Nutritional Approaches in Children with Overweight or Obesity and Hepatic Steatosis
Abstract
:1. Introduction
2. Search Strategy
3. Childhood Obesity
3.1. Definition
3.2. Epidemiology and Comorbidities
4. Non-Alcoholic Fatty Liver Disease (NAFLD)
4.1. The Physiopathology of NAFLD
4.2. The Diagnosis of NAFLD in Children
4.3. Intestinal Dysbiosis in NAFLD/NASH
4.4. Nutritional Deficiencies in Children with NAFLD
5. Dietary Patterns and Nutritional Supplementation for Pediatric NAFLD
5.1. Dietary Patterns
5.2. Nutritional Supplementation
5.2.1. Antioxidants
- -
- The anti-inflammatory response is promoted by the vitamin’s action in reducing the expression of cytokines such as (TNF-α), interleukin (IL)-1, IL-2, IL-4, IL-6, and IL-8, and in increasing the levels of adiponectin, which suppresses hepatic fatty acid synthesis, reduces liver fibrosis, and prevents cirrhosis [116,117,118].
- -
- The antioxidant effect is enhanced by an increased production of superoxide dismutase (SOD) and acts as a scavenger of hydroxyl, peroxyl, and superoxide radicals, protecting against lipid and low-density lipoprotein (LDL) peroxidation. Thus, increased consumption of vitamin E limits the increased oxidative stress typical of patients with NAFLD. In addition, vitamin E also stimulates the action of antioxidant enzymes, including catalase and glutathione peroxidase [117,119].
- -
- The antiapoptotic effect is due to increased levels of the antiapoptotic protein BCL-2 and decreased levels of the proapoptotic proteins BCL-2 associated-X (BAX) and p53. Furthermore, vitamin E limits the activity of caspase-9 and cytochrome C, which regulate mitochondrial apoptosis, and caspases-8 and 3, involved in the apoptotic pathway [120].
5.2.2. Vitamin D
5.2.3. Polyunsaturated Fatty Acids (PUFAs)
5.2.4. PUFAs + Vitamin D
5.2.5. Probiotics
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seidell, J.C.; Halberstadt, J. The Global Burden of Obesity and the Challenges of Prevention. Ann. Nutr. Metab. 2015, 66 (Suppl. S2), 7–12. [Google Scholar] [CrossRef] [PubMed]
- Wilfley, D.E.; Hayes, J.F.; Balantekin, K.N.; van Buren, D.J.; Epstein, L.H. Behavioral interventions for obesity in children and adults: Evidence base, novel approaches, and translation into practice. Am. Psychol. 2018, 73, 981–993. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Taking Action on Childhood Obesity; World Health Organization: Geneva, Switzerland, 2018; Available online: https://apps.who.int/iris/bitstream/handle/10665/274792/WHO-NMH-PND-ECHO-18.1-eng.pdf (accessed on 7 January 2023).
- World Health Organization (WHO). Prevalence of Obesity among Children and Adolescents. In OECD Analysis on WHO Global Health Observatory Data; WHO: Geneva, Switzerland, 2018; Available online: https://www.who.int/data/gho/indicator-metadata-registry/imr-details/4807 (accessed on 7 January 2023).
- Khan, M.A.; Moverley Smith, J.E. “Covibesity,” a new pandemic. Obes. Med. 2020, 19, 100282. [Google Scholar] [CrossRef]
- Lange, S.J.; Kompaniyets, L.; Freedman, D.S.; Kraus, E.M.; Porter, R.; Blanck, H.M.; Goodman, A.B. Longitudinal Trends in Body Mass Index before and during the COVID-19 Pandemic Among Persons Aged 2–19 Year—United States, 2018–2020. Morb. Mortal. Wkly. Rep. 2021, 70, 1278–1283. [Google Scholar] [CrossRef]
- Prospective Studies Collaboration; Whitlock, G.; Lewington, S.; Sherliker, P.; Clarke, R.; Emberson, J.; Halsey, J.; Oizilbash, N.; Collins, R.; Peto, R. Body-mass index and cause-specific mortality in 900 000 adults: Collaborative analyses of 57 prospective studies. Lancet 2009, 373, 1083–1096. [Google Scholar] [PubMed]
- Heymsfield, S.B.; Wadden, T.A. Mechanisms, Pathophysiology, and Management of Obesity. N. Engl. J. Med. 2017, 376, 254–266. [Google Scholar] [CrossRef]
- Freedman, D.S.; Sherry, B. The validity of BMI as an indicator of body fatness and risk among children. Pediatrics 2009, 124 (Suppl. S1), S23–S34. [Google Scholar] [CrossRef]
- Standard Italiani per la cura dell’obesità SIO-ADI 2016–2017; Tipografia Ceccarelli Acquapendente (VT): Milano, Italy, 2017.
- Istituto Superiore di Sanità. Terapie Educative Dell’obesità e Del Sovrappeso in Età Evolutiva; De Vittoria srl Via degli Aurunci: Roma, Italy, 2014. [Google Scholar]
- Agenda 2030 Per lo Sviluppo Sostenibile. 2015. Available online: https://www.agenziacoesione.gov.it/comunicazione/agenda-2030-per-lo-sviluppo-sostenibile/ (accessed on 8 January 2023).
- World Health Organization (WHO). Malnutrition. Available online: https://data.unicef.org/topic/nutrition/malnutrition/ (accessed on 8 January 2023).
- World Health Organization (WHO). Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 9 January 2023).
- OECD Analyses on WHO Global Health Observatory (2018) Data, “Prevalence of Obesity among Children and Adolescents”. Available online: https://www.oecd-ilibrary.org/sites/67450d67-en/1/2/2/index.html?itemId=/content/publication/67450d67-en&_csp_=77ac5dad9f2cb67b4d2e46c9fc814aa4&itemIGO=oecd&itemContentType=book (accessed on 8 January 2023).
- WHO. European Childhood Obesity Surveillance Initiative (COSI) Highlights 2018–2020. Available online: https://www.who.int/europe/publications/m/item/childhood-obesity-surveillance-initiative-cosi-fact-sheet-highlights-2018-2020 (accessed on 9 January 2023).
- OKkio Alla Salute: Risultati Dell’indagine. 2019. Available online: https://www.epicentro.iss.it/okkioallasalute/indagine-2019-dati#:~:text=OKkio%20alla%20SALUTE%202019%20ha,delle%20sane%20abitudini%20a%20tavola (accessed on 9 January 2023).
