Impact of Dietary Fiber on Inflammation and Insulin Resistance in Older Patients: A Narrative Review
Abstract
:1. Introduction
2. Mechanisms of Chronic Inflammation in Older Adults
3. Inflammaging and Insulin Resistance
4. Inflammation in the Older Adult Acutely Ill
5. Fiber, Inflammation, and Insulin Resistance
6. Overall Fiber Effect on Microbiota, Inflammation, and Intermediate Metabolism
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DNA | Deoxyribonucleic Acid |
SIPS | Stress-Induced Premature Senescence |
IL | Interleukin |
TGF-β | Transforming Growth Factor Beta |
NFkB | Nuclear Factor Kappa B |
NLRP3 | NACHT, LRR and PYD Domains-Containing Protein 3 |
NAD+ | Nicotinamide Adenine Dinucleotide |
ROS | Reactive Oxygen Species |
FoxO6 | Forkhead Transcription Factor 6 |
SHR | Stress Hyperglycemia Ratio |
COPD | Chronic Obstructive Pulmonary Disease |
SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus 2 |
DAMPs | Damage-Associated Molecular Patterns |
ARDS | Acute Respiratory Distress Syndrome |
COVID-19 | Coronavirus Disease 2019 |
ICU | Intensive Care Unit |
NK | Natural Killer |
SASPs | Senescence-Associated Secretory Phenotype |
SCFA | Short-Chain Fatty Acids |
COX2 | Cyclooxygenase-2 |
mRNA | Messenger Ribonucleic Acid |
CRP | C-Reactive Protein |
MUC2 | Mucin 2 |
PPARγ | Peroxisome Proliferator-Activated Receptor γ |
CXCL1 | CXC Motif Chemokine Ligand 1 |
GLP1 | Glucagon-Like Peptide 1 |
PYY | Peptide tyrosine tyrosine |
AMPK | Adenosine Monophosphate-Activated Protein Kinase |
GLUT4 | Glucose Transporter Type 4 |
References
- Shivakoti, R.; Biggs, M.L.; Djoussé, L.; Durda, P.J.; Kizer, J.R.; Psaty, B.; Reiner, A.P.; Tracy, R.P.; Siscovick, D.; Mukamal, K.J. Intake and Sources of Dietary Fiber, Inflammation, and Cardiovascular Disease in Older US Adults. JAMA Netw. Open 2022, 5, e225012. [Google Scholar] [CrossRef] [PubMed]
- Rea, I.M.; Gibson, D.S.; McGilligan, V.; McNerlan, S.E.; Denis Alexander, H.; Ross, O.A. Age and Age-Related Diseases: Role of Inflammation Triggers and Cytokines. Front. Immunol. 2018, 9, 586. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, C.; Campisi, J. Chronic Inflammation (Inflammaging) and Its Potential Contribution to Age-Associated Diseases. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2014, 69, S4–S9. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, C.; Garagnani, P.; Parini, P.; Giuliani, C.; Santoro, A. Inflammaging: A New Immune–Metabolic Viewpoint for Age-Related Diseases. Nat. Rev. Endocrinol. 2018, 14, 576–590. [Google Scholar] [CrossRef] [PubMed]
- Wiebe, N.; Stenvinkel, P.; Tonelli, M. Associations of Chronic Inflammation, Insulin Resistance, and Severe Obesity with Mortality, Myocardial Infarction, Cancer, and Chronic Pulmonary Disease. JAMA Netw. Open 2019, 2, e10456. [Google Scholar] [CrossRef]
- Franceschi, C.; Bonafè, M.; Valensin, S.; Olivieri, F.; de Luca, M.; Ottaviani, E.; Benedictis, G. Inflamm-Aging an Evolutionary Perspective on Immunosenescence. Ann. N. Y. Acad. Sci. 2000, 908, 244–254. [Google Scholar] [CrossRef]
- Sikora, E.; Bielak-Zmijewska, A.; Mosieniak, G. A Common Signature of Cellular Senescence; Does It Exist? Ageing Res. Rev. 2021, 71, 101458. [Google Scholar] [CrossRef]
- He, S.; Sharpless, N.E. Senescence in Health and Disease. Cell 2017, 169, 1000–1011. [Google Scholar] [CrossRef]
- Hayflick, L.; Moorhead, P.S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 1961, 25, 585–621. [Google Scholar] [CrossRef]
