Association between the Dietary Phytochemical Index and Lower Prevalence of Obesity in Korean Preschoolers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Study Population
2.2. Demographic Data, Anthropometric Measurement, and Diagnosis of Obesity
2.3. Nutritional Survey Data and DPI
2.4. Statistical Analyses
3. Results
3.1. General Characteristics
3.2. Association between the DPI and Dietary Intake
3.3. Association between DPI and Obesity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ogden, C.L.; Carroll, M.D.; Lawman, H.G.; Fryar, C.D.; Kruszon-Moran, D.; Kit, B.K.; Flegal, K.M. Trends in Obesity Prevalence among Children and Adolescents in the United States, 1988–1994 Through 2013–2014. JAMA 2016, 315, 2292–2299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, K.; Staiano, A.E. Trends in Obesity Prevalence among Children and Adolescents Aged 2 to 19 Years in the US From 2011 to 2020. JAMA Pediatr. 2022, 176, 1037–1039. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 9 September 2022).
- Kim, J.H.; Moon, J.S. Secular trends in pediatric overweight and obesity in Korea. J. Obes. Metab. Syndr. 2020, 29, 12. [Google Scholar] [CrossRef] [Green Version]
- Kostas, K.; Alexandra, S.; Kyriaki, K. Childhood obesity and its associations with morbidity and mortality in adult life. Diabetes Complet. 2018, 2, 1–12. [Google Scholar] [CrossRef]
- Cote, A.T.; Harris, K.C.; Panagiotopoulos, C.; Sandor, G.G.S.; Devlin, A.M. Childhood Obesity and Cardiovascular Dysfunction. J. Am. Coll. Cardiol. 2013, 62, 1309–1319. [Google Scholar] [CrossRef] [Green Version]
- Vos, M.B.; Abrams, S.H.; Barlow, S.E.; Caprio, S.; Daniels, S.R.; Kohli, R.; Mouzaki, M.; Sathya, P.; Schwimmer, J.B.; Sundaram, S.S.; et al. NASPGHAN Clinical Practice Guideline for the Diagnosis and Treatment of Nonalcoholic Fatty Liver Disease in Children: Recommendations from the Expert Committee on NAFLD (ECON) and the North American Society of Pediatric Gastroenterology, Hepatology and Nutrition (NASPGHAN). J. Pediatr. Gastroenterol. Nutr. 2017, 64, 319–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jochum, F.; Abdellatif, M.; Adel, A.; Alhammadi, A.; Alnemri, A.; Alohali, E.; AlSarraf, K.; Al Said, K.; Elzalabany, M.; Isa, H.M.A.; et al. Burden of Early Life Obesity and Its Relationship with Protein Intake in Infancy: The Middle East Expert Consensus. Pediatr. Gastroenterol. Hepatol. Nutr. 2022, 25, 93–108. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Neu, J. Early Factors Leading to Later Obesity: Interactions of the Microbiome, Epigenome, and Nutrition. Curr. Probl. Pediatr. Adolesc. Health Care 2015, 45, 134–142. [Google Scholar] [CrossRef]
- Freedman, D.S.; Khan, L.K.; Serdula, M.K.; Dietz, W.H.; Srinivasan, S.R.; Berenson, G.S. The Relation of Childhood BMI to Adult Adiposity: The Bogalusa Heart Study. Pediatrics 2005, 115, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Weihrauch-Blüher, S.; Schwarz, P.; Klusmann, J.-H. Childhood obesity: Increased risk for cardiometabolic disease and cancer in adulthood. Metabolism 2019, 92, 147–152. [Google Scholar] [CrossRef]
- Must, A.; Phillips, S.M.; Naumova, E.N. Occurrence and Timing of Childhood Overweight and Mortality: Findings from the Third Harvard Growth Study. J. Pediatr. 2012, 160, 743–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horesh, A.; Tsur, A.M.; Bardugo, A.; Twig, G. Adolescent and Childhood Obesity and Excess Morbidity and Mortality in Young Adulthood—A Systematic Review. Curr. Obes. Rep. 2021, 10, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-S.; Cho, Y.-H.; Park, J.; Shin, H.-R.; Sung, M.-K. Dietary Intake of Phytonutrients in Relation to Fruit and Vegetable Consumption in Korea. J. Acad. Nutr. Diet. 2013, 113, 1194–1199. [Google Scholar] [CrossRef] [PubMed]
- Division of Health and Nutrition Survey and Analysis. K.D.CA. National Health Statistics. 2020. Available online: http://knhanes.kdca.go.kr/ (accessed on 17 August 2022).