- Skinner, A.C.; Perrin, E.M.; Moss, L.A.; Skelton, J.A. Cardiometabolic risks and severity of obesity in children and young adults. N. Engl. J. Med. 2015, 373, 1307–1317. [Google Scholar] [CrossRef]
- Hegarty, R.; Deheragosa, M.; Fitzpatrick, E.; Dhawan, A. Paediatric fatty liver disease (PeFLD): All is not NAFLD-Pathophysiological insight and approach to management. J. Hepatol. 2018, 68, 1286–1299. [Google Scholar] [CrossRef]
- Maffeis, C.; Banzato, C.; Rigotti, F.; Nobili, V.; Valandro, S.; Manfredi, R.; Morandi, A. Biochemical parameters and anthropometry predict NAFLD in obese children. J. Pediatr. Gastroenterol. Nutr. 2011, 53, 590–593. [Google Scholar] [CrossRef]
- Vos, M.B.; Abrams, S.H.; Barlow, S.E.; Caprio, S.; Daniels, S.R.; Kohli, R.; Mouzaki, M.; Sathya, P.; Schwimmer, J.B.; Sundaram, S.S.; et al. NASPGHAN Clinical Practice Guideline for the Diagnosis and Treatment of Nonalcoholic Fatty Liver Disease in Children: Recommendations from the Expert Committee on NAFLD (ECON) and the North American Society of Pediatric Gastroenterology, Hepatology and Nutrition (NASPGHAN). J. Pediatr. Gastroenterol. Nutr. 2017, 64, 319–334. [Google Scholar] [PubMed]
- Schwimmer, J.B.; Pardee, P.E.; Lavine, J.E.; Blumkin, A.K.; Cook, S. Cardiovascular Risk Factors and the Metabolic Syndrome in Pediatric Nonalcoholic Fatty Liver Disease. Circulation 2008, 118, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Pacifico, L.; Bonci, E.; Andreoli, G.; Romaggioli, S.; Di Miscio, R.; Lombardo, C.V.; Chiesa, C. Association of serum triglyceride-to-HDL cholesterol ratio with carotid artery intima-media thickness, insulin resistance and nonalcoholic fatty liver disease in children and adolescents. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 737–743. [Google Scholar] [CrossRef] [PubMed]
- Schwimmer, J.B.; Deutsch, R.; Kahen, T.; Lavine, J.E.; Stanley, C.; Behling, C. Prevalence of fatty liver in children and adolescents. Pediatrics 2006, 118, 1388–1393. [Google Scholar] [CrossRef] [PubMed]
- Schwimmer, J.B.; Deutsch, R.; Rauch, J.B.; Behling, C.; Newbury, R.; Lavine, J.E. Obesity, insulin resistance, and other clinicopathological correlates of pediatric nonalcoholic fatty liver disease. J. Pediatr. 2003, 143, 500–505. [Google Scholar] [CrossRef]
- Denzer, C.; Thiere, D.; Muche, R.; Koenig, W.; Mayer, H.; Kratzer, W.; Wabitsch, M. Gender-Specific prevalences of fatty liver in obese children and adolescents: Roles of body fat distribution, sex steroids, and insulin resistance. J. Clin. Endocrinol. Metab. 2009, 94, 3872–3881. [Google Scholar] [CrossRef]
- Meyer, M.R.; Clegg, D.J.; Prossnitz, E.R.; Barton, M. Obesity, insulin resistance and diabetes: Sex differences and role of oestrogen receptors. Acta Physiol. 2011, 203, 259–269. [Google Scholar] [CrossRef]
- De Nooijer, A.; Vreugdenhil, A.; Karnebeek, K.; van Hasselt, P.M.; Fuchs, S.A. A narrative review of factors associated with the development and progression of non-alcoholic fatty liver disease. GastroHep J. 2019, 1, 180–191. [Google Scholar] [CrossRef]
- Tilg, H.; Moschen, A.R. Evolution of inflammation in nonalcoholic fatty liver disease: The multiple parallel hits hypothesis. Hepatology 2010, 52, 1836–1846. [Google Scholar] [CrossRef]
- Yilmaz, Y. Review article: Is non-alcoholic fatty liver disease a spectrum, or are steatosis and non-alcoholic steatohepatitis distinct conditions? Aliment. Pharmacol. Ther. 2012, 36, 815–823. [Google Scholar] [CrossRef]
- Pandey, S. Association of nonalcoholic fatty liver disease with relative skeletal muscle mass: A public health perspective. Hepatology 2018, 68, 1657. [Google Scholar] [CrossRef] [PubMed]
- Umano, G.R.; Martino, M.; Santoro, N. The association between pediatric NAFLD and common genetic variants. Children 2017, 4, 49. [Google Scholar] [CrossRef] [PubMed]
- Manco, M. Insulin resistance and NAFLD: A dangerous liaison beyond the genetics. Children 2017, 4, 74. [Google Scholar] [CrossRef]
- Huang, Y.; Cohen, J.C.; Hobbs, H.H. Expression and characterization of a PNPLA3 protein isoform (I148M) associated with nonalcoholic fatty liver disease. J. Biol. Chem. 2011, 286, 37085–37093. [Google Scholar] [CrossRef] [PubMed]
- Nassir, F.; Rector, R.S.; Hammoud, G.M.; Ibdah, J.A. Pathogenesis and Prevention of Hepatic Steatosis. Gastroenterol. Hepatology 2015, 11, 167–175. [Google Scholar]
- Fabbrini, E.; Sullivan, S.; Klein, S. Obesity and fatty liver disease: Biochemical, metabolic and clinical implication. Hepatology 2010, 51, 1470–1471. [Google Scholar] [CrossRef]
- Dowman, J.; Tomlinson, J.; Newsome, P. Pathogenesis of non-alcoholic fatty liver disease. Q. J. Med. 2010, 103, 71–83. [Google Scholar] [CrossRef]
- Ferro, D.; Baratta, F.; Pastori, D.; Cocomello, N.; Colantoni, A.; Angelico, F.; Del Ben, M. New insights into the pathogenesis of non-alcoholic fatty liver disease: Gut-derived lipopolysaccharides and oxidative stress. Nutrients 2020, 12, 2762. [Google Scholar] [CrossRef]
- Chen, Z.; Tian, R.; She, Z.; Cai, J.; Li, H. Role of Oxidative Stress in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Free Radic. Boil. Med. 2020, 152, 116–141. [Google Scholar] [CrossRef]
- Mansouri, A.; Gattolliat, C.H.; Asselah, T. Mitochondrial Dysfunction and Signaling in Chronic Liver Diseases. Gastroenterology 2018, 155, 629–647. [Google Scholar] [CrossRef]
- Pickett-Blakely, O.; Young, K.; Carr, R.M. Micronutrients in nonalcoholic fatty liver disease pathogenesis. Cell. Mol. Gastroenterol. Hepatol. 2018, 6, 451–462. [Google Scholar] [CrossRef]
- Trefts, E.; Gannon, M.; Wasserman, D.H. Liver. Curr. Biol. 2017, 27, R1147–R1151. [Google Scholar] [CrossRef] [PubMed]
- Cichoz-Lach, H.; Michalak, A. Oxidative Stress as a Crucial Factor in Liver Diseases. World J. Gastroenterol. 2014, 20, 8082–8091. [Google Scholar] [CrossRef]
- Nobili, V.; Alisi, A.; Mosca, A.; Crudele, A.; Zaffina, S.; Denaro, M.; Smeriglio, A.; Trombetta, D. The antioxidant effects of hydroxytyrosol and vitamin E on pediatric nonalcoholic fatty liver disease, in a clinical trial: A new treatment? Antioxid. Redox Signal. 2019, 31, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Spahis, S.; Alvarez, F.; Ahmed, N.; Dubois, J.; Jalbout, R.; Paganelli, M.; Grzywacz, K.; Delvin, E.; Peretti, N.; Levy, E. Non-alcoholic fatty liver disease severity and metabolic complications in obese children: Impact of omega-3 fatty acids. J. Nutr. Biochem. 2018, 58, 28–36. [Google Scholar] [CrossRef]
- Marra, F.; Gastaldelli, A.; Svegliati Baroni, G.; Tell, G.; Tiribelli, C. Molecular basis and mechanisms of progression of non-alcoholic steatohepatitis. Trends Mol. Med. 2008, 14, 72–81. [Google Scholar] [CrossRef]
- Yadav, A.; Kataria, M.A.; Saini, V.; Yadav, A. Role of leptin and adiponectin in insulin resistance. Clin. Chim. Acta 2013, 417, 80–84. [Google Scholar] [CrossRef]