- Sikora, E.; Bielak-Zmijewska, A.; Dudkowska, M.; Krzystyniak, A.; Mosieniak, G.; Wesierska, M.; Wlodarczyk, J. Cellular Senescence in Brain Aging. Front. Aging Neurosci. 2021, 13, 646924. [Google Scholar] [CrossRef]
- Liu, J.; Wang, L.; Wang, Z.; Liu, J.P. Roles of Telomere Biology in Cell Senescence, Replicative and Chronological Ageing. Cells 2019, 8, 54. [Google Scholar] [CrossRef] [PubMed]
- Phoenix, A.; Chandran, R.; Ergul, A. Cerebral Microvascular Senescence and Inflammation in Diabetes. Front. Physiol. 2022, 13, 864758. [Google Scholar] [CrossRef] [PubMed]
- Burton, D.G.A.; Faragher, R.G.A. Obesity and Type-2 Diabetes as Inducers of Premature Cellular Senescence and Ageing. Biogerontology 2018, 19, 447–459. [Google Scholar] [CrossRef] [PubMed]
- Ferrucci, L.; Fabbri, E. Inflammageing: Chronic Inflammation in Ageing, Cardiovascular Disease, and Frailty. Nat. Rev. Cardiol. 2018, 15, 505–522. [Google Scholar] [CrossRef]
- Docherty, M.H.; Baird, D.P.; Hughes, J.; Ferenbach, D.A. Cellular Senescence and Senotherapies in the Kidney: Current Evidence and Future Directions. Front. Pharmacol. 2020, 11, 755. [Google Scholar] [CrossRef]
- Wiley, C.D.; Campisi, J. The Metabolic Roots of Senescence: Mechanisms and Opportunities for Intervention. Nat. Metab. 2021, 3, 1290–1301. [Google Scholar] [CrossRef] [PubMed]
- Gorgoulis, V.; Adams, P.D.; Alimonti, A.; Bennett, D.C.; Bischof, O.; Bishop, C.; Campisi, J.; Collado, M.; Evangelou, K.; Ferbeyre, G.; et al. Cellular Senescence: Defining a Path Forward. Cell 2019, 179, 813–827. [Google Scholar] [CrossRef]
- He, M.; Chiang, H.H.; Luo, H.; Zheng, Z.; Qiao, Q.; Wang, L.; Tan, M.; Ohkubo, R.; Mu, W.C.; Zhao, S.; et al. An Acetylation Switch of the NLRP3 Inflammasome Regulates Aging-Associated Chronic Inflammation and Insulin Resistance. Cell Metab. 2020, 31, 580–591. [Google Scholar] [CrossRef]
- Ling, Z.; Liu, X.; Cheng, Y.; Yan, X.; Wu, S. Gut Microbiota and Aging. Crit. Rev. Food Sci. Nutr. 2022, 62, 3509–3534. [Google Scholar] [CrossRef]
- Jha, J.C.; Ho, F.; Dan, C.; Jandeleit-Dahm, K. A Causal Link between Oxidative Stress and Inflammation in Cardiovascular and Renal Complications of Diabetes. Clin. Sci. 2018, 132, 1811–1836. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, B.; Lee, J.; Kim, M.E.; Lee, J.S.; Chung, J.H.; Yu, B.P.; Dong, H.H.; Chung, H.Y. FoxO6-Mediated IL-1β Induces Hepatic Insulin Resistance and Age-Related Inflammation via the TF/PAR2 Pathway in Aging and Diabetic Mice. Redox Biol. 2019, 24, 101184. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Dong, X.; Cao, L.; Sun, Y.; Qiu, Y.; Zhang, Y.; Cao, R.; Covasa, M.; Zhong, L. Association between Telomere Length and Diabetes Mellitus: A Meta-Analysis. J. Int. Med. Res. 2016, 44, 1156–1173. [Google Scholar] [CrossRef] [PubMed]
- Shou, J.; Chen, P.J.; Xiao, W.H. Mechanism of Increased Risk of Insulin Resistance in Aging Skeletal Muscle. Diabetol. Metab. Syndr. 2020, 12, 14. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Akre, S.; Chakole, S.; Wanjari, M.B. Stress-Induced Diabetes: A Review. Cureus 2022, 14, e29142. [Google Scholar] [CrossRef]
- Soeters, M.R.; Soeters, P.B. The Evolutionary Benefit of Insulin Resistance. Clin. Nutr. 2012, 31, 1002–1007. [Google Scholar] [CrossRef]
- Umpierrez, G.E.; Kosiborod, M. Inpatient Dysglycemia and Clinical Outcomes: Association or Causation? J. Diabetes Complicat. 2014, 28, 427–429. [Google Scholar] [CrossRef]