- He, K.; Hu, F.B.; Colditz, G.A.; Manson, J.E.; Willett, W.C.; Liu, S. Changes in intake of fruits and vegetables in relation to risk of obesity and weight gain among middle-aged women. Int. J. Obes. Relat. Metab. Disord. 2004, 28, 1569–1574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Willett, W.C.; Manson, J.E.; Hu, F.B.; Rosner, B.; Colditz, G. Relation between changes in intakes of dietary fiber and grain products and changes in weight and development of obesity among middle-aged women. Am. J. Clin. Nutr. 2003, 78, 920–927. [Google Scholar] [CrossRef] [Green Version]
- Serdula, M.K.; Byers, T.; Mokdad, A.H.; Simoes, E.; Mendlein, J.M.; Coates, R.J. The Association between Fruit and Vegetable Intake and Chronic Disease Risk Factors. Epidemiology 1996, 7, 161–165. [Google Scholar] [CrossRef]
- Holubková, A.; Penesová, A.; Sturdik, E.; Mosovska, S.; Mikusova, L. Phytochemicals with potential effects in metabolic syndrome prevention and therapy. Acta Chim. Slovaca 2012, 5, 186. [Google Scholar] [CrossRef] [Green Version]
- McCarty, M.F. Proposal for a dietary “phytochemical index”. Med. Hypotheses 2004, 63, 813–817. [Google Scholar] [CrossRef]
- Wei, C.; Liu, L.; Liu, R.; Dai, W.; Cui, W.; Li, D. Association between the Phytochemical Index and Overweight/Obesity: A meta-Analysis. Nutrients 2022, 14, 1429. [Google Scholar] [CrossRef]
- Im, J.; Kim, M.; Park, K. Association between the Phytochemical Index and Lower Prevalence of Obesity/Abdominal Obesity in Korean Adults. Nutrients 2020, 12, 2312. [Google Scholar] [CrossRef]
- Eslami, O.; Khoshgoo, M.; Shidfar, F. Dietary phytochemical index and overweight/obesity in children: A cross-sectional study. BMC Res. Notes 2020, 13, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.; Park, K. Association between phytochemical index and metabolic syndrome. Nutr. Res. Pract. 2020, 14, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Korea Disease Control and Prevention Agency. Guidelines for Examination and Inspection (2016–2018); Osong: Cheongju-si, Republic of Korea, 2016.
- Korea Disease Control and Prevention Agency. 2017 Korean National Growth Charts for Children and Adolescents. Available online: https://knhanes.kdca.go.kr/knhanes/sub08/sub08_01.do (accessed on 17 August 2022).