- Hunter, A.K.; Lin, H.C. Review of Clinical Guidelines in the Diagnosis of Pediatric Nonalcoholic Fatty Liver Disease. Clin. Liver Dis. 2021, 18, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Schwimmer, J.B.; Dunn, W.; Norman, G.J.; Pardee, P.E.; Middleton, M.S.; Kerkar, N.; Sirlin, C.B. SAFETY study: Alanine aminotransferase cutoff values are set too high for reliable detection of pediatric chronic liver disease. Gastroenterology 2010, 138, 1357–1364.e2. [Google Scholar] [CrossRef]
- Vajro, P.; Lenta, S.; Socha, P.; Dhawan, A.; McKiernan, P.; Baumann, U.; Nobili, V. Diagnosis of nonalcoholic fatty liver disease in children and adolescents: Position paper of the ESPGHAN hepatology committee. J. Pediatr. Gastroenterol. Nutr. 2012, 54, 700–713. [Google Scholar] [CrossRef] [PubMed]
- Nobili, V.; Alkhouri, N.; Alisi, A.; Ottino, S.; Lopez, R.; Manco, M.; Feldstein, A.E. Retinol-Binding Protein 4: A Promising Circulating Marker of Liver Damage in Pediatric Nonalcoholic Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2009, 7, 575–579. [Google Scholar] [CrossRef] [PubMed]
- Lebensztejn, D.M.; Wierzbicka, A.; Socha, P.; Pronicki, M.; Skiba, E.; Werpachowska, I.; Kaczmarski, M. Cytokeratin-18 and hyaluronic acid levels predict liver fibrosis in children with non-alcoholic fatty liver disease. Acta Biochim. Pol. 2011, 58, 563–566. [Google Scholar] [CrossRef] [PubMed]
- Goyal, N.P.; Schwimmer, J.B. The progression and natural history of pediatric nonalcoholic fatty liver disease. Clin. Liver Dis. 2016, 20, 325–338. [Google Scholar] [CrossRef] [PubMed]
- Llorente, C.; Schnabl, B. The gut microbiota and liver disease. Cell. Mol. Gastroenterol. Hepatol. 2015, 1, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Guimber, D.; Debray, D.; Bocquet, A.; Briend, A.; Chouraqui, J.-P.; Darmaun, D.; Feillet, F.; Frelut, M.-L.; Hankard, R.; Lapillonne, A.; et al. The role of nutrition in non-alcoholic fatty liver disease treatment in obese children. Arch. De Pediatr. 2022, 29, 1–11. [Google Scholar]
- Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Microbial ecology: Human gut microbes associated with obesity. Nature 2006, 444, 1022–1023. [Google Scholar] [CrossRef] [PubMed]
- Miele, L.; Valenza, V.; La Torre, G.; Montalto, M.; Cammarota, G.; Ricci, R.; Grieco, A. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 2009, 49, 1877–1887. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Baker, S.S.; Gill, C.; Liu, W.; Alkhouri, R.; Baker, R.D.; Gill, S.R. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: A connection between endogenous alcohol and NASH. Hepatology 2013, 57, 601–609. [Google Scholar] [CrossRef]
- Del Chierico, F.; Nobili, V.; Vernocchi, P.; Russo, A.; De Stefanis, C.; Gnani, D.; Furlanello, C.; Zandonà, A.; Paci, P.; Capuani, G.; et al. Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach. Hepatology 2017, 65, 451–464. [Google Scholar] [CrossRef]
- Pan, X.; Kaminga, A.C.; Liu, A.; Wen, S.W.; Luo, M.; Luo, J. Gut Microbiota, Glucose, Lipid, and Water-Electrolyte Metabolism in Children with Nonalcoholic Fatty Liver Disease. Front. Cell. Infect. Microbiol. 2021, 11, 683743. [Google Scholar] [CrossRef]
- Belei, O.; Olariu, L.; Dobrescu, A.; Marcovici, T.; Marginean, O. The relationship between non-alcoholic fatty liver disease and small intestinal bacterial overgrowth among overweight and obese children and adolescents. J. Pediatr. Endocrinol. Metab. 2017, 30, 1161–1168.42. [Google Scholar] [CrossRef]
- Schwimmer, J.B.; Johnson, J.S.; Angeles, J.E.; Behling, C.; Belt, P.H.; Borecki, I.; Bross, C.; Durelle, J.; Goyal, N.P.; Hamilton, G.; et al. Microbiome signatures associated with steatohepatitis and moderate to severe fibrosis in children with nonalcoholic fatty liver disease. Gastroenterology 2019, 157, 1109–1122. [Google Scholar] [CrossRef] [PubMed]
- Buzzetti, E.; Pinzani, M.; Tsochatzis, E.A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 2016, 65, 1038–1048. [Google Scholar] [CrossRef]
- Sharma, M.; Mitnala, S.; Vishnubhotla, R.K.; Mukherjee, R.; Reddy, D.N.; Rao, P.N. The riddle of nonalcoholic fatty liver disease: Progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis. J. Clin. Exp. Hepatol. 2015, 5, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Agrawal, D.K. Immunobiology of Toll-like receptors: Emerging trends. Immunol. Cell Biol. 2006, 84, 333–341. [Google Scholar] [CrossRef]
- Loffredo, L.; Zicari, A.M.; Perri, L.; Carnevale, R.; Nocella, C.; Angelico, F.; Nobili, V. Does Nox2 overactivate in children with nonalcoholic fatty liver disease? Antioxid. Redox Signal. 2018, 30, 1325–1330. [Google Scholar] [CrossRef]
- Leung, C.; Rivera, L.; Furness, J.B.; Angus, P.W. The role of the gut microbiota in NAFLD. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 412–425. [Google Scholar] [CrossRef]
- Johnson, R.J.; Sánchez-Lozada, L.G.; Andrews, P.; Lanaspa, M.A. Perspective: A Historical and Scientific Perspective of Sugar and Its Relation with Obesity and Diabetes. Adv. Nutr. 2017, 8, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Tilg, H.; Zmora, N.; Adolph, T.E.; Elinav, E. The intestinal microbiota fuelling metabolic inflammation. Nat. Rev. Immunol. 2019, 20, 40–54. [Google Scholar] [CrossRef]
- Pan, X.; Wen, S.W.; Kaminga, A.C.; Liu, A. Gut metabolites and inflammation factors in non-alcoholic fatty liver disease: A systematic review and meta-analysis. Sci. Rep. 2020, 10, 8848. [Google Scholar] [CrossRef]
- Kong, L.D. La disbiosi intestinale indotta dal fruttosio dietetico promuove la neuroinfiammazione dell’ippocampo del topo: Un vantaggio degli acidi grassi a catena corta. Microbioma 2019, 7, 98. [Google Scholar]
- Amar, J.; Burcelin, R.; Ruidavets, J.B.; Cani, P.D.; Fauvel, J.; Alessi, M.C.; Chamontin, B.; Ferriéres, J. Energy intake is associated with endotoxemia in apparently healthy men. Am. J. Clin. Nutr. 2008, 87, 1219–1223. [Google Scholar] [CrossRef]
- Famouri, F.; Shariat, Z.; Hashemipour, M.; Keikha, M.; Kelishadi, R. Effects of probiotics on nonalcoholic fatty liver disease in obese children and adolescents. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 413–417.47. [Google Scholar] [CrossRef]
- Hatton, G.; Alterio, T.; Nobili, V.; Mann, J.P. Unmet needs in pediatric NAFLD research: What do we need to prioritize for the future? Expert Rev. Gastroenterol. Hepatol. 2018, 12, 961–967. [Google Scholar] [CrossRef] [PubMed]
- Mora, J.R.; Iwata, M.; von Andrian, U.H. Vitamin effects on the immune system: Vitamins A and D take centre stage. Nat. Rev. Immunol. 2008, 8, 685–698. [Google Scholar] [CrossRef] [PubMed]
- Licata, A.; Zerbo, M.; Como, S.; Cammilleri, M.; Sorei, M.; Montalto, G.; Giannitrapani, L. The role of vitamin D deficiency in Liver disease: To supplement or not supplement? Nutrients 2021, 13, 4014. [Google Scholar] [CrossRef]