- Scheen, M.; Giraud, R.; Bendjelid, K. Stress Hyperglycemia, Cardiac Glucotoxicity, and Critically Ill Patient Outcomes Current Clinical and Pathophysiological Evidence. Physiol. Rep. 2021, 9, e14713. [Google Scholar] [CrossRef]
- Roberts, G.W.; Quinn, S.J.; Valentine, N.; Alhawassi, T.; O’Dea, H.; Stranks, S.N.; Burt, M.G.; Doogue, M.P. Relative Hyperglycemia, a Marker of Critical Illness: Introducing the Stress Hyperglycemia Ratio. J. Clin. Endocrinol. Metab. 2015, 100, 4490–4497. [Google Scholar] [CrossRef]
- Fabbri, A.; Marchesini, G.; Benazzi, B.; Morelli, A.; Montesi, D.; Bini, C.; Rizzo, S.G. Stress Hyperglycemia and Mortality in Subjects with Diabetes and Sepsis. Crit. Care Explor. 2020, 2, e0152. [Google Scholar] [CrossRef]
- Linn, B.S.; Linn, M.W.; Gurel, L. Cumulative illness rating scale. J. Am. Geriatr. Soc. 1968, 16, 622–626. [Google Scholar] [CrossRef]
- Corrao, S.; Nobili, A.; Natoli, G.; Mannucci, P.M.; Perticone, F.; Pietrangelo, A.; Argano, C. Correction to: Hyperglycemia at Admission, Comorbidities, and in-Hospital Mortality in Elderly Patients Hospitalized in Internal Medicine Wards: Data from the RePoSI Registry. Acta Diabetol. 2021, 58, 1225–1236. [Google Scholar] [CrossRef] [PubMed]
- Björk, M.; Melin, E.O.; Frisk, T.; Thunander, M. Admission Glucose Level Was Associated with Increased Short-Term Mortality and Length-of-Stay Irrespective of Diagnosis, Treating Medical Specialty or Concomitant Laboratory Values. Eur. J. Intern. Med. 2020, 75, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Wellen, K.E.; Hotamisligil, G.S. Inflammation, Stress, and Diabetes. J. Clin. Investig. 2005, 115, 1111–1119. [Google Scholar] [CrossRef] [PubMed]
- Boult, C.; Dowd, B.; McCaffrey, D.; Boult, L.; Hernandez, R.; Krulewitch, H. Screening Elders for Risk of Hospital Admission. J. Am. Geriatr. Soc. 1993, 41, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Aghasafari, P.; George, U.; Pidaparti, R. A Review of Inflammatory Mechanism in Airway Diseases. Inflamm. Res. 2019, 68, 59–74. [Google Scholar] [CrossRef]
- Ticinesi, A.; Lauretani, F.; Nouvenne, A.; Porro, E.; Fanelli, G.; Maggio, M.; Meschi, T. C-Reactive Protein (CRP) Measurement in Geriatric Patients Hospitalized for Acute Infection. Eur. J. Intern. Med. 2017, 37, 7–12. [Google Scholar] [CrossRef]
- Rizza, S.; Morabito, P.; de Meo, L.; Farcomeni, A.; Testorio, G.; Cardellini, M.; Ballanti, M.; Davato, F.; Pecchioli, C.; di Cola, G.; et al. IL-6 Levels Influence 3-Month All-Cause Mortality in Frail Hospitalized Older Patients. Aging Dis. 2021, 12, 353–359. [Google Scholar] [CrossRef]
- McMillan, D.C. The Systemic Inflammation-Based Glasgow Prognostic Score: A Decade of Experience in Patients with Cancer. Cancer Treat. Rev. 2013, 39, 534–540. [Google Scholar] [CrossRef]
- Kang, H.S.; Cho, K.W.; Kwon, S.S.; Kim, Y.H. Prognostic Significance of Glasgow Prognostic Score in Patients with Acute Exacerbation of Idiopathic Pulmonary Fibrosis. Respirology 2018, 23, 206–212. [Google Scholar] [CrossRef]
- Kuluöztürk, M.; Deveci, F. The Glasgow Prognostic Score Can Be a Predictor of Mortality in Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Expert. Rev. Respir. Med. 2020, 14, 521–525. [Google Scholar] [CrossRef]
- Wang, R.; Wen, X.; Huang, C.; Liang, Y.; Mo, Y.; Xue, L. Association between Inflammation-Based Prognostic Scores and in-Hospital Outcomes in Elderly Patients with Acute Myocardial Infarction. Clin. Interv. Aging 2019, 14, 1199–1206. [Google Scholar] [CrossRef] [PubMed]