- Kim, J.H.; Yun, S.; Hwang, S.S.; Shim, J.O.; Chae, H.W.; Lee, Y.J.; Lee, J.H.; Kim, S.C.; Lim, D.; Yang, S.W.; et al. The 2017 Korean National Growth Charts for children and adolescents: Development, improvement, and prospects. Korean J. Pediatr. 2018, 61, 135–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geserick, M.; Vogel, M.; Gausche, R.; Lipek, T.; Spielau, U.; Keller, E.; Pfäffle, R.; Kiess, W.; Körner, A. Acceleration of BMI in Early Childhood and Risk of Sustained Obesity. N. Engl. J. Med. 2018, 379, 1303–1312. [Google Scholar] [CrossRef]
- Bere, E.; van Lenthe, F.; Klepp, K.-I.; Brug, J. Why do parents’ education level and income affect the amount of fruits and vegetables adolescents eat? Eur. J. Public Health 2008, 18, 611–615. [Google Scholar] [CrossRef]
- Gerritsen, S.; Renker-Darby, A.; Harré, S.; Rees, D.; Raroa, D.A.; Eickstaedt, M.; Sushil, Z.; Allan, K.; Bartos, A.E.; Waterlander, W.E. Improving low fruit and vegetable intake in children: Findings from a system dynamics, community group model building study. PLoS ONE 2019, 14, e0221107. [Google Scholar] [CrossRef] [Green Version]
- Baker, J.L.; Olsen, L.W.; Sørensen, T.I.A. Childhood Body-Mass Index and the Risk of Coronary Heart Disease in Adulthood. N. Engl. J. Med. 2007, 357, 2329–2337. [Google Scholar] [CrossRef]
- Dietz, W.H. Health Consequences of Obesity in Youth: Childhood Predictors of Adult Disease. Pediatrics 1998, 101, 518–525. [Google Scholar] [CrossRef]
- Lewandowska, U.; Szewczyk, K.; Hrabec, E.; Janecka, A.; Gorlach, S. Overview of Metabolism and Bioavailability Enhancement of Polyphenols. J. Agric. Food Chem. 2013, 61, 12183–12199. [Google Scholar] [CrossRef]
- Shimoda, H.; Tanaka, J.; Kikuchi, M.; Fukuda, T.; Ito, H.; Hatano, T.; Yoshida, T. Effect of Polyphenol-Rich Extract from Walnut on Diet-Induced Hypertriglyceridemia in Mice via Enhancement of Fatty Acid Oxidation in the Liver. J. Agric. Food Chem. 2009, 57, 1786–1792. [Google Scholar] [CrossRef]
- Aguirre, L.; Fernández-Quintela, A.; Arias, N.; Portillo, M.P. Resveratrol: Anti-Obesity Mechanisms of Action. Molecules 2014, 19, 18632–18655. [Google Scholar] [CrossRef] [Green Version]
- Bahadoran, Z.; Golzarand, M.; Mirmiran, P.; Saadati, N.; Azizi, F. The association of dietary phytochemical index and cardiometabolic risk factors in adults: Tehran Lipid and Glucose Study. J. Hum. Nutr. Diet. 2013, 26, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Golzarand, M.; Mirmiran, P.; Bahadoran, Z.; Alamdari, S.; Azizi, F. Dietary phytochemical index and subsequent changes of lipid profile: A 3-year follow-up in Tehran Lipid and Glucose Study in Iran. ARYA Atheroscler. 2014, 10, 203–210. [Google Scholar] [PubMed]
- Bahadoran, Z.; Mirmiran, P.; Tohidi, M.; Azizi, F. Dietary phytochemical index and the risk of insulin resistance and β-cell dysfunction: A prospective approach in Tehran lipid and glucose study. Int. J. Food Sci. Nutr. 2015, 66, 950–955. [Google Scholar] [CrossRef]
