α | [227] |
Curcuma zedoaria | Curcumenol | Neuroprotection | Nucleus pulposus (NP) cells, Sprague–Dawley rats | volcano plot analysis: curcumenol ↓ TNF and interleukin 1 receptor-like 1 (IL1RL1) but ↑ C-X-C motif chemokine ligand 10 (CXCL10) heat map analysis: ↑ C-X-C motif chemokine ligand 1 (CXCL1) and nitric oxide synthase 2 (Nos2), and ↓ TRAF1, IL1RL1, TNF, and homeobox A6 (HOXA6) ↑ MMP family’s expression and prevented the NF-KB pathway from being phosphorylated (p-P65 and p-IκBα) | [228] |
Curcumin powder (St.Louis, MO) | Curcumin | Neuroinflammation neurogenesis | Sprague–Dawley rats | ↑ neurogenesis ↑ BDNF and TrkB phosphorylation ↓ levels of PI3K/Akt phosphorylation | [229] |
Curcuma xanthorrhiza Roxb. | 50 mg curcuminoids | Anti-inflammatory | Female, 20–59 years old | ↓ TNF-α after treatment | [230] |
Curcuma longa Curcumin nanoformulation | Curcumin Docosahexaenoic acid (DHA) | Neuronal survival and repair | Neuronal degenerating cell model SH-SY5Y cells | ↑ TrkB expression | [231] |
Curcumin powder (Zwijndrecht, The Netherlands) | Curcumin | Bactericidal Neuroinflammation | BALB/c mice | ↓ TNFα, interferon gamma, (IFNγ) and IL12 | [232] |
Aframomum meleguet (seed, methanol extract) | 6-paradol | Neuritogenesis | PC12 cells Scopolamine-induced dementia mice | ↑ Ca2+ influx | [233] |
Alpinia oxyphylla Miq. (whole, ethanol extraction) | p-coumaric acid (P-CA) | Neurogenesis and improve poststroke cognitive impairment | In vitro: oxygen glucose deprivation plus reoxygenation on neural stem cell (NSC) | ↑ BDNF, TrkB | [213] |
Alpinia oxyphylla Miq (fruits, ethanol extraction) | Chrysin Tectochrysin Kaempferide | Antidepressant | Male Kunming mice | ↑ pCREB/CREB, pERK/ERK | [234] |
Alpinia katsumadai (seeds, ethanol extraction) | Whole extract | Neuroprotectant | Male Mongolian gerbils | ↑ BDNF immunoreactivity | [235] |
Kaempferia parviflora Wall. ex Baker (Rhizomes, ethanol extraction) | Whole extract | Neuroprotection | HT-22 neuronal cells | ↑ BDNF expression and ↓ of p-ERK ↓ nuclear apoptosis-inducing factor (AIF) fraction levels | [100] |
Kaempferia parviflora (KP) (rhizomes, ethanol extract) | Methoxyflavones-rich residue (MRR) compound 1–9 | Preventing and improving cognitive decline | PC12D cells | ↑ cAMP response element (CRE)-mediated transcription | [236] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razak, A.M.; Tan, J.K.; Mohd Said, M.; Makpol, S. Modulating Effects of Zingiberaceae Phenolic Compounds on Neurotrophic Factors and Their Potential as Neuroprotectants in Brain Disorders and Age-Associated Neurodegenerative Disorders: A Review. Nutrients 2023, 15, 2564. https://doi.org/10.3390/nu15112564
Razak AM, Tan JK, Mohd Said M, Makpol S. Modulating Effects of Zingiberaceae Phenolic Compounds on Neurotrophic Factors and Their Potential as Neuroprotectants in Brain Disorders and Age-Associated Neurodegenerative Disorders: A Review. Nutrients. 2023; 15(11):2564. https://doi.org/10.3390/nu15112564
Chicago/Turabian StyleRazak, Azraul Mumtazah, Jen Kit Tan, Mazlina Mohd Said, and Suzana Makpol. 2023. "Modulating Effects of Zingiberaceae Phenolic Compounds on Neurotrophic Factors and Their Potential as Neuroprotectants in Brain Disorders and Age-Associated Neurodegenerative Disorders: A Review" Nutrients 15, no. 11: 2564. https://doi.org/10.3390/nu15112564
APA StyleRazak, A. M., Tan, J. K., Mohd Said, M., & Makpol, S. (2023). Modulating Effects of Zingiberaceae Phenolic Compounds on Neurotrophic Factors and Their Potential as Neuroprotectants in Brain Disorders and Age-Associated Neurodegenerative Disorders: A Review. Nutrients, 15(11), 2564. https://doi.org/10.3390/nu15112564