- Altay, S.; Gürdoğan, M.; Keskin, M.; Kardaş, F.; Çakır, B. The Inflammation-Based Glasgow Prognostic Score as a Prognostic Factor in Patients with Intensive Cardiovascular Care Unit. Medicina 2019, 55, 139. [Google Scholar] [CrossRef] [PubMed]
- Rea, I.M.; Alexander, H.D. Triple Jeopardy in Ageing: COVID-19, Co-Morbidities and Inflamm-Ageing. Ageing Res. Rev. 2022, 73, 101494. [Google Scholar] [CrossRef]
- Liberale, L.; Montecucco, F.; Tardif, J.C.; Libby, P.; Camici, G.G. Inflamm-Ageing: The Role of Inflammation in Age-Dependent Cardiovascular Disease. Eur. Heart J. 2020, 41, 2974–2982. [Google Scholar] [CrossRef]
- Bonafè, M.; Prattichizzo, F.; Giuliani, A.; Storci, G.; Sabbatinelli, J.; Olivieri, F. Inflamm-Aging: Why Older Men Are the Most Susceptible to SARS-CoV-2 Complicated Outcomes. Cytokine Growth Factor Rev. 2020, 53, 33–37. [Google Scholar] [CrossRef]
- Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L.F.P. The Trinity of COVID-19: Immunity, Inflammation and Intervention. Nat. Rev. Immunol. 2020, 20, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Conti, P.; Ronconi, G.; Caraffa, A.; Gallenga, C.E.; Ross, R.; Frydas, I.; Kritas, S.K. Induction of Pro-Inflammatory Cytokines (IL-1 and IL-6) and Lung Inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): Anti-Inflammatory Strategies. J. Biol. Regul. Homeost. Agents 2020, 34, 327–331. [Google Scholar] [CrossRef]
- Hu, C.; Li, J.; Xing, X.; Gao, J.; Zhao, S.; Xing, L. The Effect of Age on the Clinical and Immune Characteristics of Critically Ill Patients with COVID-19: A Preliminary Report. PLoS ONE 2021, 16, e0248675. [Google Scholar] [CrossRef]
- Mora-Buch, R.; Bromley, S.K. Discipline in Stages: Regulating CD8+ Resident Memory T Cells. Front. Immunol. 2020, 11, 624199. [Google Scholar] [CrossRef]
- Cantó, C.; Menzies, K.J.; Auwerx, J. NAD+ Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus. Cell Metab. 2015, 22, 31–53. [Google Scholar] [CrossRef]
- Schneider, M.; Schumacher, V.; Lischke, T.; Lücke, K.; Meyer-Schwesinger, C.; Velden, J.; Koch-Nolte, F.; Mittrücker, H.W. CD38 Is Expressed on Inflammatory Cells of the Intestine and Promotes Intestinal Inflammation. PLoS ONE 2015, 10, e0126007. [Google Scholar] [CrossRef] [PubMed]
- Covarrubias, A.J.; Kale, A.; Perrone, R.; Lopez-Dominguez, J.A.; Pisco, A.O.; Kasler, H.G.; Schmidt, M.S.; Heckenbach, I.; Kwok, R.; Wiley, C.D.; et al. Senescent Cells Promote Tissue NAD+ Decline during Ageing via the Activation of CD38+ Macrophages. Nat. Metab. 2020, 2, 1265–1283. [Google Scholar] [CrossRef]
- Farabegoli, F.; Santaclara, F.J.; Costas, D.; Alonso, M.; Abril, A.G.; Espiñeira, M.; Ortea, I.; Costas, C. Exploring the Anti-Inflammatory Effect of Inulin by Integrating Transcriptomic and Proteomic Analyses in a Murine Macrophage Cell Model. Nutrients 2023, 15, 859. [Google Scholar] [CrossRef] [PubMed]
- Matt, S.M.; Allen, J.M.; Lawson, M.A.; Mailing, L.J.; Woods, J.A.; Johnson, R.W. Butyrate and Dietary Soluble Fiber Improve Neuroinflammation Associated with Aging in Mice. Front. Immunol. 2018, 9, e01832. [Google Scholar] [CrossRef]
- Kabisch, S.; Weickert, M.O.; Pfeiffer, A.F.H. The Role of Cereal Soluble Fiber in the Beneficial Modulation of Glycometabolic Gastrointestinal Hormones. Crit. Rev. Food Sci. Nutr. 2022, 16, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Milesi, G.; Rangan, A.; Grafenauer, S. Whole Grain Consumption and Inflammatory Markers: A Systematic Literature Review of Randomized Control Trials. Nutrients 2022, 14, 374. [Google Scholar] [CrossRef]