- Wimalawansa, S.J. Vitamin D in the new millennium. Curr. Osteoporos. Rep. 2012, 10, 4–15. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, Y.; Luo, F.; Liu, J.; Xiu, L.; Qin, J.; Wang, T.; Yu, N.; Wu, H.; Zou, T. The level of Vitamin D in children and adolescents with nonalcoholic fatty liver disease: A meta-analysis. BioMed Res. Int. 2019, 2019, 7643542. [Google Scholar] [CrossRef]
- Misra, M.; Pacaud, D.; Petryk, A.; Collett-Solberg, P.F.; Kappy, M. Vitamin D deficiency in children and its management: Review of current knowledge and recommendations. Pediatrics 2008, 122, 398–417. [Google Scholar] [CrossRef] [PubMed]
- Black, L.J.; Jacoby, P.; She Ping-Delfols, W.C.; Mori, T.A.; Beilin, L.J.; Olynyk, J.K.; Ayonrinde, O.T.; Huang, R.C.; Holt, P.G.; Hart, P.H.; et al. Low serum 25-hydrocyvitamin D concentrations associate with non-alcoholic fatty liver disease in adolescents independent of adiposity. J. Gastroenterol. Hepatol. 2014, 29, 1215–1222. [Google Scholar] [CrossRef]
- Yodoshi, T.; Orkin, S.; Arce-Clachar, A.C.; Bramlage, K.; Liu, C.; Fei, L.; El-Khider, F.; Dasarathy, S.; Xanthakos, S.A.; Mouzaki, M. Vitamin D deficiency: Prevalence and association with liver disease severity in pediatric nonalcoholic fatty liver disease. Eur. J. Clin. Nutr. 2020, 74, 427–435. [Google Scholar] [CrossRef]
- Nobili, V.; Giorgio, V.; Liccardo, D.; Bedogni, G.; Morino, G.; Alisi, A.; Cianfarani, S. Vitamin D levels and liver histological alterations in childre with nonalcoholic fatty liver disease. Eur. J. Endocrinol. 2014, 170, 547–553. [Google Scholar] [CrossRef]
- Cho, Y.H.; Shim, J.W.; Yang, H.R.; Chang, J.Y.; Moon, J.S.; Ko, J.S. Association between vitamin D deficiency and suspected nonalcoholic fatty liver disease in an adolescent population. Pediatr. Gastroenterol. Hepatol. Nutr. 2019, 22, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. Dietary omega-3 fatty acid deficiency and high fructose intake in the development of metabolic syndrome, brain metabolic abormalities, and non-alcoholic fatty liver diseas. Nutrients 2013, 5, 2901–2923. [Google Scholar] [CrossRef]
- Manco, M.; Bottazzo, G.F.; DeVito, R.; Marcellini, M.; Mingrone, G.; Nobili, V. Nonalcoholic Fatty liver disease in children. J. Am. Coll. Nutr. 2014, 27, 667–676. [Google Scholar] [CrossRef]
- Kirk, S.; Brehm, B.; Saelens, B.E.; Woo, J.G.; Kissel, E.; D’Alessio, D.; Bolling, C.; Daniels, S.R. Role of carbohydrate modification in weight management among obese children: A randomized clinical trial. J. Pediatr. 2012, 161, 320–327. [Google Scholar] [CrossRef]
- Berkowitz, R.I.; Wadden, T.A.; Gehrman, C.A.; Bishop-Gilyard, C.T.; Moore, R.H.; Womble, L.G.; Cronquist, J.L.; Trumpikas, N.L.; Levitt-Katz, L.E.; Xanthopoulos, M.S. Meal replacements in the treatment of adolescent obesity: A randomized controlled trial. Obesity 2011, 19, 1193–1199. [Google Scholar] [CrossRef] [PubMed]
- FFox, C.K.; Kaizer, A.M.; Rudser, K.D.; Nathan, B.M.; Gross, A.C.; Sunni, M.; Abuzzahab, M.J.; Schwartz, B.L.; Kumar, S.; Petryk, A.; et al. Meal-Replacements followed by Topiramate for the Treatment of Adolescent Severe Obesity: A Pilot Randomized Controlled Trial. Obesity 2016, 24, 2553–2561. [Google Scholar] [CrossRef] [PubMed]
- Jebeile, H.; Gow, M.L.; Lister, N.B.; Haghighi, M.M.; Ayer, J.; Cowell, C.T.; Baur, L.; Garnett, S.P. Intermittent Energy Restriction Is a Feasible, Effective, and Acceptable Intervention to Treat Adolescents with Obesity. J. Nutr. 2019, 149, 1189–1197. [Google Scholar] [CrossRef]
- Andela, S.; Burrows, T.L.; Baur, L.A.; Coyle, D.H.; Collins, C.E.; Gow, M.L. Efficacy of very low-energy diet programs for weight loss: A systematic review with meta-analysis of intervention studies in children and adolescents with obesity. Obes. Rev. 2019, 20, 871–882. [Google Scholar] [CrossRef]
- Ramon-Krauel, M.; Salsberg, S.L.; Ebbeling, C.B.; Voss, S.D.; Mulkern, R.V.; Apura, M.M.; Cooke, E.A.; Sarao, K.; Jonas, M.M.; Ludwig, D.S.; et al. A low-glycemic-load versus low-fat diet in the treatment of fatty liver in obese children. Child Obes. 2013, 9, 252–260. [Google Scholar] [CrossRef]
- Vancells Lujan, P.; Viñas Esmel, E.; Sacanella Meseguer, E. Overview of Non-Alcoholic Fatty Liver Disease (NAFLD) and the Role of Sugary Food Consumption and Other Dietary Components in Its Development. Nutrients 2021, 13, 1442. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Gong, S.; Ye, S.Q.; Lyman, B.; Geng, L.; Chen, P.; Li, D.-Y. Non-Alcoholic fatty liver disease in children: Focus on nutritional interventions. Nutrients 2014, 6, 4691–4705. [Google Scholar] [CrossRef] [PubMed]
- Thoma, C.; Day, C.P.; Trenell, M.I. Lifestyle interventions for the treatment of non-alcoholic fatty liver disease in adults: A systematic review. J. Hepatol. 2012, 56, 255–266. [Google Scholar] [CrossRef]
- Mouzaki, M.; Allard, J.P. The role of nutrients in the development, progression, and treatment of nonalcoholic fatty liver disease. J. Clin. Gastroenterol. 2012, 46, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Africa, J.A.; Newton, K.P.; Schwimmer, J.B. Lifestyle onterventions including nutrition, exercise and supplements for nonalcoholic fatty liver disease in children. Dig. Dis. Sci. 2016, 61, 1375–1386. [Google Scholar] [CrossRef]
- Grønbæk, H.; Lange, A.; Birkebæk, N.H.; Holland-Fisher, P.; Solvig, J.; Hørlyck, A.; Kristensen, K.; Rittig, S.; VIlstrup, H. Effect of a 10-week weight loss camp on fatty liver dieseae and insulin sensitivity in obese Danish children. J Pediatr. Gastroenterol. Nutr. 2012, 54, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Kesse-Guyot, E.; Ahluwalia, N.; Lassale, C.; Hercberg, S.; Fezeu, L.; Lairon, D. Adherence to Mediterranean diet reduces the risk of metabolic syndrome: A 6-year prospective study. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 677–683. [Google Scholar] [CrossRef]
- Schwimmer, J.B.; Ugalde-Nicalo, P.; Welsh, J.A.; Angeles, J.E.; Cordero, M.; Harlow, K.E.; Alazraki, A.; Durelle, J.; Knight-Scott, J.; Newton, K.P.; et al. Effect of a Low Free Sugar Diet vs Usual Diet on Nonalcoholic Fatty Liver Disease in Adolescent Boys. J. Am. Med. Assoc. 2019, 321, 256. [Google Scholar] [CrossRef]
- Ryan, M.C.; Itsiopoulos, C.; Thodis, T.; Ward, G.; Trost, N.; Hofferberth, S.; O’dea, K.; Desmond, P.V.; Johnson, N.A.; Wilson, A.M. The Mediterranean diet improves hepatic steatosis and insulin sensitivity in individuals with non-alcoholic fatty liver disease. J. Hepatol. 2013, 59, 138–143. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines: Sugars Intake for Adults and Children. Available online: https://www.who.int/nutrition/publications/guidelines/sugars_intake/en (accessed on 13 January 2023).