- Vincent, H.K.; Bourguignon, C.M.; Taylor, A.G. Relationship of the dietary phytochemical index to weight gain, oxidative stress and inflammation in overweight young adults. J. Hum. Nutr. Diet. 2010, 23, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Vasmehjani, A.A.; Darabi, Z.; Nadjarzadeh, A.; Mirzaei, M.; Hosseinzadeh, M. The relation between dietary phytochemical index and metabolic syndrome and its components in a large sample of Iranian adults: A population-based study. BMC Public Health 2021, 21, 1587. [Google Scholar] [CrossRef]
- Azizi-Soleiman, F.; Khoshhali, M.; Heidari-Beni, M.; Qorbani, M.; Pourmirzaei, M.A.; Kelishadi, R. Higher dietary phytochemical index is associated with anthropometric indices in children and adolescents: The weight disorders survey of the CASPIAN-IV study. Int. J. Vitam. Nutr. Res. 2020, 91, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, M.; Gharaaghaji, R.; Gargari, B.P. The effects of legumes on metabolic features, insulin resistance and hepatic function tests in women with central obesity: A randomized controlled trial. Int. J. Prev. Med. 2014, 5, 710–720. [Google Scholar]
- Mu, Y.; Kou, T.; Wei, B.; Lu, X.; Liu, J.; Tian, H.; Zhang, W.; Liu, B.; Li, H.; Cui, W.; et al. Soy Products Ameliorate Obesity-Related Anthropometric Indicators in Overweight or Obese Asian and Non-Menopausal Women: A Meta-Analysis of Randomized Controlled Trials. Nutrients 2019, 11, 2790. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-H.; Heo, J.-M.; Park, Y.-S.; Park, H.M. Survey on the Consumption of the Phytoestrogen Isoflavone in Postmenopausal Korean Women. J. Korean Soc. Menopaus. 2012, 18, 163–173. [Google Scholar] [CrossRef] [Green Version]
- Günther, A.L.; Remer, T.; Kroke, A.; Buyken, A.E. Early protein intake and later obesity risk: Which protein sources at which time points throughout infancy and childhood are important for body mass index and body fat percentage at 7 y of age? Am. J. Clin. Nutr. 2007, 86, 1765–1772. [Google Scholar] [CrossRef] [PubMed]
- Marette, A.; Picard-Deland, E. Yogurt consumption and impact on health: Focus on children and cardiometabolic risk. Am. J. Clin. Nutr. 2014, 99, 1243S–1247S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tremblay, A.; Doyon, C.; Sanchez, M. Impact of yogurt on appetite control, energy balance, and body composition. Nutr. Rev. 2015, 73, 23–27. [Google Scholar] [CrossRef] [Green Version]
- Smith-Brown, P.; Morrison, M.; Krause, L.; Davies, P.S.W. Dairy and plant based food intakes are associated with altered faecal microbiota in 2 to 3 year old Australian children. Sci. Rep. 2016, 6, 32385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumbhare, S.V.; Patangia, D.V.; Patil, R.H.; Shouche, Y.S.; Patil, N.P. Factors influencing the gut microbiome in children: From infancy to childhood. J. Biosci. 2019, 44, 49. [Google Scholar] [CrossRef]