- Vulevic, J.; Drakoularakou, A.; Yaqoob, P.; Tzortzis, G.; Gibson, G.R. Modulation of the Fecal Microflora Profile and Immune Function by a Novel Trans-Galactooligosaccharide Mixture (B-GOS) in Healthy Elderly Volunteers. Am. J. Clin. Nutr. 2008, 88, 1438–1446. [Google Scholar] [CrossRef]
- Guigoz, Y.; Rochat, F.; Perruisseau-Carrier, G.; Rochat, I.; Schiffrin, E.J. Effects of Oligosaccharide on the Faecal Flora and Non-Specific Immune System in Elderly People. Nutr. Res. 2002, 22, 13–25. [Google Scholar] [CrossRef]
- Smith, C.E.; Tucker, K.L. Health Benefits of Cereal Fibre: A Review of Clinical Trials. Nutr. Res. Rev. 2011, 24, 118–131. [Google Scholar] [CrossRef]
- Guess, N.D.; Dornhorst, A.; Oliver, N.; Bell, J.D.; Thomas, E.L.; Frost, G.S. A Randomized Controlled Trial: The Effect of Inulin on Weight Management and Ectopic Fat in Subjects with Prediabetes. Nutr. Metab. 2015, 12, 36. [Google Scholar] [CrossRef]
- Tappy, L.; Gugolz, E.; Wursch, P. Effects of Breakfast Cereals Containing Various Amounts of β-Glucan Fibers on Plasma Glucose and Insulin Responses in NIDDM Subjects. Diabetes Care 1996, 19, 831–834. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Kimita, W.; Cho, J.; Ko, J.; Bharmal, S.H.; Petrov, M.S. Dietary Fibre Intake in Type 2 and New-Onset Prediabetes/Diabetes after Acute Pancreatitis: A Nested Cross-Sectional Study. Nutrients 2021, 13, 1112. [Google Scholar] [CrossRef] [PubMed]
- Nirmala Prasadi, V.P.; Joye, I.J. Dietary Fibre from Whole Grains and Their Benefits on Metabolic Health. Nutrients 2020, 12, 3045. [Google Scholar] [CrossRef]
- Tuncay, P.; Arpaci, F.; Doganay, M.; Erdem, D.; Sahna, A.; Ergun, H.; Atabey, D. Use of Standard Enteral Formula versus Enteric Formula with Prebiotic Content in Nutrition Therapy: A Randomized Controlled Study among Neuro-Critical Care Patients. Clin. Nutr. ESPEN 2018, 25, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Kim, C.K.; Kim, M.K.; Seo, W.-K.; Oh, K. Insulin Resistance Is Associated with Poor Functional Outcome after Acute Ischemic Stroke in Non-Diabetic Patients. Sci. Rep. 2021, 11, 1229. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y.; Pan, Y.; Jing, J.; Zhao, X.; Liu, L.; Wang, C.; Li, H.; Yan, H.; Meng, X.; et al. Insulin Resistance Index from Oral Glucose Tolerance Test Predicts Ischemic Stroke Outcomes in Non-Diabetic Patients with Different Estimated Glomerular Filtration Rate Strata. Cerebrovasc. Dis. 2018, 46, 142–151. [Google Scholar] [CrossRef]
- Yang, X.; Li, C.; Li, J.; Hou, D.; Luo, Y.; Zhang, S.; Jin, Z.; Shen, L.; Zhong, P.; Wu, D. Insulin Resistance Is Significantly Related with Worse Clinical Outcomes in Non-Diabetic Acute Ischemic Stroke Patients Treated with Intravenous Thrombolysis. J. Stroke Cerebrovasc. Dis. 2021, 30, 105526. [Google Scholar] [CrossRef]
- Vedantam, D.; Poman, D.S.; Motwani, L.; Asif, N.; Patel, A.; Anne, K.K. Stress-Induced Hyperglycemia: Consequences and Management. Cureus 2022, 14, e26714. [Google Scholar] [CrossRef]
- Venegas-Borsellino, C.; Kwon, M. Impact of Soluble Fiber in the Microbiome and Outcomes in Critically Ill Patients. Curr. Nutr. Rep. 2019, 8, 347–355. [Google Scholar] [CrossRef]
- Shima, K.; Tanaka, A.; Ikegami, H.; Tabata, M.; Sawazaki, N.; Kumahara, Y. Effect of Dietary Fiber, Glucomannan, on Absorption of Sulfonylurea in Man. Hormone Metab. Res. 1983, 15, 1–3. [Google Scholar] [CrossRef]