- Welsh, J.A.; Wang, Y.; Figueroa, J.; Brumme, C. Sugar intake by type (added vs. naturally occurring) and physical form (liquid vs. solid) and its varying association with children’s body weight, NHANES 2009–2014. Pediatr. Obes. 2018, 13, 213–221. [Google Scholar] [CrossRef]
- Sullivan, J.S.; Ie, M.T.; Pan, Z.; Rivard, C.; Love-Osborne, K.; Robbins, K.; Johnson, R.J.; Sokol, R.J.; Sundaram, S.S. Oral fructose abstorption in obses children with non-alcoholic fatty liver disease. Pediatr. Obes. 2014, 10, 188–195. [Google Scholar]
- Mager, D.R.; Iñiguez, I.R.; Gilmour, S.; Yap, J. The effect of a low Fructose and Low Glycemic Index/Load (FRAGILE) dietary intervention on indices of liver function, cardiometabolic risk factors, and body composition in children and adolescents with nonalcoholic fatty liver disease (NAFLD). JPEN J. Parenter. Enteral. Nutr. 2015, 39, 73–84. [Google Scholar] [CrossRef]
- Jin, R.; Welsh, J.A.; Ie, N.A.; Holzberg, J.; Sharma, P.; Martin, D.R.; Vos, M.B. Dietary fructose reduction improves markers of cardiovascular disease risk in Hispanic-American adolescents with NAFLD. Nutrients 2014, 6, 3187–3201. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, J.-M.; Noworolski, S.M.; Erkin-Cakmak, A.; Korn, N.J.; Wen, M.J.; Tai, V.W.; Jones, G.M.; Palii, S.P.; Velasco-Alin, M.; Pan, K.; et al. Effects of dietary fructose restriction on liver fat, de novo lipogenesis, and insulin kinetics in children with obesity. Gastroenterology 2017, 153, 743–752. [Google Scholar] [CrossRef]
- Serra-Majem, L.; Tomaino, L.; Dernini, S.; Berry, E.M.; Lairon, D.; de la Cruz, J.N.; Bach-Faig, A.; Donini, L.M.; Medina, F.X.; Belahsen, R.; et al. Updating the Mediterranean Diet Pyramid towards sustainability: Focus on environmental concerns. Int. J. Environ. Res. Public Health 2020, 17, 8758. [Google Scholar] [CrossRef]
- Keys, A.; Menotti, A.; Karvonen, M.J.; Aravanis, C.; Blackburn, H.; Buzina, R.; Djordjevic, B.S.; Dontas, A.S.; Fidanza, F.; Keys, M.H.; et al. The diet and 15-year death rate in the seven countries study. Am. J. Epidemiol. 1986, 124, 903–915. [Google Scholar] [CrossRef] [PubMed]
- Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F.X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. Mediterranean diet foundation expert group: Mediterranean diet pyramid today. science and cultural updates. Public Health Nutr. 2011, 14, 2274–2284. [Google Scholar] [CrossRef] [PubMed]
- Anania, C.; Perla, F.M.; Olivero, F.; Pacifico, L.; Chiesa, C. Mediterranean diet and nonalcoholic fatty liver disease. World J. Gastroenterol. 2018, 24, 2083–2094. [Google Scholar] [CrossRef] [PubMed]
- Yurtdaş, G.; Akbulut, G.; Baran, M.; Yılmaz, C. The effects of Mediterranean diet on hepatic steatosis, oxidative stress, and inflammation in adolescents with non-alcoholic fatty liver disease: A randomized controlled trial. Pediatr. Obes. 2022, 17, e12872. [Google Scholar] [CrossRef] [PubMed]
- Akbulut, U.E.; Isik, I.A.; Atalay, A.; Eraslan, A.; Durmus, E.; Turkmen, S.; Yurttas, A.S. The effect of a Mediterranean diet vs. a low-fat diet on non-alcoholic fatty liver disease in children: A randomized trial. Int. J. Food Sci. Nut. 2022, 73, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Della Corte, C.; Mosca, A.; Vania, A.; Alterio, A.; Iasevoli, S.; Nobili, V. Good adherence to the Mediterranean diet reduces the risk for NASH and diabetes in pediatric patients with obesity: The results of an Italian Study. Nutrition 2017, 39–40, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Raza, S.; Tewari, A.; Rajak, S.; Sinha, R.A. Vitamins and non-alcoholic fatty liver disease: A Molecular Insight ☆. Liver Res. 2021, 5, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Chalasani, N.; Younossi, Z.; LaVine, J.E.; Diehl, A.M.; Brunt, E.M.; Cusi, K.; Charlton, M.; Sanyal, A.J. The diagnosis and management of non-alcoholic fatty liver disease: Practice guideline by the American association for the study of liver diseases, American college of gastroenterology, and the American gastroenterological association. Hepatology 2012, 55, 2005–2023. [Google Scholar] [CrossRef] [PubMed]
- Rimbach, G.; Moehring, J.; Huebbe, P.; Lodge, J.K. Gene-regulatory activity of alpha-tocopherol. Molecules 2010, 15, 1746–1761. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, H.; Ahad, A.; Iqbal, J.; Siddiqui, W.A. Pharmacological potential of tocotrienols: A review. Nutr. Metab. 2014, 11, 52. [Google Scholar] [CrossRef]
- Mohseni, F.; Moghbelinejad, S.; Najafipour, R. Major components of metabolic parameters and nutritional intakes in different genotypes of adiponectin +276 G>T gene polymorphism in non-diabetes and non-alcoholic iranian fatty liver patients. Avicenna J. Med. Biotechnol. 2017, 9, 155–161. [Google Scholar]
- Azman, N.H.E.N.; Goon, J.A.; Ghani, S.M.A.; Hamid, Z.; Ngah, W.Z.W. Comparing palm oil, tocotrienol-rich fraction and alpha-tocopherol supplementation on the antioxidant levels of older adults. Antioxidants 2018, 7, 74. [Google Scholar] [CrossRef]
- Jin, X.; Song, L.; Liu, X.; Chen, M.; Li, Z.; Cheng, L.; Ren, H. Protective efficacy of vitamins C and E on p,p’-DDT-induced cytotoxicity via the ROS-mediated mitochondrial pathway and NF-kappaB/FasL pathway. PLoS ONE 2014, 9, e113257. [Google Scholar] [CrossRef]
- Ghergherehchi, R.; Hazhir, N.; Gharehbaghi, M.M. Lifestyle intervention and vitamin E therapy in obese children with nonalcoholic fatty liver disease. J. Compr. Pediatr. 2013, 4, 62–65. [Google Scholar] [CrossRef]