Total (n = 1196) | Boys (n = 623) | Girls (n = 573) | p Value * | |
---|---|---|---|---|
Age (months) | 53.75 ± 0.32 | 54.05 ± 1.16 | 53.42 ± 0.47 | 0.366 |
Age (years) | 4.02 ± 0.02 | 4.04 ± 0.09 | 3.99 ± 0.04 | 0.360 |
3 | 386 (32.30) | 203 (32.60) | 183 (31.90) | 0.088 |
4 | 392 (32.80) | 193 (31.00) | 199 (34.70) | |
5 | 418 (34.90) | 227 (36.40) | 191 (33.31) | |
Energy Intake (kcal/day) | 1370.65 ± 14.97 | 1453.30 ± 48.78 | 1276.06 ± 20.30 | <0.001 |
Height (cm) | 105.75 ± 0.23 | 106.4 ± 0.82 | 105.0 ± 0.33 | 0.004 |
Aged 3 | 98.63 ± 0.60 | 98.86 ± 0.84 | 98.36 ± 0.35 | 0.307 |
Aged 4 | 105.86 ± 0.58 | 106.48 ± 0.75 | 105.27 ± 0.29 | 0.008 |
Aged 5 | 112.41 ± 0.24 | 113.04 ± 0.85 | 111.55 ± 0.37 | 0.002 |
Weight (kg) | 17.59± 0.11 | 17.88 ± 0.37 | 17.26 ± 0.15 | 0.003 |
Aged 3 | 15.22 ± 0.36 | 15.47 ± 0.40 | 14.93 ± 0.16 | 0.024 |
Aged 4 | 17.52 ± 0.36 | 17.74 ± 0.46 | 17.31 ± 0.18 | 0.125 |
Aged 5 | 19.91 ± 0.16 | 20.15 ± 0.57 | 19.59 ± 0.24 | 0.088 |
BMI percentile (%) | ||||
<5% | 114 (9.53) | 61 (9.79) | 53 (9.25) | 0.843 |
5–85% | 934 (78.09) | 486 (78.01) | 448 (78.18) | |
85–95% | 77 (6.44) | 37 (5.94) | 40 (6.98) | |
>95% | 71 (5.94) | 39 (6.26) | 32 (5.58) | |
Weight percentile (%) | ||||
<5% | 90 (7.53) | 53 (8.51) | 37 (6.46) | 0.404 |
5–95% | 1037 (86.71) | 534 (85.71) | 503 (87.78) | |
>95% | 69 (5.77) | 36 (5.78) | 33 (5.76) | |
Education Level of Mother | ||||
≤Middle school | 35 (4.34) | 18 (4.88) | 17 (3.76) | 0.717 |
≤High school | 280 (28.66) | 139 (28.03) | 141 (29.34) | |
≤College | 700 (67.00) | 361 (67.10)) | 339 (66.90) | |
Education Level of Father | ||||
≤Middle school | 18 (2.39) | 10 (2.13) | 8 (2.69) | 0.474 |
≤High school | 208 (26.73) | 102 (24.97) | 106 (28.73) | |
≤College | 567 (70.88) | 302 (72.90) | 265 (68.58) | |
Household income | ||||
Low | 82 (7.16) | 41 (6.79) | 41 (7.58) | 0.883 |
Middle-low | 377 (32.05) | 194 (31.44) | 183 (32.76) | |
Middle-high | 421 (34.81) | 218 (35.76) | 203 (33.73) | |
High | 316 (25.97) | 170 (26.01) | 146 (25.93) | |
Residential area | ||||
Urban | 1018 (86.83) | 533 (87.50) | 485 (86.06) | 0.422 |
Rural | 178 (13.17) | 90 (12.50) | 88 (13.94) |
Total (n = 1196) | Boys (n = 623) | Girls (n = 573) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Boys (n = 623) | Girls (n = 573) | p * Value | Q1 (n = 155) | Q2 (n = 156) | Q3 (n = 156) | Q4 (n = 156) | p Value | Q1 (n = 143) | Q2 (n = 143) | Q3 (n = 144) | Q4 (n = 143) | p Value | |
Total DPI | 15.43 ± 1.07 | 16.49 ± 0.45 | 0.085 | 5.12 ± 0.25 (0–8.71) # | 11.30 ± 0.13 (0–8.71) | 17.09 ± 0.16 (13.94–20.53) | 28.33 ± 0.69 (20.5–59.44) | <0.001 | 5.71 ± 0.22 (0.01–9.22) | 11.88 ± 0.13 (9.32–14.76) | 17.93 ± 0.17 (14.79–21.72) | 29.64 ± 0.70 (21.74–51.45) | <0.001 |