- Chiu, A.C.; Sherman, S.I. Effects of Pharmacological Fiber Supplements on Levothyroxine Absorption. Thyroid 1998, 8, 667–671. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.F.; Rodin, S.M.; Hoch, K.; Shekar, V. The Effect of Dietary Fiber on the Bioavailability of Digoxin in Capsules. J. Clin. Pharmacol. 1987, 27, 487–490. [Google Scholar] [CrossRef] [PubMed]
- Lutz, M.; Espinoza, J.; Arancibia, A.; Araya, M.; Pacheco, I.; Brunser, O. Effect of Structured Dietary Fiber on Bioavailability of Amoxicillin. Clin. Pharmacol. Ther. 1987, 42, 220–224. [Google Scholar] [CrossRef]
- Husmann, F.M.D.; Zimmermann, M.B.; Herter-Aeberli, I. The Effect of Prebiotics on Human Iron Absorption: A Review. Adv. Nutr. 2022, 13, 2296–2304. [Google Scholar] [CrossRef]
- Boelens Keun, J.T.; Arnoldussen, I.A.; Vriend, C.; Van De Rest, O. Dietary Approaches to Improve Efficacy and Control Side Effects of Levodopa Therapy in Parkinson’s Disease: A Systematic Review. Adv. Nutr. 2021, 12, 2265–2287. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.K.; Rossi, M.; Bajka, B.; Whelan, K. Dietary Fibre in Gastrointestinal Health and Disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 101–116. [Google Scholar] [CrossRef]
- Portincasa, P.; Bonfrate, L.; Vacca, M.; De Angelis, M.; Farella, I.; Lanza, E.; Khalil, M.; Wang, D.Q.H.; Sperandio, M.; Di Ciaula, A. Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis. Int. J. Mol. Sci. 2022, 23, 1105. [Google Scholar] [CrossRef]
- Rivero-Mendoza, D.; Caldwell, C.L.; Cooper, H.; Goldberg, J.; Lamothe, M.; Logan, S.; Smith, E.B.; Torna, E.; Zeldman, J.A.; Dahl, W.J. Recommending Ultra-Processed Oral Nutrition Supplements for Unintentional Weight Loss: Are There Risks? Nutr. Clin. Pract. 2023, 38, 88–101. [Google Scholar] [CrossRef]
- Knudsen, K.E.B.; Lærke, H.N.; Hedemann, M.S.; Nielsen, T.S.; Ingerslev, A.K.; Nielsen, D.S.G.; Theil, P.K.; Purup, S.; Hald, S.; Schioldan, A.G.; et al. Impact of Diet-Modulated Butyrate Production on Intestinal Barrier Function and Inflammation. Nutrients 2018, 10, 1499. [Google Scholar] [CrossRef]
- Liu, T.; Wang, C.; Wang, Y.Y.; Wang, L.L.; Ojo, O.; Feng, Q.Q.; Jiang, X.S.; Wang, X.H. Effect of Dietary Fiber on Gut Barrier Function, Gut Microbiota, Short-Chain Fatty Acids, Inflammation, and Clinical Outcomes in Critically Ill Patients: A Systematic Review and Meta-Analysis. J. Parent. Enteral Nutr. 2022, 46, 997–1010. [Google Scholar] [CrossRef]
- Trompette, A.; Gollwitzer, E.S.; Pattaroni, C.; Lopez-Mejia, I.C.; Riva, E.; Pernot, J.; Ubags, N.; Fajas, L.; Nicod, L.P.; Marsland, B.J. Dietary Fiber Confers Protection against Flu by Shaping Ly6c− Patrolling Monocyte Hematopoiesis and CD8+ T Cell Metabolism. Immunity 2018, 48, 992–1005. [Google Scholar] [CrossRef] [PubMed]
- He, L.H.; Ren, L.F.; Li, J.F.; Wu, Y.N.; Li, X.; Zhang, L. Intestinal Flora as a Potential Strategy to Fight SARS-CoV-2 Infection. Front. Microbiol. 2020, 11, 1388. [Google Scholar] [CrossRef]
- Boets, E.; Deroover, L.; Houben, E.; Vermeulen, K.; Gomand, S.V.; Delcour, J.A.; Verbeke, K. Quantification of in Vivo Colonic Short Chain Fatty Acid Production from Inulin. Nutrients 2015, 7, 5440. [Google Scholar] [CrossRef]
- Canfora, E.E.; Jocken, J.W.; Blaak, E.E. Short-Chain Fatty Acids in Control of Body Weight and Insulin Sensitivity. Nat. Rev. Endocrinol. 2015, 11, 577–591. [Google Scholar] [CrossRef]
- Kim, Y.A.; Keogh, J.B.; Clifton, P.M. Probiotics, Prebiotics, Synbiotics and Insulin Sensitivity. Nutr. Res. Rev. 2018, 31, 35–51. [Google Scholar] [CrossRef] [PubMed]