- D’Adamo, E.; Marcovecchio, M.L.; Giannini, C.; de Giorgis, T.; Chiavaroli, V.; Chiarelli, F.; Mohn, A. Improved oxidative stress and cardio-metabolic status in obese prepubertal children with liver steatosis treated with lifestyle combined with vitamin E. Free Radic. Res. 2013, 47, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Sarkhy, A.A.; Al-Hussaini, A.A.; Nobili, V. Does vitamin E improve the outcomes of pediatric nonalcoholic fatty liver disease? A systematic review and meta-analysis. Saudi J. Gastroenterol. 2014, 20, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Shiasi, A.K.; Taghavi, A.A.; Moazami, G.R.; Talari, H.; Kamran HA, M.I.; Akbari, H.; Akbari, N. Effect of vitamin E and metformin on fatty liver disease in obese children—Randomized clinical trial. Iran. J. Public Health 2014, 43, 123–141. [Google Scholar]
- Colica, C.; Di Renzo, L.; Trombetta, D.; Smeriglio, A.; Bernardini, S.; Cioccoloni, G.; Costa de Miranda, R.; Gualtieri, P.; Sinibaldi Salimei, P.; De Lorenzo, A. Antioxidant Effects of a Hydroxytyrosol-Based Pharmaceutical Formulation on Body Composition, Metabolic State, and Gene Expression: A Randomized Double-Blinded, Placebo-Controlled Crossover Trial. Oxidative Med. Cell. Longev. 2017, 2017, 2473495. [Google Scholar] [CrossRef] [PubMed]
- Mosca, A.; Crudele, A.; Smeriglio, A.; Braghini, M.R.; Panera, N.; Comparcola, D.; Alterio, A.; Sartorelli, M.R.; Tozzi, G.; Raponi, M.; et al. Antioxidant activity of Hydroxytyrosol and Vitamin E reduces systemic inflammation in children with paediatric NAFLD. Dig. Liver Dis. 2021, 53, 1154–1158. [Google Scholar] [CrossRef]
- Liyanagedera, S.; Williams, R.P.; Veraldi, S.; Nobili, V.; Mann, J.P. The pharmacological management of NAFLD in children and adolescents. Expert Rev. Clin. Pharmacol. 2017, 10, 1225–1237. [Google Scholar] [CrossRef]
- Trauner, M.; Claudel, T.; Fickert, P.; Moustafa, T.; Wagner, M. Bile acids as regulators of hepatic lipid and glucose metabolism. Dig. Dis. 2010, 28, 220–224. [Google Scholar] [CrossRef]
- Cho, T.; Kim, Y.J.; Paik, S.S. The efficacy of pharmacological treatment in pediatric nonalcoholic Fatty liver disease. Pediatr. Gastroenterol. Hepatol. Nutr. 2012, 15, 256–265. [Google Scholar] [CrossRef]
- Hussain, M.; Iqbal, J.; Malik, S.A.; Waheed, A.; Shabnum, S.; Akhtar, L.; Saeed, H. Effect of vitamin D supplementation on various parameters in non-alcoholic fatty liver disease patients. Pak. J. Pharm. Sci. 2019, 32, 1343–1348. [Google Scholar]
- El Amrousy, D.; Abdelhai, D.; Shawky, D. Vitamin D and nonalcoholic fatty liver disease in children: A randomized controlled clinical trial. Eur. J. Pediat. 2022, 181, 579–586. [Google Scholar] [CrossRef]
- St-Jules, D.E.; Watters, C.A.; Brunt, E.M.; Wilkens, L.R.; Novotny, R.; Belt, P.; Lavine, J.E. Estimation of fish and omega-3 fatty acid intake in pediatric nonalcoholic fatty liver disease. J. Pediatr. Gastroenterol. Nutr. 2013, 57, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim. Et Biophisica Acta 2015, 1851, 469–484. [Google Scholar] [CrossRef] [PubMed]
- Dionysopoulos, G.; Kalopitas, G.; Vadarlis, A.; Bakaloudi, D.R.; Gkiourtzis, N.; Karanika, E.; Tsekitsidi, E.; Chourdakis, M. Can omega-3 fatty acids be beneficial in pediatric NAFLD? A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2022, 11, 1–9. [Google Scholar]
- Clerc, P.; Mouzaki, M.; Goldman, R.D. Omega-3 for nonalcoholic fatty liver disease in children. Can. Fam. Physician 2019, 65, 34–38. [Google Scholar]
- Pacifico, L.; Bonci, E.; Di Martino, M.; Versacci, P.; Andreoli, G.; Silvestri, L.M.; Chiesa, C. A double-blind, placebo-controlled randomized trial to evaluate the efficacy of docosahexaenoic acid supplementation on hepatic fat and associated cardiovascular risk factors in overweight children with nonalcoholic fatty liver disease. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 734–741. [Google Scholar] [CrossRef]
- Janczyk, W.; Socha, P.; Lebensztejn, D.; Wierzbicka, A.; Mazur, A.; Neuhoff-Murawaska, J.; Matusik, P. Omega-3 fatty acids for treatment of non-alcoholic fatty liver disease: Design and rationale of randomized controlled trial. BMC Pediatr. 2013, 13, 85. [Google Scholar] [CrossRef]
- Nobili, V.; Alisi, A.; Della Corte, C.; Risè, P.; Galli, C.; Agostoni, C.; Bedogni, G. Docosahexaenoic acid for the treatment of fatty liver: Randomised controlled trial in children. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 1066–1070. [Google Scholar] [CrossRef]
- Spahis, S.; Alvarez, F.; Dubois, J.; Ahmed, N.; Peretti, N.; Levy, E. Plasma fatty acid composition in French. Canadian children with non-alcoholic fatty liver disease: Effect of n-3 PUFA supplementation. Prostaglandins Leukot. Essent. Fat. Acids 2015, 99, 25–34. [Google Scholar] [CrossRef]
- Boyraz, M.; Pirgon, Ö.; Dündar, B.; Çekmez, F.; Hatipoğlu, N. Long-term treatment with n-3 polyunsaturated fatty acids as a monotherapy in children with nonalcoholic fatty liver disease. J. Clin. Res. Pediatr. Endocrinol. 2015, 7, 121–127. [Google Scholar] [CrossRef]
- Rahimlou, M.; Ahmadnia, H.; Hekmatdoost, A. Dietary supplements and pediatric non-alcoholic fatty liver disease: Present and the future. World J. Hepatol. 2015, 7, 2597–2602. [Google Scholar] [CrossRef]
- Della Corte, C.; Carpino, G.; De Vito, R.; De Stefanis, C.; Alisi, A.; Cianfarani, S.; Oversi, D.; Mosca, A.; Stronati, L.; Cucchiara, S.; et al. Docosahexanoic acid plus vitamin D treatment improves features of NAFLD in children with serum vitamin D deificiency: Results from a single center trial. PLoSONE 2016, 11, e0168216. [Google Scholar] [CrossRef] [PubMed]
- Gkiourtzis, Ν.; Kalopitas, G.; Vadarlis, A.; Bakaloudi, D.R.; Dionysopoulos, G.; Karanika, E.; Tsekitsidi, E.; Chourdakis, M. The Benefit of Probiotics in Pediatric Nonalcoholic Fatty Liver Disease: A Meta-analysis of Randomized Control Trials. J. Pediatr. Gastroenterol. Nutr. 2022, 75, e31–e37. [Google Scholar] [CrossRef] [PubMed]
- Avelar-Rodríguez, D.; Peña-Vélez, R.; Popov, J.; Hill, L.; Ryan, P.M. Probiotics and non-alcoholic fatty liver disease in children and adolescents: A systematic review. Rev. Esp. de Enferm. Dig. 2022, 10, 17235. [Google Scholar] [CrossRef] [PubMed]