Energy from Phytochemical Food groups (kcal/day) † | 225.6 ± 15.44 | 208.0 ± 6.08 | 0.060 | 68.84 ± 3.92 | 159.04 ± 4.67 | 255.36 ± 8.08 | 386.80 ± 15.06 | <0.001 | 73.21 ± 3.61 | 150.05 ± 5.06 | 212.55 ± 6.56 | 350.28 ± 12.09 | <0.001 |
Amount of Intake by Food groups (g/day) | |||||||||||||
Total | 1059 ± 40.30 | 940.2 ± 16.53 | 0.005 | 874.5 ± 96.67 | 1008 ± 95.75 | 1158 ± 97.84 | 1197 ± 43.73 | <0.001 | 826.1 ± 98.47 | 929.2 ± 97.40 | 940.6 ± 97.13 | 1056 ± 43.22 | 0.001 |
Phytochemical food groups | |||||||||||||
Whole grains | 18.43 ± 1.10 | 17.60 ± 1.07 | 0.579 | 7.36 ± 1.28 | 12.18 ± 1.02 | 22.53 ± 2.27 | 31.91 ± 2.98 | <0.001 | 4.88 ± 0.48 | 13.03 ± 1.51 | 21.20 ± 1.91 | 30.55 ± 2.77 | <0.001 |
Fruits | 196.8 ± 10.69 | 180.6 ± 9.29 | 0.243 | 36.51 ± 4.96 | 132.3 ± 10.44 | 231.2 ± 15.72 | 389.1 ± 28.79 | <0.001 | 55.11 ± 6.15 | 127.1 ± 10.42 | 183.7 ± 14.72 | 346.0 ± 27.33 | <0.001 |
Beans | 26.78 ± 2.92 | 18.56 ± 2.58 | 0.036 | 5.17 ± 0.79 | 17.67 ± 3.14 | 30.77 ± 6.99 | 53.77 ± 8.32 | <0.001 | 5.29 ± 1.31 | 12.18 ± 2.03 | 15.34 ± 1.94 | 40.02 ± 8.99 | <0.001 |
Seeds and Nuts | 1.73 ± 0.20 | 2.26 ± 0.39 | 0.212 | 0.62 ± 0.11 | 1.74 ± 0.28 | 1.98 ± 0.53 | 2.59 ± 0.48 | <0.001 | 0.40 ± 0.06 | 1.41 ± 0.31 | 2.06 ± 0.47 | 5.02 ± 1.36 | <0.001 |
Vegetables | 95.88 ± 3.38 | 96.08 ± 3.68 | 0.966 | 69.49 ± 5.90 | 92.21 ± 6.21 | 112.36 ± 7.33 | 109.62 ± 7.87 | <0.001 | 71.39 ± 5.33 | 99.73 ± 7.87 | 106.99 ± 7.63 | 105.51 ± 8.06 | 0.001 |
Mushrooms | 4.06 ± 0.56 | 3.73 ± 0.49 | 0.660 | 2.15 ± 0.42 | 3.34 ± 0.56 | 4.16 ± 0.83 | 6.60 ± 1.84 | 0.022 | 2.08 ± 0.59 | 4.01 ± 1.30 | 5.32 ± 0.99 | 3.52 ± 0.73 | 0.015 |
Non-phytochemical food groups | |||||||||||||
Refined grains | 191.2 ± 3.99 | 172.0 ± 4.00 | 0.001 | 196.35 ± 7.60 | 214.31 ± 8.16 | 192.11 ± 7.64 | 160.68 ± 7.38 | <0.001 | 190.14 ± 9.49 | 186.00 ± 8.07 | 163.43 ± 5.92 | 149.59 ± 7.35 | <0.001 |
Milk and Dairy | 244.3 ± 10.19 | 218.2 ± 8.23 | 0.039 | 263.9 ± 22.17 | 258.2 ± 18.86 | 250.0 ± 17.43 | 204.6 ± 16.16 | 0.059 | 234.5 ± 18.94 | 254.7 ± 13.80 | 214.1 ± 18.09 | 171.4 ± 12.72 | <0.001 |
Meats | 63.91 ± 3.62 | 48.71 ± 2.54 | <0.001 | 67.71 ± 6.73 | 58.06 ± 4.90 | 83.02 ± 11.08 | 47.64 ± 4.19 | 0.002 | 50.98 ± 4.34 | 54.15 ± 5.52 | 45.27 ± 4.91 | 44.49 ± 3.68 | 0.395 |
Eggs | 30.51 ± 1.87 | 26.02 ± 1.61 | 0.061 | 33.39 ± 3.57 | 32.72 ± 4.57 | 30.11 ± 3.51 | 25.76 ± 3.22 | 0.392 | 32.50 ± 4.10 | 26.67 ± 2.76 | 20.95 ± 2.29 | 24.03 ± 3.10 | 0.084 |
Fish and Shellfish | 42.43 ± 2.91 | 39.10 ± 2.97 | 0.393 | 33.19 ± 4.33 | 39.11 ± 4.70 | 49.61 ± 5.92 | 48.03 ± 6.52 | 0.067 | 39.43 ± 7.14 | 41.58 ± 4.99 | 38.80 ± 4.74 | 36.69 ± 6.71 | 0.945 |
Sugars | 11.11 ± 0.96 | 7.53 ± 0.72 | 0.003 | 13.92 ± 2.49 | 12.16 ± 2.15 | 10.20 ± 1.68 | 8.10 ± 1.50 | 0.162 | 11.38 ± 2.03 | 6.91 ± 1.22 | 7.45 ± 1.63 | 4.64 ± 0.65 | 0.005 |
Boys (n = 623) | Girls (n = 573) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Q1 (n = 155) | Q2 (n = 156) | Q3 (n = 156) | Q4 (n = 156) | p Value/ p for Trend | Q1 (n = 143) | Q2 (n = 143) | Q3 (n = 144) | Q4 (n = 143) | p Value/ p for Trend | |