- Den Besten, G.; Van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.J.; Bakker, B.M. The Role of Short-Chain Fatty Acids in the Interplay between Diet, Gut Microbiota, and Host Energy Metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef] [PubMed]
- Ojo, O.; Feng, Q.Q.; Ojo, O.O.; Wang, X.H. The Role of Dietary Fibre in Modulating Gut Microbiota Dysbiosis in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Nutrients 2020, 12, 3239. [Google Scholar] [CrossRef] [PubMed]
- Miranda, C.; Silva, V.; Capita, R.; Alonso-Calleja, C.; Igrejas, G.; Poeta, P. Implications of Antibiotics Use during the COVID-19 Pandemic: Present and Future. J. Antimicrob. Chemother. 2020, 75, 3413–3416. [Google Scholar] [CrossRef]
- Yang, Q.; Liang, Q.; Balakrishnan, B.; Belobrajdic, D.P.; Feng, Q.J.; Zhang, W. Role of Dietary Nutrients in the Modulation of Gut Microbiota: A Narrative Review. Nutrients 2020, 12, 381. [Google Scholar] [CrossRef]
- Jeffery, I.B.; Lynch, D.B.; O’Toole, P.W. Composition and Temporal Stability of the Gut Microbiota in Older Persons. ISME J. 2016, 10, 170–182. [Google Scholar] [CrossRef]
- Peng, Y.; Zhong, G.C.; Zhou, X.; Guan, L.; Zhou, L. Frailty and Risks of All-Cause and Cause-Specific Death in Community-Dwelling Adults: A Systematic Review and Meta-Analysis. BMC Geriatr. 2022, 22, 725. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Wang, D.; Dong, D.; Xu, L.; Xie, M.; Wang, Y.; Ni, T.; Jiang, W.; Zhu, X.; Ning, N.; et al. Altered Intestinal Microbiome and Metabolome Correspond to the Clinical Outcome of Sepsis. Crit. Care 2023, 27, 127. [Google Scholar] [CrossRef]
- Victoria, M.; Elena, V.D.B.; Amparo, G.G.N.; María, J.R.A.; Adriana, G.V.; Irene, A.C.; Alejandra, Y.M.M.; Janeth, B.B.; María, A.O.G. Gut Microbiota Alterations in Critically Ill Older Patients: A Multicenter Study. BMC Geriatr. 2022, 22, 373. [Google Scholar] [CrossRef]
- Spapen, H.; Diltoer, M.; Van Malderen, C.; Opdenacker, G.; Suys, E.; Huyghens, L. Soluble Fiber Reduces the Incidence of Diarrhea in Septic Patients Receiving Total Enteral Nutrition: A Prospective, Double-Blind, Randomized, and Controlled Trial. Clin. Nutr. 2001, 20, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Cara, K.C.; Beauchesne, A.R.; Wallace, T.C.; Chung, M. Safety of Using Enteral Nutrition Formulations Containing Dietary Fiber in Hospitalized Critical Care Patients: A Systematic Review and Meta-Analysis. J. Parent. Enteral Nutr. 2021, 45, 882–906. [Google Scholar] [CrossRef]
- Li, C.; Liu, L.; Gao, Z.; Zhang, J.; Chen, H.; Ma, S.; Liu, A.; Mo, M.; Wu, C.; Chen, D.; et al. Synbiotic Therapy Prevents Nosocomial Infection in Critically Ill Adult Patients: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials Based on a Bayesian Framework. Front. Med. 2021, 8, 693188. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Feng, P.; Wang, C.; Ojo, O.; Wang, Y.Y.; Wang, X.H. Effects of Dietary Fibre on Enteral Feeding Intolerance and Clinical Outcomes in Critically Ill Patients: A Meta-Analysis. Intensive Crit. Care Nurs. 2023, 74, 103326. [Google Scholar] [CrossRef]
- Zaman, M.K.; Chin, K.F.; Rai, V.; Majid, H.A. Fiber and Prebiotic Supplementation in Enteral Nutrition: A Systematic Review and Meta-Analysis. World J. Gastroenterol. 2015, 21, 5372–5381. [Google Scholar] [CrossRef]
- Dos Reis, A.M.; Fruchtenicht, A.V.; Loss, S.H.; Moreira, L.F. Use of Dietary Fibers in Enteral Nutrition of Critically Ill Patients: A Systematic Review. Rev. Bras. Ter. Intensiva 2018, 30, 358–365. [Google Scholar] [CrossRef]