- Idalsoaga, F.; Kulkarni, A.V.; Mousa, O.Y.; Arrese, M.; Arab, J.P. Non-alcoholic fatty liver disease and alcohol-related liver disease: Two intertwined entities. Front. Med. 2020, 7, 448. [Google Scholar] [CrossRef]
- Wójcik-Cichy, K.; Koślińska-Berkan, E.; Piekarska, A. The influence of NAFLD on the risk of atherosclerosis and cardiovascular diseases. Clin. Exp. Hepatol. 2018, 4, 1–6. [Google Scholar] [CrossRef]
- Hashimoto, E.; Tokushige, K.; Ludwig, J. Diagnosis and classification of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis: Current concepts and remaining challenges. Hepatol. Res. 2015, 45, 20–28. [Google Scholar] [CrossRef]
- Doulberis, M.; Kotronis, G.; Gialamprinou, D.; Kountouras, J.; Katsinelos, P. Non-alcoholic fatty liver disease: An update with special focus on the role of gut microbiota. Metabolism 2017, 71, 182–197. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, X.; Zhang, L.; Zheng, K.; Xiong, J.; Li, J.; Cong, C.; Gong, Z.; Mao, J. Effect of Probiotics Therapy on Nonalcoholic Fatty Liver Disease. Comput. Math. Methods Med. 2022, 2022, 7888076. [Google Scholar] [CrossRef]
- Nobili, V.; Putignani, L.; Mosca, A.; Del Chierico, F.; Vernocchi, P.; Alisi, A.; Stronati, L.; Cucchiara, S.; Toscano, M.; Drago, L. Bifidobacteria and lactobacilli in the gut microbiome of children with non-alcoholic fatty liver disease: Which strains act as health players? Arch. Med. Sci. 2018, 14, 81–87. [Google Scholar] [CrossRef]
- Eslamparast, T.; Eghtesad, S.; Hekmatdoost, A.; Poustchi, H. Probiotics and Nonalcoholic Fatty liver disease. Middle East J. Dig. Dis. 2013, 5, 129–136. [Google Scholar]
- Alisi, A.; Bedogni, G.; Baviera, G.; Giorgio, V.; Porro, E.; Paris, C.; Giammaria, P.; Reali, L.; Anania, F.; Nobili, V. Randomised clinical trial: The beneficial effects of VSL#3 in obese children with non-alcoholic steatohepatitis. Aliment. Pharmacol. Ther. 2014, 39, 1276–1285. [Google Scholar] [PubMed]
- Mencarelli, A.; Distrutti, E.; Renga, B.; D’Amore, C.; Cipriani, S.; Palladino, G.; Fiorucci, S. Probiotics modulate intestinal expression of nuclear receptor and provide counter-regulatory signals to inflammation-driven adipose tissue activation. PLoS ONE 2011, 6, e22978. [Google Scholar] [CrossRef] [PubMed]
- Goyal, P.; Thapa, B.R.; Sharma, N.R.; Bhatia, A. Probiotic and lifestyle modification in obese pediatrics with non-alcoholic fatty liver disease. Indian J. Community Health 2019, 31, 1. [Google Scholar] [CrossRef]
- Rodrigo, T.; Dulan, S.; Seneviratne, S.N.; De Silva, A.P.; Fernando, J.; De Silva, J.; Jayasekera Vicramasinghe, V.P. Effects of probiotics combined with dietary and lifestyle modification on clinical, biochemical and radiological parameters in obese children with nonalcoholic fatty liver disease/nonalcoholic steatohepatitis: A randomized clinical trial. Clin. Exp. Pediatr. 2022, 65, 304–311. [Google Scholar] [CrossRef]
- Mitchel, E.B.; Lavine, J.E. Review article: The management of paediatric nonalcoholic fatty liver disease. Aliment. Pharmacol. Ther. 2014, 40, 1155–1170. [Google Scholar] [CrossRef]
- Theodoridis, X.; Kalopitas, G.; Vardalis, A.; Dimitra, R.B.; Gkiourtzis, N.; Dionysopoulos, G.; Karanika, E.; Tsekitsidi, E.; Chourdakis, M. Comparative efficacy of different treatment modalities in the management of pediatric non-alcoholic fatty liver disease: A systematic review and network meta-analysis. Pharmacol. Ther. 2022, 240, 108294. [Google Scholar] [CrossRef]
0–2 Years (Children up to 24 Month) (WHO 2006) | 2–5 Years (WHO 2006) | 5–18 Years (WHO 2007) |
---|---|---|
Overweight risk > 85° percentile | ||
Overweight > 97° percentile | Overweight > 85° percentile | Overweight > 85° percentile |
Obesity > 99° percentile | Obesity > 97° percentile | Obesity > 97° percentile |
References | Population (Age) | Duration | Treatment | Results |
---|---|---|---|---|
Ghergherehchi et al. [121] | 33 children with obesity and NAFDL | 6 months | Group 1: lifestyle modification + vitamin E (400 IU) Group 2: a lifestyle modification + placebo | Reduction in BMI, ALT, AST, triglycerides, total and LDL cholesterol equally in both groups except for LDL cholesterol that decreased more in group 1. |
D’Adamo et al. [122] | 42 prepubertal children with obesity and NAFLD | 6 months | Group 1: vitamin E supplementation (600 mg/day) intervention group + nutritional and physical activity recommendations Group 2: control group + nutritional and physical activity recommendations | Reduction in BMI, waist circumference, and fasting glucose in both groups. |
Shiasi et al. [124] | 119 children with obesity and NAFLD | 2 months | Group 1: vitamin E supplementation (800 IU/day or 400 IU/day) Group 2: metformin | No significant differences between the two treatments on liver ultrasonography. |
Nobili [44] | 80 children and pre-adolescents with biopsy-proven NAFLD | 4 months | Treatment arm: 40 subjects received 7.5 mg of HXT and 10 mg of Vitamin E Placebo arm: the others received 240 mg medium- chain triglycerides (MCTs) as placebo | In the treatment arm, reduction in triglycerides and insulin levels, and an improvement in HOMA-IR were observed and also an increase in GSH and GSSG. The number of children affected by severe steatosis decreased. |
Mosca [126] | 70 children and pre-adolescents with biopsy-proven NAFLD | 4 months | Treatment arm: 40 subjects Received 7.5 mg of HXT and 10 mg of Vitamin E Placebo arm: the others received 240 mg medium-chain triglycerides (MCTs) as placebo | IL-1β and TNF-α decreased in both groups, while IL-6 decreased and IL-10 increased significantly only in the HXT+VitE group. |
Cho [129] | 20 children aged 7–14 years with obesity and NAFLD | observation period: 16.76 ± 10.05 months of treatment 11.00 ± 9.40 | First-line intervention: lifestyle modification Second-line intervention: vitamin E (800 IU/day) + UDCA (5–10 mg/day) | Vitamin E+ UDCA with BMI reduction determined a statistically significant improvements in AST, ALT, AST/ALT ratio, alkaline phosphatase, total bilirubin levels, and γ-GT at follow up, compared to the baseline. |