Weight (kg) | 18.3 ± 90.68 | 17.98 ± 0.65 | 17.66 ± 0.69 | 17.51 ± 0.26 | 0.168 * | 17.13 ± 0.65 | 17.48 ± 0.68 | 17.36 ± 0.64 | 17.07 ± 0.26 | 0.694 |
Energy (kcal/day) | 1389 ± 97.6 | 1479 ± 96.9 | 1533 ± 97.5 | 1412 ± 40.4 | 0.061 | 1296 ± 95.4 | 1320 ± 90.7 | 1236 ± 86.0 | 1252 ± 35.9 | 0.380 |
Weight percentile # | ||||||||||
Crude | 1(ref) | 0.790 † (0.311–2.009) | 0.461 (0.153–13.395) | 0.286 (0.094–0.866) | 0.017 † | 1(ref) | 2.128 (0.788–5.745) | 1.033 (0.327–3.259) | 0.956 (0.313–2.918) | 0.468 |
Model 1 | 1(ref) | 0.743 (0.286–1.928) | 0.410 (0.141–1.192) | 0.282 (0.094–0.850) | 0.014 | 1(ref) | 2.125 (0.782–5.774) | 1.084 (0.337–3.493) | 0.991 (0.320–3.072) | 0.540 |
Model 2 | 1(ref) | 0.826 (0.324–2.106) | 0.467 (0.154–1.414) | 0.293 (0.096–0.890) | 0.018 | 1(ref) | 2.128 (0.789–5.738) | 1.032 (0.327–3.259) | 0.955 (0.313–2.918) | 0.468 |
Model 3 | 1(ref) | 0.769 (0.295–2.009) | 0.414 (0.142–1.212) | 0.287 (0.095–0.868) | 0.016 | 1(ref) | 2.119 (0.783–5.730) | 1.083 (0.336–3.489) | 0.989 (0.319–3.064) | 0.539 |
BMI percentile | ||||||||||
Crude | 1(ref) | 0.906 (0.371–2.21) | 0.473 (0.157–1.423) | 0.459 (0.148–1.143) | 0.114 | 1(ref) | 2.870 (0.964–8.541) | 1.877 (0.578–6.099) | 1.271 (0.360–4.486) | 0.807 |
Model 1 | 1(ref) | 0.850 (0.342–20,115) | 0.419 (0.142–1.221) | 0.454 (0.148–1.392) | 0.102 | 1(ref) | 2.883 (0.961–8.650) | 2.016 (0.618–6.580) | 1.341 (0.374–4.813) | 0.917 |
Model 2 | 1(ref) | 0.928 (0.382–2.255) | 0.476 (0.158–1.438) | 0.466 (0.151–1.437) | 0.115 | 1(ref) | 2.899 (0.966–8.698) | 1.898 (0.581–6.201) | 1.271 (0.358–4.510) | 0.806 |
Model 3 | 1(ref) | 0.861 (0.348–2.129) | 0.419 (0.142–1.232) | 0.458 (0.151–1.385) | 0.101 | 1(ref) | 2.962 (0.980–8.955) | 2.047 (0.621–6.746) | 1.354 (0.373–4.912) | 0.920 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.-J.; Baek, J.-H.; Jung, S.-K.; Yang, J.S.; Shin, N.-R.; Park, M.-Y. Association between the Dietary Phytochemical Index and Lower Prevalence of Obesity in Korean Preschoolers. Nutrients 2023, 15, 2439. https://doi.org/10.3390/nu15112439
Han Y-J, Baek J-H, Jung S-K, Yang JS, Shin N-R, Park M-Y. Association between the Dietary Phytochemical Index and Lower Prevalence of Obesity in Korean Preschoolers. Nutrients. 2023; 15(11):2439. https://doi.org/10.3390/nu15112439
Chicago/Turabian StyleHan, Ye-Ji, Jung-Hyun Baek, Seong-Kwan Jung, Joshua SungWoo Yang, Na-Rae Shin, and Mi-Young Park. 2023. "Association between the Dietary Phytochemical Index and Lower Prevalence of Obesity in Korean Preschoolers" Nutrients 15, no. 11: 2439. https://doi.org/10.3390/nu15112439
APA StyleHan, Y. -J., Baek, J. -H., Jung, S. -K., Yang, J. S., Shin, N. -R., & Park, M. -Y. (2023). Association between the Dietary Phytochemical Index and Lower Prevalence of Obesity in Korean Preschoolers. Nutrients, 15(11), 2439. https://doi.org/10.3390/nu15112439