- Rashidah, N.H.; Lim, S.M.; Neoh, C.F.; Majeed, A.B.A.; Tan, M.P.; Khor, H.M.; Tan, A.H.; Rehiman, S.H.; Ramasamy, K. Differential Gut Microbiota and Intestinal Permeability between Frail and Healthy Older Adults: A Systematic Review. Ageing Res. Rev. 2022, 82, 101744. [Google Scholar] [CrossRef]
- Kaewdech, A.; Sripongpun, P.; Wetwittayakhlang, P.; Churuangsuk, C. The Effect of Fiber Supplementation on the Prevention of Diarrhea in Hospitalized Patients Receiving Enteral Nutrition: A Meta-Analysis of Randomized Controlled Trials with the GRADE Assessment. Front. Nutr. 2022, 9, 1008464. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Moscoso, D.I.; Porter, J.; Krishnareddy, S.; Abrams, J.A.; Seres, D.; Chong, D.H.; Freedberg, D.E. Relationship Between Dietary Fiber Intake and Short-Chain Fatty Acid–Producing Bacteria During Critical Illness: A Prospective Cohort Study. J. Parent. Enteral Nutr. 2020, 44, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Claesson, M.J.; Jeffery, I.B.; Conde, S.; Power, S.E.; O’Connor, E.M.; Cusack, S.; Harris, H.M.B.; Coakley, M.; Lakshminarayanan, B.; O’sullivan, O.; et al. Gut Microbiota Composition Correlates with Diet and Health in the Elderly. Nature 2012, 488, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Frost, G.; Sleeth, M.L.; Sahuri-Arisoylu, M.; Lizarbe, B.; Cerdan, S.; Brody, L.; Anastasovska, J.; Ghourab, S.; Hankir, M.; Zhang, S.; et al. The Short-Chain Fatty Acid Acetate Reduces Appetite via a Central Homeostatic Mechanism. Nat. Commun. 2014, 5, 3611. [Google Scholar] [CrossRef] [PubMed]
- Trouwborst, I.; Gijbels, A.; Jardon, K.M.; Siebelink, E.; Hul, G.B.; Wanders, L.; Erdos, B.; Péter, S.; Singh-Povel, C.M.; de Vogel-van den Bosch, J.; et al. Cardiometabolic Health Improvements upon Dietary Intervention Are Driven by Tissue-Specific Insulin Resistance Phenotype: A Precision Nutrition Trial. Cell Metab. 2023, 35, 71–83. [Google Scholar] [CrossRef]
- Reynolds, A.; Mann, J.; Cummings, J.; Winter, N.; Mete, E.; Te Morenga, L. Carbohydrate Quality and Human Health: A Series of Systematic Reviews and Meta-Analyses. Lancet 2019, 393, 434–445, Erratum in Lancet 2019, 393, 406. [Google Scholar] [CrossRef]
- Da Silva, G.M.; Durante, É.B.; de Assumpção, D.; de Azevedo Barros, M.B.; Corona, L.P. High Prevalence of Inadequate Dietary Fiber Consumption and Associated Factors in Older Adults: A Population-Based Study. Rev. Bras. Epidemiol. 2019, 22, e190044. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niero, M.; Bartoli, G.; De Colle, P.; Scarcella, M.; Zanetti, M. Impact of Dietary Fiber on Inflammation and Insulin Resistance in Older Patients: A Narrative Review. Nutrients 2023, 15, 2365. https://doi.org/10.3390/nu15102365
Niero M, Bartoli G, De Colle P, Scarcella M, Zanetti M. Impact of Dietary Fiber on Inflammation and Insulin Resistance in Older Patients: A Narrative Review. Nutrients. 2023; 15(10):2365. https://doi.org/10.3390/nu15102365
Chicago/Turabian StyleNiero, Michele, Giulio Bartoli, Paolo De Colle, Marialaura Scarcella, and Michela Zanetti. 2023. "Impact of Dietary Fiber on Inflammation and Insulin Resistance in Older Patients: A Narrative Review" Nutrients 15, no. 10: 2365. https://doi.org/10.3390/nu15102365
APA StyleNiero, M., Bartoli, G., De Colle, P., Scarcella, M., & Zanetti, M. (2023). Impact of Dietary Fiber on Inflammation and Insulin Resistance in Older Patients: A Narrative Review. Nutrients, 15(10), 2365. https://doi.org/10.3390/nu15102365