Reference | Population | Duration | Treatment | Results |
---|---|---|---|---|
El Amrousy et al., 2021 [131] | 100 children with biopsy-proven NAFLD | 6 months | Group 1: treatment group (2000 IU/day of vitamin D) Group 2: placebo group | Improvements in hepatic steatosis and lobular inflammation by liver biopsy and a decrease in AST, ALT, triglycerides, LDL, fasting insulin, and glycemia and HOMA-IR were observed. Moreover, vitamin D levels and HDL cholesterol significantly increased in the treated group. |
References | Population | Duration | Treatment | Results |
---|---|---|---|---|
Pacifico et al., 2015 [136] | 51 children with obesity and NAFLD | 6 months | Group 1 (n = 25): DHA supplementation Group 2 (n = 26): placebo | Reduction of 53.4% of liver fat in the DHA group compared to 22.6% in the placebo group. VAT and EAT reduced by 7.8% and 14.2%, respectively, in the DHA group, compared to 2.2% and 1.7% in the placebo group. Fasting insulin and triglycerides also decreased significantly in the DHA-treated group. |
Janczyk et al., 2013 [137] | 76 children with obesity and NAFLD | 6 months | Omega-3 group: 450–1300 mg omega-3 fatty acids (containing DHA and EPA in 3:2 proportion) in two doses per day. Placebo group: the same dose of sunflower oil Both groups were invited to follow a hypocaloric diet and physical activity | ALT and GGT significantly decreased but no changes were observed in ALT levels compared to baseline. |
Nobili et al., 2013 [138] | 60 children with obesity and NAFLD | 12 months | Group 1: DHA supplementation (250 mg/day and 500 mg/day Group 2: placebo | Reduction in both triglycerides and ALT levels and improvement in steatosis in group 1. |
Spahis et al., 2015 [139] | 21 children with obesity and NAFLD randomized in two groups and 33 healthy children | 6 months | The study consisted of two phases: (1) Omega 3 supplementation (2 g of fish oil/daily providing 1.2 g of omega 3) to a group and a placebo (500 mg of sunflower oil with 3.75 U vitamin E.) to the other group for 3 months; (2) Both groups received the omega 3 supplementation, 4 capsules containing 500 mg of fish oil (300 mg of omega 3 with 3.75 U vitamin E) for the last 3 months. | The 21 NAFLD children showed an increase in the proportion of EPA and DHA at the expense of n-6 FAs after the treatment. |
Spahis et al., 2018 [45] | 20 male children with obesity and NAFLD | 6 months | Participants were classified as sNAFLD (severe) or mNAFLD (mild). To sNAFLD patients, 2 g of n-3 PUFA was administered | Increased EPA and DHA concentrations in red blood cells and a reduction in FLI, ALT, and ALT/AST ratio and in lipid profile in the treated group. |
Boyraz et al., 2015 [140] | 108 children with obesity and NAFLD | 12 months | PUFA group: diet + 1000 mg PUFA Placebo group: diet + placebo | Higher HDL levels and lower Triglycerides, insulin, glycemia, and HOMA-IR in the PUFA group. |
Reference | Population | Duration | Treatment | Results |
---|---|---|---|---|
Della Corte et al. [142] | 41 children with obesity and NAFLD | 24 weeks | Treatment arm: a mixture of vitamin D (800 IU) + DHA (500 mg) once/daily Placebo arm | Improved insulin resistance, lipid profile, ALT, and liver damage (NAFLD activity score). |
References | Population | Duration | Treatment | Results |
---|---|---|---|---|
Nobili et al., 2018 [150] | 115 = 61 children with obesity and NAFLD/NASH and 54 healthy controls | Observational study | 4 groups: (1) children with obesity, (2) children with obesity and NAFLD, (3) children with obesity and NASH, and (4) healthy children. | Increased Lactobacillus spp. (especially L. mucosae) in groups 1, 2, and 3 compared to healthy controls. |
Famouri et al., 2017 [73] | 64 children with obesity and NAFLD | 12 weeks | Group 1: 1 capsule of probiotic Group 2: placebo | Reduction in AST, ALT, and WC in group 1 and reduction in liver ultrasound in both groups. |
Alisi et al., 2014 [152] | 44 children with obesity and NAFLD | 4 months | Group 1: VSL#3 (n = 22) Group 2: placebo (n = 22) | VSL#3 determined a significant improvement in NAFLD, with a decrease in BMI and GLP-1 and an increase in aGLP1. |
Goyal et al., 2019 [154] | 116 children and adolescents with obesity and NAFLD | 4 months | 4 groups: (1) VSL#3 + lifestyle modification, (2) VSL#3, (3) lifestyle modification, and (4) placebo | Group 1 showed a significant reduction in anthropometric and biochemical parameters compared to the other groups. |
Rodrigo et al., 2021 [155] | 84 children with obesity and NAFLD | 6 months | Group 1: structured diet, physical activity, and probiotic Group 2: structured diet, physical activity, and placebo | BMI decreased in both groups; AST, ALT, AST/ALT ratio, and alkaline phosphatase decreased in the placebo group. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spiezia, C.; Di Rosa, C.; Fintini, D.; Ferrara, P.; De Gara, L.; Khazrai, Y.M. Nutritional Approaches in Children with Overweight or Obesity and Hepatic Steatosis. Nutrients 2023, 15, 2435. https://doi.org/10.3390/nu15112435
Spiezia C, Di Rosa C, Fintini D, Ferrara P, De Gara L, Khazrai YM. Nutritional Approaches in Children with Overweight or Obesity and Hepatic Steatosis. Nutrients. 2023; 15(11):2435. https://doi.org/10.3390/nu15112435
Chicago/Turabian StyleSpiezia, Chiara, Claudia Di Rosa, Danilo Fintini, Pietro Ferrara, Laura De Gara, and Yeganeh Manon Khazrai. 2023. "Nutritional Approaches in Children with Overweight or Obesity and Hepatic Steatosis" Nutrients 15, no. 11: 2435. https://doi.org/10.3390/nu15112435
APA StyleSpiezia, C., Di Rosa, C., Fintini, D., Ferrara, P., De Gara, L., & Khazrai, Y. M. (2023). Nutritional Approaches in Children with Overweight or Obesity and Hepatic Steatosis. Nutrients, 15(11), 2435. https://doi.org/10.3390/nu15112435